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@ Density matrices and damped harmonic oscillators
e Damped harmonic oscillator as accuracy test

e Ultrafast Non—Resonant Multiphoton Transitions
e Light-harvesting in purple bacteria

© Transport through molecular wires

@ Hole Transfer in DNA Driven by Solvent Fluctuations



ﬂ Density matrices and damped harmonic oscillators



Different systems: one theory

@ harmonic oscillator or coupled two-level-systems
coupled to bosonic thermal bath
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Reduced density matrix formalism

@ Goal: description of ultra-fast (fs) processes in dissipative
systems / molecular wires

@ full quantum dynamics including dephasing, energy dissipation
but also coherences and accurate laser-matter interaction

@ splitting in relevant system and bosonic / fermionic reservoirs

Laser

e

@ o - density matrix of the full system
(relevant system + bath)
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Reduced density matrix formalism

@ Goal: description of ultra-fast (fs) processes in dissipative
systems / molecular wires

@ full quantum dynamics including dephasing, energy dissipation
but also coherences and accurate laser-matter interaction

@ splitting in relevant system and bosonic / fermionic reservoirs

Laser

- -

@ reduced density-matrix:
p = trg(o) - density matrix of the relevant system

@40 [hs0), o0+ D (0001




System-bath coupling

Hamiltonian
H = Hs+ Hg + Hsp

@ every environmental degree of freedom only slightly distorted
= modeled by harmonic oscillators

@ how strongly does the environment absorb energy?
= spectral density J(w)

@ perturbation theory in the system-bath coupling Hsg

@ either time-nonlocal theory (time-convolution)

dp "K(F
ar = Lgp(t) / dt'K(t)p

@ or time-local theory (time-convolutionless)

dp 'K (¥
gei) /dt ()



Decomposition of the spectral density

@ information on the frequencies of the bath modes and their

)

coupling to the system J(w) = 5 >_; m(i,'
@ numerical decomposition in Lorentzians
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Overview of the theory

efwt
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@ reservoir correlation function C(t) = [ dﬂ—wd(w)
= sum of exponentials in ¢

@ this allows further analytical treatment

@ definition of auxiliary density matrices (time-nonlocal approach)
or auxiliary operators A%,(t) (time-local approach)

@ instead of one quantum master equation one gets one master
equation of the system and several auxiliary master equations

@ Matsubara expansion = many master equations for low
temperatures

@ no further approximation in the light-matter coupling
(beyond semi-classical approximation)

U. Kleinekathéfer, J. Chem. Phys. 121, 2505 (2004).
S. Welack, M. Schreiber, U. Kleinekathéfer, J. Chem. Phys. 124, 044712 (2006).



e Damped harmonic oscillator as accuracy test



Population dynamics for harmonic oscillator

@ initially all population in the 3rd excited level
@ medium temperature: 8 = 1/wg

@ Drude form, cut-off: wp/we=2, n = 0.121
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Population dynamics for harmonic oscillator

@ initially all population in the 3rd excited level
@ medium temperature: 8 = 1/wg
@ Drude form, cut-off: wp/we=1,n=0.2
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Population dynamics for harmonic oscillator

@ initially all population in the 3rd excited level
@ medium temperature: 8 = 1/wg
@ Drude form, cut-off: wp/we=0.5, n = 0.544
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Population dynamics for harmonic oscillator

@ initially all population in the 3rd excited level
@ medium temperature: 8 = 1/wg
@ Drude form, cut-off: wp/we=0.5, n = 0.0544
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Hierachical scheme: Damped harmonic oscillator

@ hierachical scheme for higher-order perturbation theory as
proposed by Tanimura and Kubo (J. Phys. Soc. Jpn. 58, 101
1998) or Yan et al. (Chem. Phys. Lett. 395, 216 2004)

@ for bath-correlation function C(t) = a;e=!
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Hierachical scheme: Damped harmonic oscillator

@ population dynamics of third excited state
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M. Schréder, M. Schreiber, U. Kleinekathéfer, J. Chem. Phys. 126, 114102 (2007)



e Ultrafast Non—Resonant Multiphoton Transitions



Three—Electronic Level Molecule
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three electronic states, many vibrational states

J. Liebers, U. Kleinekathdéfer, V. May, Chem. Phys. 347, 229 (2008)



Effective Schrédinger Equation for Non-resonant

Processes

@ projector into the space of primary states

P = Z |lpa) (¢l

@ its orthogonal complement
1 —'E’EQZZWXMSDH
X

@ leading to primary states
Wi(t) = Plw(t)
@ and secondary states

Wa(t)) = Qw(1)



Effective Schrédinger Equation for Non-resonant

Processes

o effective Schrédinger equation for primary states (in time-local
form)

ihgt W1 () = Hy () [W1(1)) + PHaaa () QU1 — £(1)) ' S(8)P [ w4 (1))
@ using

A

. t
£()=—+ / dF Up(t,F: E) QHhaa(DPU(E, £ E)
b

@ so far exact
@ in the following: assumption of weak laser field



Different pulse scenarios
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three different pulse scenarios



Short pulse

2.0
1 Pq ELS
Pe oo %)
08 Px10 —— £
c 1.0
S
T 06 ;
§_ ' 2.0
o 0.4 &
215
0.2 £
10

04 06 08 1 12 14 16

[N
EN
n
o

28 30 32 34 36
Time [ps] RIAI



Longer pulse
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Two pulses
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e Light-harvesting in purple bacteria



Molecular dynamics simulation of LH-II

‘,&,“

LH-1l complex of B

@ LH-Il complex o Ty o
Rhodospirillum molischianum ,ﬂ ;," ’3’1\!,
@ about 110 000 atoms lf -

@ using parallel MD code NAMD2 $» =T

@ 500-3000 snapshots every 2 fs 8 e«




Energy gaps of single BChls

@ Fast quantum chemical calculation for each snapshot
configuration: ZINDO for each separate BChl incl. point charges
using ORCA

ground states
— excited states



Energy gaps of single BChls

@ Fast quantum chemical calculation for each snapshot

configuration: ZINDO for each separate BChl incl. point charges
using ORCA

ground states

excited states



Spectral density of the protein environment

@ Autocorrelation function of the energy gap AE;

Ct) = 16Z
@ Spectral density
2
J(w) = —tanh <2k T> /dtC ) coswt

N—i
ZAE t,+tk)AE(tk)]
k 1

30 T T
Simulation length
251 |— t=1ps (B800) ,
— — t=3ps (B800)
Z 20 |— t=0ps (B800) \ |
; t=6ps (B850) |
g 15| Al R
E
3 10f e
o
2
5 1 /\\ i |
| \ v 1
4 J WA e f
ST VT L Wi
0 0.05

01 0I5 02z 02
oeV]



Quantum mechanical model for the B850 ring

@ 16 coupled two-level systems

@ coupled to a thermal bath,
characterized by its spectral density J(w)

@ only transfer between neighboring sites
@ determination of spectra in perturbation theory



Absorption spectra for B850 rmg
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@ red: experiment o [eV]
@ green: direct from MD simulation
@ blue: quantum mechanical model

M. Schroder, U. Kleinekathofer, M. Schreiber, J. Chem. Phys. 124, 903 (2006)
A. Damjanovi¢, I. Kosztin, U. Kleinekathéfer, K. Schulten, Phys. Rev. E 65, 919 (2002)



Absorption spectra for B850 rmg
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@ green: direct from MD simulation
@ blue: quantum mechanical model Quantum Biology
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Q Transport through molecular wires



Molecular wires

@ first reproducible experiments on molecular wires
e break junctions, STM setups, DNA wires, ...
@ influence of laser light on molecular wires gives an
opto-electronic coupling
@ with femtosecond laser pulses: high spatial as well as temporal
resolution



The model
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The model

H(t) = Hs(t) + H, + HSL
Hs(t) = > (En+ Un(t))chen — A(ChCa—1 + C}_;Cn)

n
q

Hgs = Z(chi Cq + V[;cf],q) e E(t) ,:;:I‘: E
q <
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Coherent destruction of tunneling (CDT)

5 E(t) i{.‘ﬂf'
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o A(t) = Apsin(wt)

3 ]

| |

k| |

-2 , | f | . | . | n 'I

A=0.1¢eV of

@ 001l i

1le]~24x104A =" 1

or LRI x

Eo'm\ﬂw il
% T30 100 150200 250

time [fs]

J. Lehmann, S. Camalet, S. Kohler, P. Hanggi, Chem. Phys. Lett. 368, 282 (2003)



Coherent destruction of tunneling (CDT)

E®

Un(t) = A(t)d1n — A(t)d2n
A(t) = Apsin(wt)
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J. Lehmann, S. Camalet, S. Kohler, P. Hanggi, Chem. Phys. Lett. 368, 282 (2003)



Coherent destruction of tunneling (CDT)

E() :;f:;f

Un(t) = A(t)d1n — A(t)d2n
A(t) = Apsin(wt)
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J. Lehmann, S. Kohler, V. May, P. Hanggi, J. Chem. Phys. 121, 2278 (2003)



CDT: Short laser pulse

Un(t) = A(t)d1n — A(t)d2n
(T2
Alt) = Apexp <U02T)>

. I . I . I . I .
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time [fs]

U. Kleinekathofer, G.-Q. Li, S. Welack, M. Schreiber, Europhys. Lett. 75, 139 (06).



@ Hole Transfer in DNA Driven by Solvent Fluctuations



Computational Methodology

@ double-stranded DNA species of sequences GT,GGG with n =
1,2,3,4,5,7,10and 14

@ first, a classical MD simulation of the DNA

@ CT parameters: TB Hamiltonian consisting of site energies and
electronic couplings based on the SCC-DFTB method

@ time-dependent Schrédinger equation

0
ih—W = HV
Ihat

@ initial state on one end and sink on the other end

@ large fluctuations of site energies in the order of 0.4 eV,
dramatically reduced barrier heights

@ solvent fluctuations introduce a significant correlation between
neighboring sites



Survival of hole P(t) vs. time in GTGGG

L
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@ a) 100 simulations, 20 ps each.
@ b) survival with the static model (50 x longer time scale)



Occupation of bridge A by the hole in GTGGG

@ a) averaged time dependence from dynamical simulations and
the result with the completely static model

@ b) occupation of A-bridge in all GT,GGG sequences; the
averaged time dependence from dynamical simulations



Rate constant of hole transfer in GT,GGG
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@ data from full MD-based calculations as well as those based on
constant site energies and on constant electronic couplings

T. Kubar, U. Kleinekathdéfer, M. Elstner, J. Phys. Chem. B 113, 13107 (09).



Rate constant of hole transfer in GT,GGG
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@ parameters calculated with the inclusion of environment
(QM/MM) and without that (‘in vacuo’)

T. Kubar, U. Kleinekathdéfer, M. Elstner, J. Phys. Chem. B 113, 13107 (09).
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