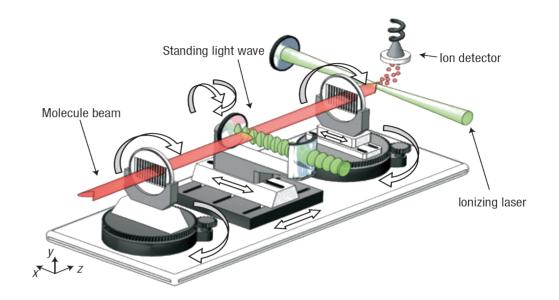
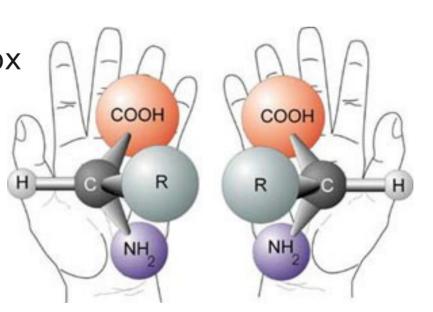


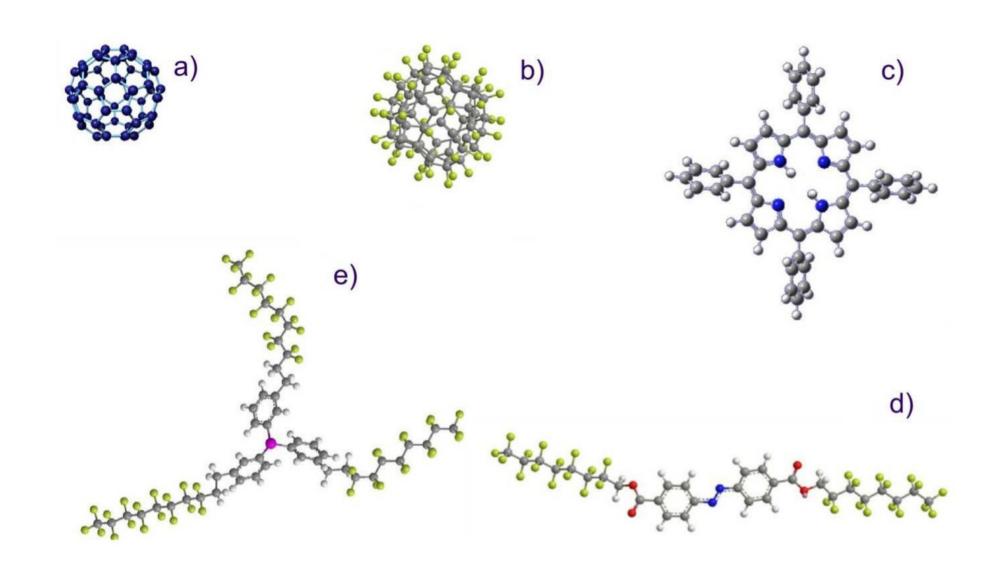
Max Planck Institute for the Physics of Complex Systems



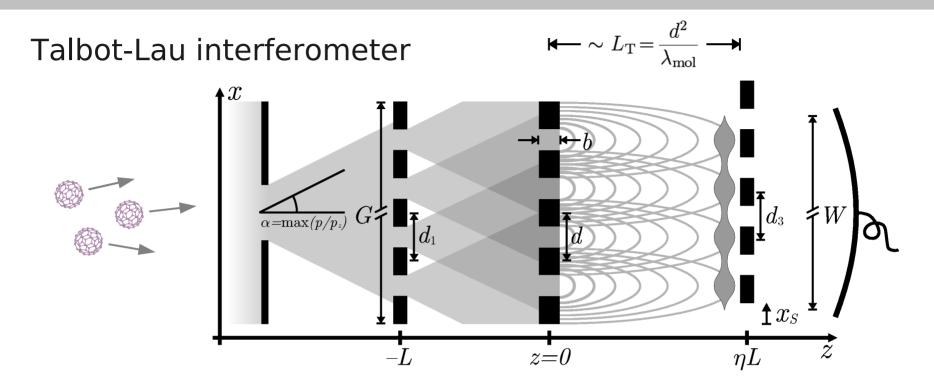
Klaus Hornberger


Decoherence phenomena in molecular systems

Overview


1. Localization of molecular matter waves

2. Hund's paradox of molecular chirality



A gallery of molecules...

... whose wave nature has been observed (University of Vienna)

Molecular near-field diffraction

Phase space description allows for

- Comparison with classical formulation
- Description of decoherence effects
- Accounting for grating dispersion forces

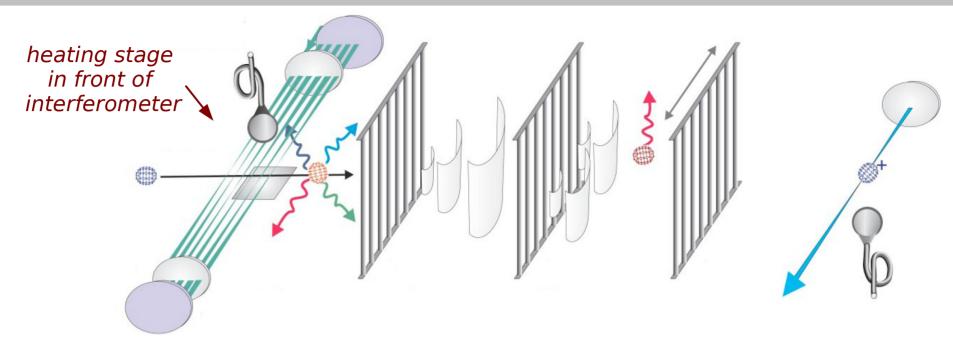
Decoherence

...explains the gradual emergence of classical behavior due to unavoidable environmental interactions

Localization in position

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \boldsymbol{X} | \tilde{\rho} | \boldsymbol{X}' \rangle = -F(\boldsymbol{X} - \boldsymbol{X}') \langle \boldsymbol{X} | \tilde{\rho} | \boldsymbol{X}' \rangle$$

by endogenous heat radiation

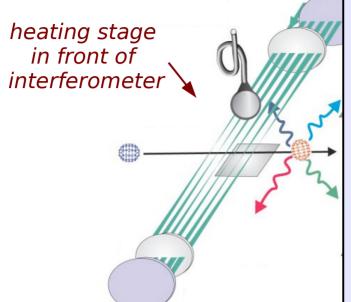

$$F(\boldsymbol{x}) = \int_0^\infty \mathrm{d}\lambda \, R_\lambda(\lambda, T) \left(1 - \mathrm{sinc} \left[2\pi \frac{|\boldsymbol{x}|}{\lambda} \right] \right)$$
spectral
emission rate

by gas collisions

$$F(\boldsymbol{x}) = n_{\rm gas} \left\langle v_{\rm g} \int \mathrm{d}\Omega \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \left(\cos\theta; \frac{m_{\rm g}}{2} v_{\rm g}^2\right) \, \frac{\text{cross}}{\text{section}} \right.$$

$$\times \left(1 - \operatorname{sinc} \left[2 \sin\left(\frac{\theta}{2}\right) \frac{m_{\rm g} v_{\rm g} |\boldsymbol{x}|}{\hbar} \right] \right) \right\rangle_{v_{\rm g}}$$

Decoherence by endogenous heat radiation


expected contrast reduction

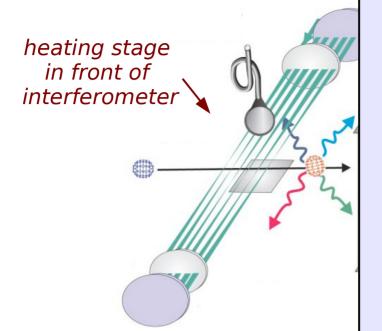
$$V = V_0 \exp \left[-\int_0^{2L/v} dt \int_0^\infty d\lambda \, R_\lambda \left(\lambda, T(t) \right) \left\{ 1 - \operatorname{sinc} \left(2\pi \frac{d}{\lambda} \frac{L - |vt - L|}{L_T} \right) \right\} \right]$$

spectral emission rate of heat photons

"which-way" resolving power of a photon with wave length λ

Decoherence by en

expected contrast reduction


Spectral emission rate of C₇₀

$$V = V_0 \exp \left[-\int_0^{2L/v} dt \int_0^\infty d\lambda \, R_\lambda \left(\lambda, T(t) \right) \left\{ 1 - \operatorname{sinc} \left(2\pi \frac{d}{\lambda} \frac{L - |vt - L|}{L_T} \right) \right\} \right]$$

spectral emission rate of heat photons

"which-way" resolving power of a photon with wave length λ

Decoherence by en

expected contrast reduction

$$V = V_0 \exp \left[-\int_0^{2L/v} \mathrm{d}t \int_0^\infty \mathrm{d}\lambda \, R_\lambda \left(\lambda, T\left(t \right) \right) \left\{ 1 - \mathrm{sinc} \left(2\pi \frac{d}{\lambda} \frac{L - |vt - L|}{L_\mathrm{T}} \right) \right\} \right]$$

2

1,540

1.0 -5

0.2

0 -

spectral emission rate of heat photons

"which-way" resolving power of a photon with wave length λ

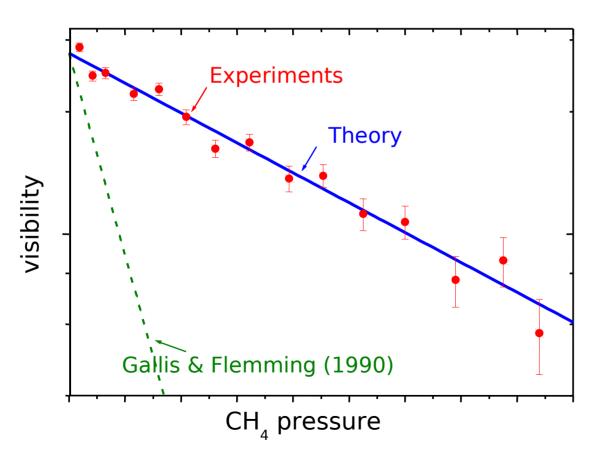
Experiment & theory

2,880

Mean temperature (K)

2.930

2,940


2,580

Decoherence by collisions with a background gas

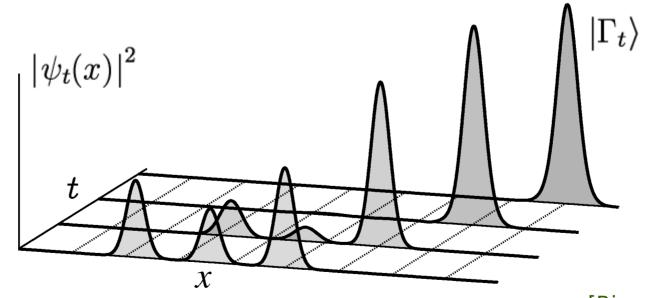
expected contrast reduction

$$V = V_0 \exp \left(-\frac{2L\sigma_{\text{eff}}}{k_B T} p \right)$$

$$\sigma_{\rm eff}(v_{\rm m}) = \frac{4\pi\Gamma(9/10)}{5\sin(\pi/5)} \left(\frac{3\pi C_6}{2\hbar}\right)^{2/5} \frac{\tilde{v}_{\rm g}^{3/5}}{v_{\rm m}}$$

$$\times \left\{ 1 + \frac{1}{5} \left(\frac{\tilde{v}_{g}}{v_{m}} \right)^{2} + \mathcal{O} \left(\frac{\tilde{v}_{g}}{v_{m}} \right)^{4} \right\}$$

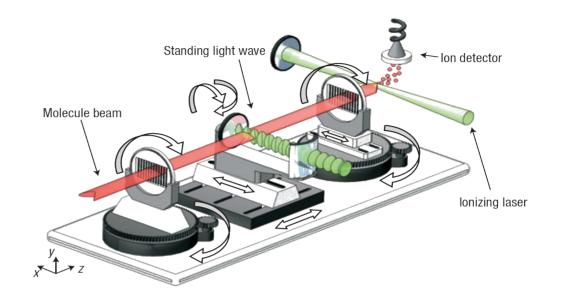
in case of van der Waals-WW

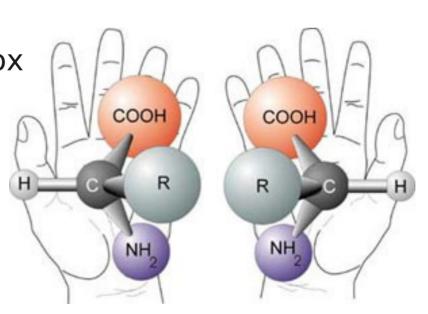

$$U_{\rm int} = -C_6/r^6$$

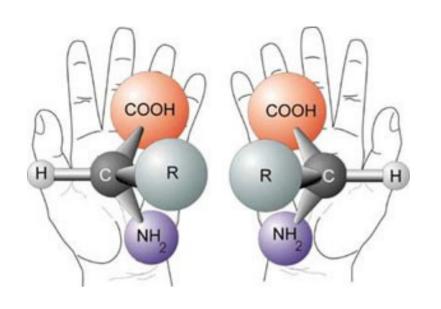
Pointer states of collisional decoherence

$$\rho_0 \xrightarrow{t \gg t_{\rm dec}} \rho_t \simeq \int d\Gamma_0 \operatorname{Prob}(\Gamma_0 | \rho_0) | \Gamma_t \rangle \langle \Gamma_t |$$

$$Born's rule pointer basis$$

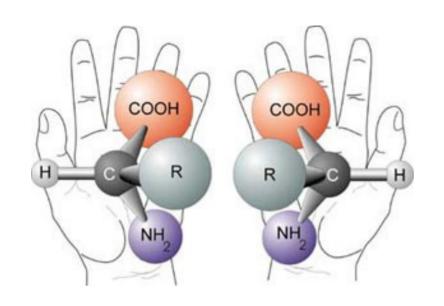

 $|\Gamma_t\rangle$: exponentially localized solitons evolve on classical trajectories


[Rigo, Gisin (2000)]


Overview

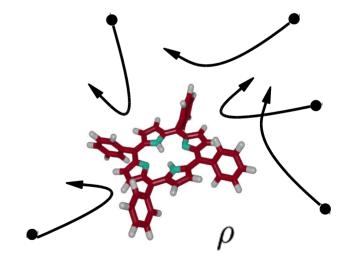
1. Localization of molecular matter waves

2. Hund's paradox of molecular chirality

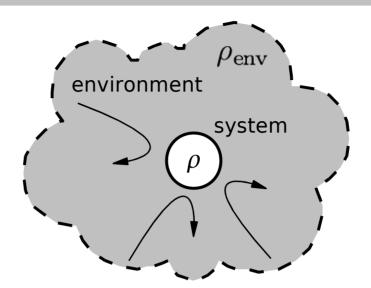


Friedrich Hund (1927)

Why are many molecules found in a chiral configuration?
—in spite of the parity invariance of their hamiltonian?


Friedrich Hund (1927)

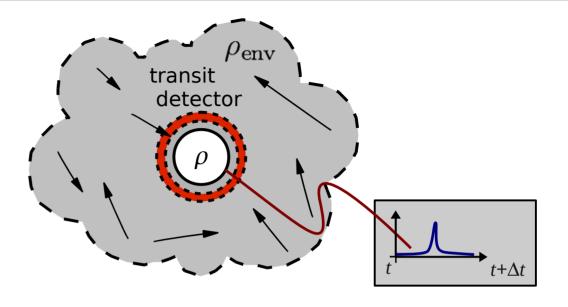
Why are many molecules found in a chiral configuration?


—in spite of the parity invariance of their hamiltonian?

Effect of an *achiral* gas environment on the configuration & orientation state?

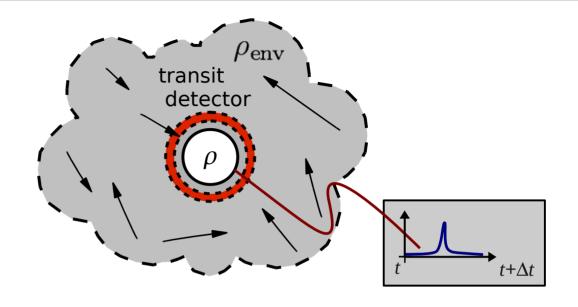
non-perturbative quantum master equation required

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho \stackrel{?}{=} \mathcal{L}\rho$$



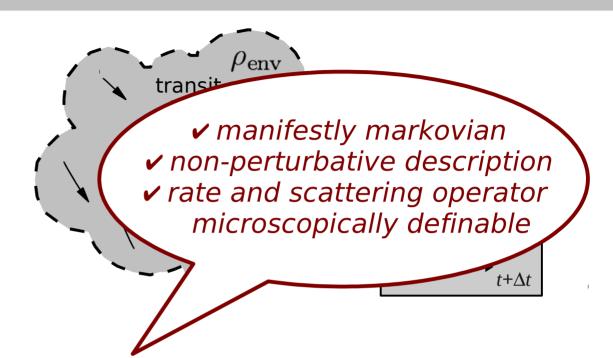
Idea:

Don't start with the Schrödinger equation for the total system but put the Markov assumption ("memoryless environment") as the central premise!


rate operator Γ and scattering operator S characterize events

$$(S = I + iT)$$

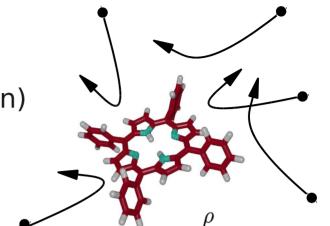
rate operator Γ and scattering operator S characterize events


$$(S = I + iT)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = \frac{1}{i\hbar}[H,\rho] + i \operatorname{Tr}_{\mathrm{env}}(\left[\Gamma^{1/2}\operatorname{Re}(T)\Gamma^{1/2},\rho\otimes\rho_{\mathrm{env}}\right])
+ \operatorname{Tr}_{\mathrm{env}}(T\Gamma^{1/2}[\rho\otimes\rho_{\mathrm{env}}]\Gamma^{1/2}T^{\dagger})
- \frac{1}{2}\operatorname{Tr}_{\mathrm{env}}(\Gamma^{1/2}T^{\dagger}T\Gamma^{1/2}[\rho\otimes\rho_{\mathrm{env}}])
- \frac{1}{2}\operatorname{Tr}_{\mathrm{env}}(\left[\rho\otimes\rho_{\mathrm{env}}\right]\Gamma^{1/2}T^{\dagger}T\Gamma^{1/2})$$

rate operator Γ and scattering operator S characterize events

$$(S = I + iT)$$


$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = \frac{1}{i\hbar}[H,\rho] + i \operatorname{Tr}_{\mathrm{env}}(\left[\Gamma^{1/2}\operatorname{Re}(T)\Gamma^{1/2},\rho\otimes\rho_{\mathrm{env}}\right])
+ \operatorname{Tr}_{\mathrm{env}}(T\Gamma^{1/2}[\rho\otimes\rho_{\mathrm{env}}]\Gamma^{1/2}T^{\dagger})
- \frac{1}{2}\operatorname{Tr}_{\mathrm{env}}(\Gamma^{1/2}T^{\dagger}T\Gamma^{1/2}[\rho\otimes\rho_{\mathrm{env}}])
- \frac{1}{2}\operatorname{Tr}_{\mathrm{env}}(\left[\rho\otimes\rho_{\mathrm{env}}\right]\Gamma^{1/2}T^{\dagger}T\Gamma^{1/2})$$

Master equation for ro-vibrational dynamics in background gas

microscopically realistic choice

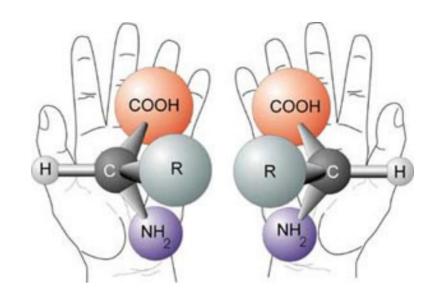
 $\Gamma =$ (gas current density) x (cross section)

S =(multi-channel S-Matrix)

Master equation for ro-vibrational dynamics in background gas

microscopically realistic choice

 $\Gamma =$ (gas current density) x (cross section)

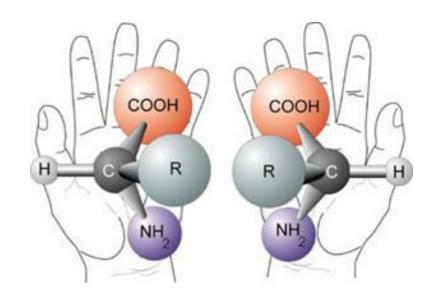

S = (multi-channel S-Matrix)

yields:

$$M_{\alpha\beta}^{\alpha_0\beta_0} = n_{\text{gas}} \int d\Omega \langle v_{\text{out}} f_{\alpha\alpha_0} \left(\cos\theta; \frac{m}{2} v_{\text{in}}^2 \right) f_{\beta\beta_0}^* \left(\cos\theta; \frac{m}{2} v_{\text{in}}^2 \right) \rangle_{v_{\text{in}}}$$

$$\partial_{t} \rho_{\alpha\beta} = -i\omega_{\alpha\beta} \rho_{\alpha\beta} + \sum_{\substack{\alpha_{0}\beta_{0} \\ \omega_{\alpha\alpha_{0}} = \omega_{\beta\beta_{0}} \\ \omega_{\beta} = \omega_{\beta_{0}}}} \rho_{\alpha_{0}\beta_{0}} M_{\alpha\beta}^{\alpha_{0}\beta_{0}} - \frac{1}{2} \sum_{\substack{\alpha_{0} \\ \omega_{\alpha} = \omega_{\alpha_{0}} \\ \omega_{\alpha} = \omega_{\alpha_{0}}}} \rho_{\alpha_{0}\beta} \sum_{\gamma} M_{\gamma\gamma}^{\alpha_{0}\alpha_{0}} - \frac{1}{2} \sum_{\substack{\alpha_{0} \\ \omega_{\alpha} = \omega_{\alpha_{0}} \\ \omega_{\beta} = \omega_{\beta_{0}}}} \rho_{\alpha\beta_{0}} \sum_{\gamma} M_{\gamma\gamma}^{\beta\beta_{0}}$$
(extends Dümcke 1985)

Effect of an *achiral* gas environment

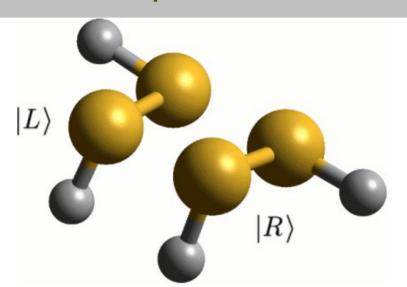


• $|L\rangle + \mathrm{e}^{i\varphi}|R\rangle$ decay with decoherence rate

$$\gamma = n_{\text{gas}} \left\langle v \int \frac{d\mathbf{n} d\mathbf{n}_0}{8\pi} \left| f_{\alpha,\alpha_0}^{(L)}(v \, \mathbf{n}, v \, \mathbf{n}_0) - f_{\alpha,\alpha_0}^{(R)}(v \, \mathbf{n}, v \, \mathbf{n}_0) \right|^2 \right\rangle_{v,\alpha,\alpha_0}$$

"decoherence cross section"

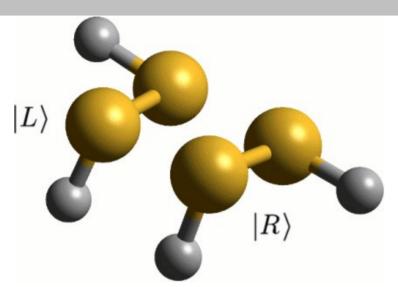
Effect of an *achiral* gas environment



• $|L\rangle + \mathrm{e}^{i\varphi}|R\rangle$ decay with decoherence rate

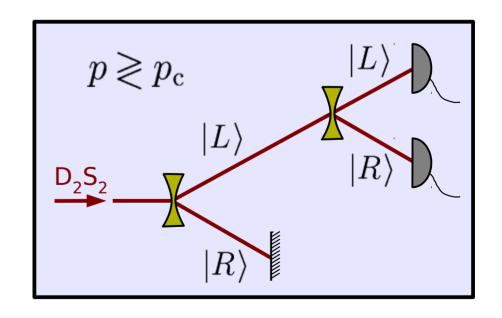
$$\gamma = n_{\text{gas}} \left\langle v \int \frac{d\boldsymbol{n} d\boldsymbol{n}_0}{8\pi} \left| f_{\alpha,\alpha_0}^{(L)}(v \boldsymbol{n}, v \boldsymbol{n}_0) - f_{\alpha,\alpha_0}^{(R)}(v \boldsymbol{n}, v \boldsymbol{n}_0) \right|^2 \right\rangle_{v,\alpha,\alpha_0}$$

• only the chiral states $|L\rangle$ and $|R\rangle$ exhibit a quantum-Zeno-like stabilization $\sim\!\omega^2/\gamma$ against tunneling and decay if $\gamma\gg\omega$


Harris, Stodolsky (1978)

D₂S₂ tunnels with 176 Hz in vacuum

The stabilization effect is dominated by a higher order contribution to the van der Waals interaction described by the EQED tensor $A_{j,k\ell}(i\omega)$


D₂S₂ tunnels with 176 Hz in vacuum

The stabilization effect is dominated by a higher order contribution to the van der Waals interaction described by the EQED tensor $A_{j,k\ell}(i\omega)$

critical pressure in 300K He atmosphere:

$$p_c = 1.6 \times 10^{-5} \,\text{mbar}$$

... allows one to observe the chiral stabilization in an optical Stern-Gerlach type setup

acknowledgments

theory

experiments

Markus Arndt Lucia Hackermüller, Stefan Gerlich et al *U Vienna*

Marc Busse, Clemens Gneiting Stefan Nimmrichter, Álvaro Tejero, Johannes Trost

> LMU Munich U Vienna

