

Overview

Timeline of matter wave interference

- BEC with > 10⁹ atoms in one coherent state
- May extend over millimeters
- De Broglie wavelength determined by mass of a single atom.

Ultra-cold, weak binding limit!

Electron (1927)

C₇₀ Fullerenes (1999) Bose-Einstein condensates (1995) Atoms & Dimers (1983 - 1995) He-Atoms & H, - molecules (1930) Neutron (1936)

Biodyes (2003)

Large perfluorinated

molecules (2008)

Molecules & clusters

heading towards > 10⁶ atoms in a single particle

→ de Broglie wavelength is determined by the mass of all atoms

Hot, strong binding limit!

Challenges

- Small de Broglie wavelengths (< picometer)
- No coherent beam sources available
- Low detection efficiencies
- Dispersive interaction between molecules and gratings

- Far-field experiments not feasible for masses >> 1000 amu!
- Very small 1st order diffraction angle
- Long interferometer & very slow particles required
- Long passage time leads to strong environmental decoherence
- Huge signal loss due to required spatial coherence (tight velocity selection & collimation)

The Talbot-Lau interferometer (TLI)

Talbot-Lau-Interferometer

 3 Gratings of equal periods, spaced equidistantly

Advantages:

- Period scales with $\lambda^{1/2}$
- Spatially incoherent illumination
- Short (Intensity ~1/r²)

 => Allows investigation of the characteristics of complex molecules

Principle of operation

1st grating is illuminated incoherently

• Each slit acts as coherent source

- 2nd grating acts as diffractiongrating
- The transmission function is reproduced at integer multiples of the Talbot length
- If periods match, patterns originating from different source slits add (incoherently)
- 3rd grating is used to scan the molecule pattern

Impact of the molecule-grating interaction

Molecule-Grating interaction:

- More significant for smaller grating periods
- More significant for larger molecules (higher polarizabilities)

- Prohibitively narrow velocity distribution required!
- Not feasible for molecules >>1000 amu!

 $\Delta v/v = 0.3\% => Visibility reduced by 50%!$

Kapitza-Dirac TLI

Solution:

Light Grating employed as central grating

- No van-der-Waals interaction
- Acts as pure phase grating
- Variable potential
- 100% transmission
- Cannot be blocked or destroyed

Kapitza-Dirac TLI

Solution:

Light Grating employed as central grating

- No interaction btw. molecles and grating surfaces
- Acts as pure phase grating
- Variable potential
- 100% transmission
- Cannot be blocked or destroyed

The experimental setup

High-contrast quantum interference has been observed with...

Measurement of optical polarisabilities

- Perfect agreement with theory
- Different functional shapes of the visibilitypower dependence
- This can be used to:
 - Measure the optical polarisabilities.
 - Indentify different molecules (including isomeres)

Interferometry complementing mass spectrometry

Quantum interference of the fluorinated catalyst: $C_{96}H_{48}Cl_2F_{102}P_2Pd$ (3378 amu)

Detection using EI-QMS on the fragment m = 1595 amu

Interferometric mass spectrometry

C₉₆H₄₈Cl₂F₁₀₂P₂Pd Mwt.: 3378.52 m/z: 3378.00 (100.0%)

On the cover of:

Gerlich et al., Angew. Chem. Int. Ed. 47, 6195 (2008)

Measurement of susceptibilities

The laser interacts through the optical polarizability.

The static field gradient (homogeneous force field) interacts through the *static* polarizability & the electric dipole moment

Applying external electric fields

De Broglie interference is sensitive to the molecular structure: Identification of constitutional isomers

Identical chemical sum formula & mass,

<u>but different structure and different electric properties</u>

The molecules couple to a conservative potential, without leaving any trace or position information

Interferometrically determined difference in susceptibility between the two isomers

$$\chi_{Ball} = 102 \pm 0.8 \mathring{A}^3 \times 4\pi \varepsilon_0$$
$$\chi_{Max} = 126 \pm 0.5 \mathring{A}^3 \times 4\pi \varepsilon_0$$

De Broglie interference is sensitive to: Molecular dynamics & thermally activated conformation-oscillations

- Azobenzene derivative
 - → no static dipole moment
- But at 500 K:
 - → many different conformations
- Surprise 1:
 High-contrast de Broglie
 interference
- Surprise 2:
 Dynamic dipole moments μ measurable

$$\chi = \alpha_{stat} + \frac{1}{3} \frac{\langle \mu_z^2 \rangle}{k_b T}$$

Phys. Rev. A, Rapid comm. (2010)

Total electric susceptibility χ reveals fluctuating dipole moments

Limitations in the lab

- Limitations using the time-domain TLI with grating period d=80 nm
- Passage time through interferometer: 2T ~ 32 ns/amu
 - Gravity: fall distance ~ mass², particles > 106 amu fall out of focus!
 - Coriolis force: proper setup orientation → no transverse deflection
 - Velocity: for 10⁶ amu v < 1 m/s to stay in mirror region,
 ⇒ slowing/cooling or larger mirrors needed
- Size: gold cluster radius ~ 3 nm @ 10⁶ amu → still small enough
- Relevant decoherence/dephasing rates @ 10⁶ amu:
 - Collisions with rest gas: residual pressure < 10⁻¹⁰ mbar → OK @ T=300 K
 - Thermal radiation: Rayleigh scattering & absorption/emission still OK @ T=300 K
 - Mirror stability: vibrations & thermal drifts < 20 nm over integration time

Gravity sets mass limit in the lab to 10⁶ amu

Many fruitful collaborations

Interferometry

- Lucia Hackermüller → now Nottingham
- Hendrik Ulbricht → now Southampton

Molecular Synthesis & Analysis

- Marcel Mayor, Univ. Basel
- Jens Tüxen, Univ. Basel

Molecular simulations

- Nikos Doltsinis, Kings College London
- Marcus Böckmann, Univ. Bochum

Theory

Klaus Hornberger, Dresden

New ideas on mesoscopic coherence experiments

Herbert Gleiter, Horst Hahn, KIT Karlsruhe

The Vienna Quantum Nanophysics Team 2010

