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Outline

In the framework of the th. of open systems (OS) based on
completely positive q. dynamical semigs - master eq. for 1
harmonic oscillator interacting with environment (thermal
bath) - degree of quantum decoherence (QD)
- master equation for 2 uncoupled harmonic oscillators
interacting with environment (thermal bath) - degree of QD
Peres–Simon cond. for separability of 2-mode Gaussian
states - generation and evolution of entanglement in terms
of the covariance matrix for a Gaussian input state
depending on values of diffusion, dissipation coeffs and
temperature of environment, the state keeps its initial type:
separable or entangled, or entanglement sudden birth or
death (collapse or revival of entanglement)
depending on the environment coeffs and T, the initial state
evolves asymptotically to an entangled or separable
equilibrium bipartite state, indep. of the type of initial state
→ logarithmic negativity - degree of entanglement
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Entanglement and decoherence

reduced dynamics of OS is irreversible and satisfies a
forward-in-time composition law: it is described by a
so-called q. dynamical semig. that incorporates the
dissipative and noisy effects due to the environment
environment acts as a source of decoherence: in general,
the corresponding reduced dynamics irreversibly
transforms pure states (one-dimensional projections) into
statistical mixtures (density matrices)
entanglement (purely q. correlations) of a state of two ss.
embedded in a same heat bath - it is generally expected
that it would be destroyed by decoherence effects
however, this is not the only possibility: if suitably
engineered, the environment can entangle an initial
separable state of two dynamically independent ss: the
reason is that, although not directly interacting between
themselves, there can be an environment mediated
generation of q. correlations between 2 ss. immersed in it
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Quantum decoherence (QD)

- Alicki: irreversible, uncontrollable and persistent formation of a
quantum correlation (entanglement) of the system with its
environment (damping of coherences present in the quantum
state, when off-diagonal elements of the density matrix decay
below a certain level, so that this density matrix becomes
approximately diagonal)
- strongly depends on the interaction between system and its
external environment
- harmonic oscillator interacting with an environment in the
framework of theory of open quantum systems
- we determine the degree of QD for a harmonic oscillator in a
thermal bath
- it is found that the system manifests a QD which is more and
more significant in time
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Lindblad-Kossakowski theory

- Lindblad-Kossakowski axiomatic formalism is based on
quantum dynamical semigroups (complete positivity property is
fulfilled)
- irreversible time evolution of an open system is described by
the following general q. Markovian master equation for the
density operator ρ(t):

dρ(t)
dt

= − i
~
[H, ρ(t)] +

1
2~

∑

j

([Vjρ(t), V †
j ] + [Vj , ρ(t)V †

j ])

- H - Hamiltonian of the system
- Vj , V †

j - operators on the Hilbert space of H (they model the
environment)
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Master equation for damped h.o.

- V1 and V2 - linear polynomials in q and p (equations of motion
as close as possible to the classical ones) and H - general
quadratic form

H = H0 +
µ

2
(qp + pq), H0 =

1
2m

p2 +
mω2

2
q2

dρ

dt
= − i

~
[H0, ρ]

− i
2~

(λ + µ)[q, ρp + pρ] +
i

2~
(λ − µ)[p, ρq + qρ]

−Dpp

~2 [q, [q, ρ]] − Dqq

~2 [p, [p, ρ]] +
Dpq

~2 ([q, [p, ρ]] + [p, [q, ρ]])
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Diffusion and dissipation coeffs

- fundamental constraints Dpp > 0, Dqq > 0,

DppDqq − D2
pq ≥ λ2

~
2

4
- when the asymptotic state is a Gibbs state

ρG(∞) = e−
H0
kT /Tre−

H0
kT ,

Dpp =
λ + µ

2
~mω coth

~ω

2kT
, Dqq =

λ − µ

2
~

mω
coth

~ω

2kT
,

Dpq = 0

(λ2 − µ2) coth2 ~ω

2kT
≥ λ2, λ > µ
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Evolution Eq. in coordinate rep.

∂ρ

∂t
=

i~
2m

(
∂2

∂q2 − ∂2

∂q′2 )ρ − imω2

2~
(q2 − q′2)ρ

−1
2
(λ + µ)(q − q′)(

∂

∂q
− ∂

∂q′
)ρ

+
1
2
(λ − µ)[(q + q′)(

∂

∂q
+

∂

∂q′
) + 2]ρ

−Dpp

~2 (q − q′)2ρ + Dqq(
∂

∂q
+

∂

∂q′
)2ρ

−2iDpq~(q − q′)(
∂

∂q
+

∂

∂q′
)ρ
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Physical signification

- first two terms generate a purely unitary evolution (usual
Liouvillian evolution)
- third and forth terms - dissipative (damping effect: exchange
of energy with environment)
- last three terms: noise (diffusive) (fluctuation effects)
- Dpp : diffusion in p + generates decoherence in q: it reduces
the off-diagonal terms, responsible for correlations between
spatially separated pieces of the wave packet
- Dqq : diffusion in q + generates decoherence in p
- Dpq : ”anomalous diffusion” term - does not generate
decoherence)
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Initial Gaussian wave function

- correlated coherent state (CCS) or squeezed CS (special
class of pure states, which realizes equality in generalized
uncertainty relation)

Ψ(q) = (
1

2πσqq(0)
)

1
4

× exp[− 1
4σqq(0)

(1 − 2i
~

σpq(0))(q − σq(0))2 +
i
~
σp(0)q],

σqq(0) =
~δ

2mω
, σpp(0) =

~mω

2δ(1 − r2)
, σpq(0) =

~r

2
√

1 − r2
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Parameters and variances

- δ - squeezing parameter (measures the spread in the initial
Gaussian packet), r , |r | < 1 - correlation coefficient at time
t = 0
- for δ = 1, r = 0 CCS - Glauber coherent state - σqq and σpp

denote the dispersion (variance) of the coordinate and
momentum, respectively, and σpq denotes the correlation
(covariance) of the coordinate and momentum
- in the case of a thermal bath

σqq(∞) =
~

2mω
coth

~ω

2kT
, σpp(∞) =

~mω

2
coth

~ω

2kT
,

σpq(∞) = 0
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Density matrix

< q|ρ(t)|q′ >= (
1

2πσqq(t)
)

1
2 exp[− 1

2σqq(t)
(
q + q′

2
− σq(t))2

− σ(t)
2~2σqq(t)

(q − q′)2 +
iσpq(t)
~σqq(t)

(
q + q′

2
− σq(t))(q − q′)

+
i
~
σp(t)(q − q′)] − general Gaussian form

- thermal bath, t → ∞ (stationary solution)

< q|ρ(∞)|q′ >= (
mω

π~ coth ǫ
)

1
2 exp{−mω

4~
[
(q + q′)2

coth ǫ

+(q − q′)2 coth ǫ]}, ǫ ≡ ~ω/2kT
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Degree of quantum decoherence

Σ = (q + q′)/2,∆ = q − q′,

α = 1
2σqq(t) , γ = σ(t)

2~2σqq(t) , β =
σpq(t)
~σqq(t)

ρ(Σ,∆, t) =

√

α

π
exp[−αΣ2 − γ∆2 + iβΣ∆]

(for zero initial mean values of q and p)
- representation-independent measure of the degree of QD :
ratio of the dispersion 1/

√
2γ of the off-diagonal element to the

dispersion
√

2/α of the diagonal element

δQD(t) = (1/2)
√

α/γ = ~/2
√

σ(t)
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Schr ödinger generalized uncert. f.

σ(t) ≡ σqq(t)σpp(t) − σ2
pq(t)

σ(t) =
~

2

4
{e−4λt [1 − (δ +

1
δ(1 − r2)

) coth ǫ + coth2 ǫ]

+e−2λt coth ǫ[(δ +
1

δ(1 − r2)
− 2 coth ǫ)

ω2 − µ2 cos(2Ωt)
Ω2

+(δ − 1
δ(1 − r2)

)
µ sin(2Ωt)

Ω
+

2rµω(1 − cos(2Ωt))

Ω2
√

1 − r2
]

+ coth2 ǫ}
- underdamped case (ω > µ, Ω2 ≡ ω2 − µ2)
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Discussion of QD (1)

- δQD decreases, and therefore QD increases, with t and T , i.e.
the density matrix becomes more and more diagonal and the
contributions of the off-diagonal elements get smaller and
smaller
- the degree of purity decreases and the degree of mixedness
increases with t and T
- for T = 0 the asymptotic (final) state is pure and δQD reaches
its initial maximum value 1
- limit of long times

σ(∞) =
~

2

4
coth2 ǫ,

δQD(∞) = tanh
~ω

2kT
,

- high T :

δQD(∞) =
~ω

2kT
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Discussion of QD (2)

- δQD = 0 when the quantum coherence is completely lost
- a pure state undergoing unitary evolution is highly coherent: it
does not lose its coherence, i.e. off-diagonal coherences never
vanish - then δQD = 1 and there is no QD
- only if δQD < 1, there is a significant degree of QD, when the
magnitude of the elements of the density matrix in the position
basis are peaked preferentially along the diagonal q = q′

- δQD < 1 is of the order of unity for long enough time, so that
we can say that the considered system interacting with the
thermal bath manifests QD - dissipation promotes quantum
coherences, whereas fluctuation (diffusion) reduces
coherences and promotes QD; the balance of dissipation and
fluctuation determines the final equilibrium value of δQD
- the quantum system starts as a pure state (Gaussian form)
and this state becomes a quantum mixed state during the
irreversible process of QD
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Decoherence time scale (1)

- diffusion in momentum occurs at the rate set by Dpp

- in the macroscopic limit, when ~ is small compared to other
quantities with dimensions of action, such as
√

Dpp < (q − q′)2 >, the term in master eq. containing Dpp/~
2

dominates and induces the following evolution of the density
matrix:

∂ρ

∂t
= −Dpp

~2 (q − q′)2ρ

- the diagonal (q = q′) terms remain untouched
- in the case of a thermal bath, we obtain

tdeco =
2~

(λ + µ)mωσqq(0) coth ǫ
, ǫ ≡ ~ω

2kT

where we have taken (q − q′)2 of the order of the initial
dispersion in coordinate σqq(0)
- tdeco is very much shorter than relaxation time → in the
macroscopic domain QD occurs very much faster than
relaxation
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Figures (1)
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Figure: δQD on T (C ≡ coth ~ω/2kT ) and t
(λ = 0.2, µ = 0.1, δ = 4, r = 0).
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Figures (2)
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Figure: ρ in q− representation (λ = 0.2, µ = 0.1, δ = 4, r = 0) at
t = 0.
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Figures (3)
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Figure: ρ in q− representation (λ = 0.2, µ = 0.1, δ = 4, r = 0) at
t → ∞ and C = 3.
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Figures (4)
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Figure: ρ in q− representation (λ = 0.2, µ = 0.1, δ = 4, r = 0) at
t → ∞ and C = 20.
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Markovian master equation

in axiomatic formalism based on completely positive q.
dyn. semigs, irreversible time evolution of an OS is
described by the gen. q. Markovian master eq. for the
density operator (Schrödinger rep.)

dρ(t)
dt

= − i
~
[H, ρ(t)] +

1
2~

∑

j

(V †
j [ρ(t), Vj ] + [V †

j , ρ(t)]Vj )

for an op. A (Heisenberg rep.)

dA(t)
dt

=
i
~
[H, A(t)] +

1
2~

∑

j

(V †
j [A(t), Vj ] + [V †

j , A(t)]Vj )

H - Hamiltonian of the open q. system
Vj , V †

j - operators defined on the Hilbert space of H (model
the interaction of the open system with the environment)
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Complete positivity and entanglement

the physical meaning of complete positivity can mainly be
understood in relation to the existence of entangled states,
the typical example being given by a vector state with a
singlet-like structure that cannot be written as a tensor
product of vector states

positivity property guarantees the physical consistency of
evolving states of single systems, while complete positivity
prevents inconsistencies in entangled composite systems

therefore the existence of entangled states makes the
request of complete positivity necessary

the positivity of the states of the compound system will be
preserved only if the dyn. semig. of the subs. is completely
positive.

Aurelian Isar Quantum decoherence and entanglement 23/ 41



Operators

q. dyn. semigs that preserve in time Gaussian form of the
states: H - polyn. of second degree in coordinates x , y and
momenta px , py of the two q. os and Vj , V †

j - polyns. of first
degree in canonical observables (j = 1, 2, 3, 4):

Vj = axjpx + ayjpy + bxjx + byjy

we are interested in discussing correlation effect of
environment – assume that the 2 ss are indep. (do not
interact directly - uncoupled identical h. os.)

H =
1

2m
(p2

x + p2
y ) +

mω2

2
(x2 + y2)

dyn. semig. implies positivity of the matrix formed by the
scalar products of the vectors ax , ay , bx , by (their entries
are the components axj , ayj , bxj , byj , respectively)
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Environment coefficients

matrix of environment coeffs (Dxx , Dxpx ,... and λ real)
(~ = 1)








Dxx −Dxpx − i λ
2 Dxy −Dxpy

−Dxpx + i λ
2 Dpx px −Dypx Dpx py

Dxy −Dypx Dyy −Dypy − i λ
2

−Dxpy Dpx py −Dypy + i λ
2 Dpy py









the principal minors of this matrix are positive or zero
constraints on coefficients (from Cauchy-Schwarz ineq.)

DxxDyy − D2
xy ≥ 0, DxxDpx px − D2

xpx
≥ λ2

4
,

DxxDpy py − D2
xpy

≥ 0, DyyDpx px − D2
ypx

≥ 0,

DyyDpy py − D2
ypy

≥ λ2

4
, Dpx px Dpy py − D2

px py
≥ 0
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Equations of motion

bimodal covariance matrix

σ(t) =









σxx σxpx σxy σxpy

σxpx σpx px σypx σpx py

σxy σypx σyy σypy

σxpy σpx py σypy σpy py









dσ

dt
= Yσ + σY T + 2D, Y =









−λ 1/m 0 0
−mω2 −λ 0 0

0 0 −λ 1/m
0 0 −mω2 −λ









D - matrix of diffusion coefficients

D =









Dxx Dxpx Dxy Dxpy

Dxpx Dpx px Dypx Dpx py

Dxy Dypx Dyy Dypy

Dxpy Dpx py Dypy Dpy py








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Time-dependent solution

σ(t) =









σxx σxpx σxy σxpy

σxpx σpx px σypx σpx py

σxy σypx σyy σypy

σxpy σpx py σypy σpy py









σ(t) = M(t)(σ(0) − σ(∞))MT(t) + σ(∞),

M(t) = exp(tY ), limt→∞ M(t) = 0 (Y must only have
eigenvalues with negative real parts)

Yσ(∞) + σ(∞)Y T = −2D.
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Degree of quantum decoherence - two-mode case

Σx = (x + x ′)/2,Σy = (y + y ′)/2,∆x = x − x ′,∆y = y − y ′

ρ(Σx ,Σy ,∆x ,∆y , t) = N exp[−A1Σ
2
x − B1Σ

2
y − C1ΣxΣy

−A2∆
2
x − B2∆

2
y + C2∆x∆y

+iA3Σx∆x + iB3Σy∆y + iC3Σx∆y + iC4Σy∆x ] (1)

(for zero initial mean values of x , y and px , py )
- representation-independent measure of the degree of QD :
ratio of the dispersion 1√

2A2
of the off-diagonal element to the

dispersion
√

2
A1

of the diagonal element

δQD(t) =
1
2

√

A1

A2
=

1
2

√

B1

B2

(symmetry in s. 1 and 2 → single degree of QD)
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2-mode QD

- starting with an initial coherent state δQD(0) = 1, δQD(t) is
decreasing with increasing time until it reaches a final
asymptotic non-zero value for non-zero T
- normalization factor N and time dependent factors Aj , Bj , Cj -
can be expressed as functions of the elements of the inverse of
σ(t)
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Environment induced entanglement

Two-mode Gaussian state is entirely specified by its covariance
matrix σ, which is a real, symmetric and positive matrix

σ =

(

A C
CT B

)

(A, B and C are 2 × 2 matrices).

theory of open quantum systems allows couplings via the
environment between uncoupled oscillators - diffusion
coefficients can simulate an interaction between uncoupled
oscillators: indeed, Gaussian states with det C ≥ 0 are
separable states, but for det C < 0, it may be possible that
the states are entangled
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Evolution of entanglement

partial transposition criterion: a state results entangled iff
operation of partial transposition does not preserve its
positivity (PPT criterion)
for Gaussian states, nec. and suf. criterion for separability:
S ≥ 0 (Simon)

S ≡ det A det B + (
1
4
− |det C|)2

−Tr[AJCJBJCTJ] − 1
4
(det A + det B)

J =

(

0 1
−1 0

)

is the 2 × 2 symplectic matrix

since the two oscillators are identical, it is natural to
consider environments for which
Dxx = Dyy , Dxpx = Dypy , Dpx px = Dpy py , Dxpy = Dypx - then
both unimodal covariance matrices are equal, A = B, and
the entanglement matrix C is symmetric
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Time evolution of entanglement

for a thermal environment characterized by temperature T

mωDxx =
Dpx px

mω
=

λ

2
coth

ω

2kT
, Dxpx = 0, m2ω2Dxy = Dpx py

(corresponds to the case when the asymptotic state is a
Gibbs state)

for Gaussian states, the measures of entanglement of
bipartite systems are based on some invariants
constructed from the elements of the covariance matrix -
logarithmic negativity

for a Gaussian density operator, logarithmic negativity is
completely defined by the symplectic spectrum of the
partial transpose of the covariance matrix
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Logarithmic negativity

L = max{0,− log2 2ν̃−}, where ν̃− is the smallest of the two
symplectic eigenvalues of the partial transpose σ̃ of the
2-mode covariance matrix σ :

2ν̃2
∓ = ∆̃ ∓

√

∆̃2 − 4 detσ (2)

symplectic invariant (seralian) ∆̃ = det A + det B − 2 det C.

L(t) = −1
2

log2[4f (σ(t))], (3)

f (σ(t)) =
1
2
(det A + det B) − det C

−
(

[

1
2

(det A + det B) − det C
]2

− detσ(t)

)1/2

(4)

it determines the strength of entanglement for L(t) > 0,
and if L(t) ≤ 0, then the state is separable
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Figure: Logarithmic negativity L versus time t and temperature T
(C ≡ coth ~ω

2kT ) for λ = 0.1, Dxy = 0, Dxpy = 0.049 for initial uni-modal
squeezed state with σxx (0) = 3/4,σpx px (0) = 1/3, σxpx (0) = 0.
Left: separable state with σxy (0) =σpx py (0) =σxpy (0) = 0. Right:
entangled state with σxy (0) = 1/2, σpx py (0) = −1/2, σxpy (0) = 0.
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Fig2
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Figure: Logarithmic negativity L versus time t and temperature T
(C ≡ coth ~ω

2kT ) for λ = 0.1, Dxy = 0, Dxpy = 0.049 for initial Gaussian
mixed state with σxx (0) = 1,σpx px (0) = 1/2, σxpx (0) = 0.
Left: separable state with σxy (0) =σpx py (0) =σxpy (0) = 0. Right:
entangled state with σxy (0) = 1/2, σpx py (0) = −1/2, σxpy (0) = 0.
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Asymptotic entanglement

elements of the asymptotic matrices A(∞) = B(∞) :

mωσxx(∞) =
σpx px (∞)

mω
=

1
2

coth
ω

2kT
, σxpx (∞) = 0

and of entanglement matrix C(∞) :

σxy (∞) =
m2(λ2 + ω2)Dxy + mλDxpy

m2λ(λ2 + ω2)

σxpy (∞) = σypx (∞) =
λDxpy

λ2 + ω2

σpx py (∞) =
m2ω2(λ2 + ω2)Dxy − mω2λDxpy

λ(λ2 + ω2)

Aurelian Isar Quantum decoherence and entanglement 36/ 41



Asymptotic entanglement

in the limit of large times:

S(∞) =

(

1
4
(coth2 ω

2kT
− 1) −

m2ω2D2
xy

λ2 +
D2

xpy

λ2 + ω2

)2

−
D2

xpy

λ2 + ω2 coth2 ω

2kT

for environments characterized by such coefficients that
the expression S(∞) is strictly negative, the asymptotic
final state is entangled
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Asymptotic entanglement

particular case: Dxy = 0 - for a given temperature T , we
obtain that S(∞) < 0, i.e. the asymptotic final state is
entangled, for the following range of values of Dxpy :

coth
ω

2kT
− 1 <

2Dxpy√
λ2 + ω2

< coth
ω

2kT
+ 1

coefficients have to fulfill also the constraint
λ

2
coth

ω

2kT
≥ Dxpy

if the coefficients do not fulfil the double inequality, then
S(∞) ≥ 0 and the asymptotic state is separable
asymptotic logarithmic negativity:

L(∞) = − log2

[∣

∣

∣

∣

coth
ω

2kT
− 2Dxpy√

λ2 + ω2

∣

∣

∣

∣

]

it does not depend on the parameters of the initial
Gaussian state
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Summary and conclusions (1)

we have studied QD with the Markovian
Kossakowski-Lindblad Eq. for an 1-dim. h. o. and 2-dim.
h.o. in interaction with a thermal bath in the framework of
the theory of OQS based on q. dynamical semigs
the system manifests a QD which increases with time and
T, i.e. the density matrix becomes more and more diagonal
at higher T (loss of quantum coherence); at the same time
the degree of purity decreases and the degree of
mixedness increases with T
QD is responsible for washing out the quantum
interference effects which are desirable to be seen as
signals in some experiments
in QI processing and computation we are interested in
understanding the specific causes of QD because one
wants to prevent decoherence from damaging q. states
and to protect the information stored in these states from
the degrading effect of the interaction with the environment
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Summary and conclusions (2)

when 2 ss are immersed in an environment, then, besides
and at the same time with QD phenomenon, the external
environment can also generate a q. E of the 2 ss

using Peres–Simon nec. and suff. cond. for separability of
2-mode Gaussian states, we studied generation and
evolution of E - depending on values of diffusion and
dissipation coeffs describing environment, or T , the state
keeps its initial type: separable or entangled, or E sudden
birth or birth (collapse or revival of E) or periodic E sudden
birth and death

depending on the environment coeffs, initial state evolves
asymptotically to an entangled or separable equilibrium
bipartite state, independent of the type of the initial state

we calculated the logarithmic negativity characterizing the
degree of E of the asymptotic state
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Summary and conclusions (3)

entanglement can be maintained for a definite time or a
certain amount of entanglement survives in asymptotic
long-time regime

control of entanglement in OS

existence of quantum correlations between the two
systems is the result of competition between E and QD

[1] A. Isar, Int. J. Q. Information 6, 689 (2008)
[2] A. Isar, Open Systems & Information Dynamics, 16, 205
(2009)

Thank You!
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