Decoherence in Low-Energy Nuclear Collisions?

Alexis Diaz-Torres

Department of Physics

Outline

- Introduction
 - Nuclear structure & collision dynamics
 - Coherent coupled channels model
 - Checking theory against measurements
- Quantum decoherence in nuclear collisions
 - Picture & main ideas
 - Decoherence in the complex-potential model ?
 - Coupled-channels density-matrix approach
- Summary

Composite Atomic Nucleus

How do these excitations affect the nuclear collision dynamics?

Low-Energy Collision Dynamics: Coherent Quantum Description

Failure of the Coherent Quantum Description

Coupling Assisted Quantum Tunnelling: Nuclear Fusion

Dasgupta, Hinde, AD-T, Bouriquet, Low, Milburn & Newton, PRL 99 (2007) 192701

Quantum Decoherence in Nuclear Collisions

AD-T, Hinde, Dasgupta, Milburn & Tostevin, PRC 78 (2008) 064604

Quantum Decoherence in Nuclear Collisions

AD-T, Hinde, Dasgupta, Milburn & Tostevin, PRC 78 (2008) 064604

$$\partial\hat{
ho}/\partial t = [\hat{\mathcal{L}}_H + \hat{\mathcal{L}}_D]\hat{
ho}$$
, $\hat{
ho}(0) = \hat{
ho}_0$ Master equation $\hat{\mathcal{L}}_H\hat{
ho} = -i[\hat{H},\hat{
ho}]/\hbar$ Schrödinger description $\hat{\mathcal{L}}_D\hat{
ho} = \sum_{\mathbf{k}} (\hat{\mathcal{C}}_{\mathbf{k}}\hat{
ho}\,\hat{\mathcal{C}}_{\mathbf{k}}^{\dagger} - \frac{1}{2}[\hat{\mathcal{C}}_{\mathbf{k}}^{\dagger}\,\hat{\mathcal{C}}_{\mathbf{k}},\hat{
ho}]_{+})$ **Decoherence**

$\hat{\mathcal{C}}_{Ij} = \sqrt{\Gamma_{Ij}} |I\rangle\langle j|$ Absorption

In Practice (e.g, Pesce & Saalfrank, 1998)

$$\hat{
ho}(t) = \sum_{ij,rs} |r) \ket{i} \; oldsymbol{
ho_{ij}^{rs}(t)} \; ra{j} (s) \; \; , \; \; oldsymbol{
ho_{ij}^{rs}(0)} =
ho_{\mathrm{OO}}^{rs}(0) = g_0(r) g_0^*(s)$$

$$|i\rangle, i=1,\dots N$$
 Intrinsic (energy) basis

$$|r|, r = 1, ... M$$
 Coordinate (grid) basis

Absence of Decoherence in the Optical Potential Model

AD-T, accepted as a Rapid Communication in PRC

Optical Potential Model

$$egin{aligned} \hat{
ho}_0 &= |\chi_0
angle\langle\chi_0| \ \dot{\hat{
ho}} &= -rac{i}{\hbar}(\hat{H}_{eff}\hat{
ho}\,-\,\hat{
ho}\hat{H}_{eff}^{\dagger}) \end{aligned}$$

$$\hat{H}_{eff} = \hat{H}_s - i\,W(x)$$

$$\hat{H}_s = \hat{T} + V(x)$$

Optical Potential Model

$$ho_0(x,x') = \chi_0(x) \, \chi_0^*(x') \ \dot{
ho}_{xx'} = -rac{i}{\hbar} \, [\, \hat{H}_s,\hat{
ho} \,]_{xx'} + (\mathcal{L}_D \, \hat{
ho})_{xx'},$$

$$egin{aligned} \hat{H}_s &= \hat{T} + V(x) \ (\mathcal{L}_D \, \hat{
ho})_{xx'} \, = \, -rac{1}{\hbar} \left(\, W(x) + W(x') \,
ight)
ho_{xx'} \end{aligned}$$

Huisinga et al, J. Chem. Phys. **110** (1999) 5538 Kosloff, Ann. Rev. Phys. Chem. **45** (1994) 145

Lindblad Dissipative Dynamics

$$egin{align} \dot{
ho}_{xx'}^{11} &= -rac{i}{\hbar} \left[\,\hat{H}_s,\hat{
ho}\,
ight]_{xx'}^{11} \,+\, (\mathcal{L}_D\,\hat{
ho})_{xx'}^{11}, \ \dot{
ho}_{xx'}^{22} &=\, (\mathcal{L}_D\,\hat{
ho})_{xx'}^{22}, \end{aligned}$$

$$egin{array}{lll} (\mathcal{L}_D \, \hat{
ho})^{kl}_{xx'} & = & \delta_{kl} \, \sum_{j=1}^2 \sqrt{\gamma^{kj}_{xx}} \,
ho^{jj}_{xx'} \sqrt{\gamma^{kj}_{x'x'}} \ & - & rac{1}{2} \, \sum_{j=1}^2 \left(\, \gamma^{jk}_{xx} \, + \, \gamma^{jl}_{x'x'}
ight)
ho^{kl}_{xx'}, \end{array}$$

The absorption rate to state $|2\rangle$ is given by $\gamma_{xx}^{21} = W(x)/\hbar$

Measure of Coherence

K. Blum, Density Matrix Theory and Applications (2nd Edition, Plenum Press, 1996) p. 39

For a *pure* state described by the state vector $|\chi\rangle$:

$$\hat{
ho} = |\chi\rangle\langle\chi|$$
, and $\mathrm{Tr}(\hat{
ho}) = \langle\chi|\chi\rangle$.

$$\hat{\rho}^2 = |\chi\rangle\langle\chi|\chi\rangle\langle\chi|$$
, and $\text{Tr}(\hat{\rho}^2) = \langle\chi|\chi\rangle\langle\chi|\chi\rangle = [\text{Tr}(\hat{\rho})]^2$.

Hence, $\text{Tr}(\hat{\rho}^2)/[\text{Tr}(\hat{\rho})]^2 = 1$, for nonzero values of $\text{Tr}(\hat{\rho})$.

For a *mixed* state, there is no single state vector describing the system:

$$\operatorname{Tr}(\hat{\rho}^2)/[\operatorname{Tr}(\hat{\rho})]^2 < 1.$$

The transition from a pure state to a mixed state is caused by decoherence.

Absence of Decoherence in the Optical Potential Model

AD-T, accepted as a Rapid Communication in PRC

Absence of Decoherence in the Optical Potential Model

AD-T, accepted as a Rapid Communication in PRC

Decoherence significantly affects quantum tunnelling, and thus scattering as well

$$|\chi
angle = \sum_{LJM} \psi_{k_0}(r) \ket{0L; JM} \Rightarrow \hat{
ho}_0 = \ket{\chi}\!ra{\chi}$$
 $\hat{
ho}_0 = \sum_{lpha,lpha',rs} \ket{r} \ket{lpha} rac{
ho^{rs}_{lphalpha'}(t=0)}{lpha^{rs}_{lphalpha'}(t=0)} ra{lpha'} \ket{s},$

where $\alpha \equiv (IL; JM)$, $|\alpha\rangle$ and $|r\rangle$ are the coupled angular momentum basis and the discrete grid-basis describing the internuclear separations, respectively.

$$egin{align}
ho_{lphalpha'}^{rs}(t=0) &= N^2 \exp{[-rac{(r-r_0)^2}{2\sigma^2}]}\,e^{ik_0\,r} \ & imes \exp{[-rac{(s-r_0)^2}{2\sigma^2}]}e^{-ik_0\,s}\,\,\delta_{I\,0}\,\,\delta_{I'\,0}, \end{align}$$

where N is determined from the normalization condition $\sum_{r\alpha} \rho_{\alpha\alpha}^{rr} = 1$.

Equations of Motion

$$egin{aligned} i\hbar\,\dot{
ho}_{lphalpha'}^{rs} &=& \sum_{t}\left(T^{rt}\,
ho_{lphalpha'}^{ts}-
ho_{lphalpha'}^{rt}\,T^{ts}
ight) \ &+\left[U_{lpha}(r)-U_{lpha'}(s)
ight]
ho_{lphalpha'}^{rs} \ &+\sum_{eta}\left[V_{lphaeta}(r)\,
ho_{etalpha'}^{rs}-
ho_{lphaeta}^{rs}V_{etalpha'}(s)
ight] \ &+\left(arepsilon_{lpha}-arepsilon_{lpha'}
ight)
ho_{lphalpha'}^{rs} \ &+i\hbar\,\left\{\,\delta_{lphalpha'}\,\sum_{\mu}\sqrt{\Gamma_{lpha\mu}^{rr}}\,
ho_{\mu\mu}^{rs}\,\sqrt{\Gamma_{lpha\mu}^{ss}} \ &-rac{1}{2}\,\sum_{\mu}\left(\Gamma_{\mulpha}^{rr}+\Gamma_{\mulpha'}^{ss}
ight)
ho_{lphalpha'}^{rs}\,
ight\} \end{aligned}$$

$$egin{array}{lll} \dot{
ho}_{ar{lpha}ar{lpha}'}^{rs} &=& \delta_{ar{lpha}ar{lpha}'} \sum_{\mu} \sqrt{\Gamma_{ar{lpha}\mu}^{rr}} \,
ho_{\mu\mu}^{rs} \sqrt{\Gamma_{ar{lpha}\mu}^{ss}} \ && -rac{1}{2} \, \sum_{\mu} \left(\, \Gamma_{\muar{lpha}}^{rr} \, + \, \Gamma_{\muar{lpha}'}^{ss} \,
ight)
ho_{ar{lpha}ar{lpha}'}^{rs} \end{array}$$

Expectation value of an observable: $\langle \hat{\mathcal{O}}(t) \rangle = \frac{\mathrm{Tr}[\hat{\mathcal{O}}\,\hat{\boldsymbol{\rho}}(t)]}{\mathrm{Tr}[\hat{\boldsymbol{\rho}}(t)]}$

Asymptotic Observables

The probability for producing the target in state (I, M_I) with the relative coordinate in the direction \hat{r}' :

$$egin{array}{ll} rac{dW}{d\Omega}(I,M_I) &=& \sum_q C_{LmIM_I}^{JM} \, Y_{Lm}(\hat{r}') rac{\mathcal{S}_{\gamma\lambda}(t_f)}{\mathcal{S}_{\gamma\lambda}(t_f)} \ && imes C_{L'm'IM_I}^{J'M'} \, Y_{L'm'}^*(\hat{r}'), \end{array}$$

where $q \equiv (L, m, J, M, L', m', J', M')$, $\gamma \equiv (IL; JM)$, $\lambda \equiv (IL'; J'M')$, and $\mathcal{S}_{\gamma\lambda}(t_f) = \sum_{r'} \rho_{\gamma\lambda}^{r'r'}(t_f)$.

Integrating over all directions \hat{r}' of solid angles, and summing over all M_I , the total probability for producing the target in state I (population) is obtained:

$$W(I) = \sum_{M_I} \sum_{Lm,IM} (\,C_{LmIM_I}^{JM}\,)^2 \, {\cal S}_{\gamma\gamma}(t_f)$$

Different Environments

Track decoherence and absorption through different environments Environments are specific to particular degrees of freedom

Application: Understanding fusion of astrophysically-important collisions at low energies

T. Spillane et al., PRL 98 (2007) 122501

E.F. Aguilera et al., PRC 73 (2006) 064601

Origin of the resonances?

Fusion probability at astrophysical energies?

Neutron molecular shell structure of two interacting deformed ¹²C

$$V = \sum_{s=1}^2 e^{-i ext{R}_s \hat{k}} \, \hat{U}(\Omega_s) \, V_s \, \hat{U}^{-1}(\Omega_s) \, e^{i ext{R}_s \hat{k}} \ V_s pprox \sum_{
u \mu}^N \ket{s
u} \, raket{V_s} \langle s\mu |$$

AD-T, PRL 101 (2008) 122501

Summary

* Coupled-channels density-matrix approach, which will quantify the importance of quantum decoherence in various areas of nuclear reaction theory

* Decoherence should always be explicitly included when modelling low-energy nuclear collision dynamics with a limited set of (relevant) degrees of freedom

Application: Unified quantum description of reaction processes of neutron-rich, weakly-bound nuclei

