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Quantum system with environment

Quantum optical paradigms:

« Cavity system
Environment

Quantum system
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Fermi Golden rule

Environment

 Golden rule

Quantum system
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A first decay problem
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Initial condition:
[T (0)) = [1)]...0x...)

« Empty initial bath =
Restricted Hilbert space

TWO LEVEL ATOM STRUCTURED » Direct numerical simulation
RESERVOIR possible (nb. recurrences)
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Amplitude equations for dynamics

State vector:
(L)) = éa(t)e_i“1t|1) |...0x. )+ ék(t)e_i“’*tw) loeeTxees)
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Complex amplitude equations (4, = w, - w,):
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Integro-differential equation for atomic amplitude

%ca(t) = — [(drG(r)e(t — 7)

with memory kernel
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Reservoir structure function: we let Pxlgx|” = gD(wA)




Digression: Weisskopf-Wigner theory

« The bath is flat (or ‘fairly’ flat):
G(r) = Lol = [ duwp(w)lgale™

— plgl® [ dwre™ = plg|* 2m6(7)

Integro-differential equation for atomic amplitude
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With population decay rate: T, = 27|gx|° pa



Excitation of bath modes

Define excitation spectrum as S(w,)= p, | C,|?

d .
Use ODE: z’a@ — gre'BAE,
For W-W:
_ g
ex(t = o0) = (wx —wo) + 1Ty /2
p(w)|g(w)|?

S(w,t — 00) =

(w—wo)? + (I'a/2)?
p(wo)|g(wo)|?
(w—wo)? + (I'a/2)?
r,/2
7 [(w — wo)? + (Fa/2)?]

Width governed by decay rate
Applies also for smooth structure |§




Digression: Master Equations

op(t —~
—gi ) = —1 [Hr(t), ﬁ(t)} Schrodinger Eqn. for system+bath; p=|¥)(¥]
ﬁ[(t) = Z (gka-‘l‘d)\e—i(wx—wo)t + g;&—&iei(wk—wo)t>
A

Integrate and iterate ...

5(t) = plte)—i / Hi@), )] dt

dp(t)

PO = i, a0 - [ [, [Fr@),50)]] at

Approximation 1:

p(t) = ps(t) R pB Bath is “large”, unaltered by interaction



Trace over bath for system operator

0ps(t)
ot

~ —iTrg { [ﬁf(t), ps(to) ® ﬁBH — Trg {/tt [ﬁ,(t), [ﬁ,(t'), ps(t) ® ﬁBH dt’} :

Insert interaction Hamiltonian (+ make RWA)

aﬁs(t) ¢ P —i(wr—wo)(E—t") | st a— 4 / A— o Ao
57 ~ —/0 ;|Q>\| {e > {0 6 ps(t’) — 6 Ps(t)‘f}

+ei(w>\—w0)(t_t,) |: . &_ﬁs(t,)&+ _|_ PAS(t’)&—I_&_} }dt'

Approximation 2: For a “broad” reservoir structure pg(t') = pg(t)
Integral contributes around t'=0; short correlation time for bath
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This master equation is a weak coupling limit of PM theory.

End digression
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Pseudomode development

« Coupled amplitude equations (A, = w, - w,):

d :
i—&, = Z gie_’A*tcA
dt A
d :
: ~ _ 1AMt =
z 12 CA — gAe A ca’ TWO LEVEL ATOM STRUCTURED
dt 6y Gs RESERA\L'OIR

» Integro-differential equation for atomic amplitude

%éa(t) = — [(drG(r)e(t — 7)

with memory kernel

G~!(T) — Z}\: |g>\|2e_m*7 — /dwkp(wA)|g>\|2e_iA*T

« Reservoir structure function D(w) or p|g|%: we let

02 1
pa lgr|? = —D(wy) Normalisation: e /D(w)dw =1
27 27

B.M. Garraway, Phys. Rev. A 55, 2290 (1997).



« System behaviour depends on the reservoir structure function D(w,)
with weight Q? = [ dw, p(w,) |9,/?

« Pseudomode idea based on considering poles of D(w,) in the lower
half complex w, plane.

Poles atz,, z,, z, ...., residues r,, I,, I'5 ...

* Extend o to -co

 Evaluate contour for any
meromorphic function

 Kernel —

é(T) — —’Lﬂz Z ’I”le_i(zl_wl)T
l

Could solve for atomic c,(t),
but instead ...




New kernel for same integro-differential equation:

d _ ¢ ~ _ - . .
—Ca(t) = — | dTG(7)Ea(t — T) G(r) = —iQ? El:ne—m—wﬂf

+ Introduce effective amplitudes b, and then

dcg(t)
i— — = wlca(t)—l—zl:IClbl(t)
idbcllit) = zZbi(t) + Kica(t)

Where K; = Q+/—17r; are PM couplings

 Atom-pseudomode system satisfies simple equations
 Pseudomodes replace continuum structure

* An exact description (within RWA ...)

« Can derive exact master equations: examples follow...




Single pole (/=1)

D(w) = - oy T
= @ —w1)? £ (T/2)2 = wy — /2

i T —3 ANt = d

s — e C s
dt 2}\: ax A ’Ldtca = wopCq + by

Zié)\ = g)\eiA}‘tE ’Libl — (wl — zI‘/2)b1 —|— Q()C
dt * dt ¢

Pseudomode master equation:

d , T
= [Ho, p] — 5
with

Hy = wo(6.+1)/2+ wea'a+ Qo (a'6_ + a64)

p is an enlarged atomic density matrix



Damped Rabi Oscillations

Solve the single pole pseudomode equations to give (resonance):

~ T {2
ca(t) = e t/4cos<5t where Q = \/(2(2)—(1‘/2)2

|Ca(t)|2

Q

1
56_”/2 (1 4 cos (2t))

- » Exact and approximate
solutions possible

* Numerical solution of
equations with full bath
possible, too.

* We can extract the bath
C ...

Scaled time, i




Vacuum Rabi Splitting

 Single pole example

* Excitation oscillates
backwards and forwards
between atom and reservoirr.

Reservoir excitation is an
idealised spectrum.

* Final splitting is the Rabi
frequency Q

» Width of final peaks is 172 (=)

« Each Rabi oscillation
increases the number of peaks
In reservoir spectrum by one.

*Finite numerical bath has a
recurrence time
=1/(level-spacing)




What do we learn?

We can solve this example easily, e.g. by Laplace
transform of the Integro-differential Eqn. — do we need to
talk about “pseudomodes”™?

Answer: Yes — for other problems - if we want to talk
about master equations.

No perturbation theory was needed
Link to a master equation: is this general ...?



A simple band gap model (double pole)
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p lal?
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DOS: D(w) = W, (W —w)? + (T1/2)2 e (w — we)? + ([2/2)?

Master equation:

Hy = wo(6,+1)/2 + weala, + w.alas

+\/7W1W2(I‘1 .

(alas + a1al) + Qo (@l6_ + az64)
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Atom-pseudomode system satisfies Lindblad form
master equations (effect of augmentation)

Pseudomodes can be coupled
Can be problems e.g. with branch cuts
Multiple excitations ...
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Three approaches to system description

TRUE

MODES

A(w), AT (w)
System: Reservoir:
Non-Markovian Structured
Behaviour

True-mode picture QUASI
ATOMS MODES
(EXTERNAL)
h(A), b (A)

New System: Reservoir:
Markovian Flat
Behaviour

Quasi-mode picture

Pseudo-mode picture



Fano treatment: fields

True Mode Annihilation Operator — connection to internal and external QMs
Aw) = Y au@)as + [ dApe(A)B(w, A)b(A)
Quasi-mode annihilation operators in terms of true modes:

a; = /dw p(w)a;'f(w)/i(w)

b(A) = / dw p(@)B(A, ) A(w)

[A(w), AT ()] = 6(w — ') /p(w) A(w), Bp| = hwA(w)



The inverse problem

* Given a density of states p can we construct a
pseudomode master equation?

« Represent actual p g° by model with poles
(pseudomodes)

« Errors at high frequency (off resonant) in the model
become discrepancies at long time scales.
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Time-local MEs and the pseudomodes

() = 51(t)e_i“’1t|1)|...0>\...)—|—§)\: Ex(t)e™ M 0)]... 1x...)

Non-Markovian dynamics in time-local Lindblad form (Breuer
Petruccione Theory of open quantum systems, 2001)

S(t) 1 _
. ; . || [ Y .
['-r+'-r—+'.-'|:| + 1."'{ [} O_pao, — 5 O PAS

Preserves trace, positivity



Quantum jump simulations

. | . R B
p(t) = —[Hs.p(0)] + 2 T,Cp(C; — = 2 THC;Cp(0)}.

—_—

Deterministic evolution: Jump process:

Cilua (1))

4

b (1) — |l (t+ St)y = ————.
|l 1)) — |ty (2 + 6t)) |C il ()]

_ _ Jump probability
A | iHdt\,
| [t + &t)) = | I — |1l ).

_;.rlf;. (1) =T ;e (1) |L E'_"__,-| W, (1)) .

|, (1 + &)
" P M r FoAR] T ™ L
W lt)) — [ lt + dt)) =

S |\ (t + 8t)){ (1 + 61)
ot +dt)=(1-p .-1'-]%
= - ||I-'I|'.'E'

Complete time step:

(N CICH (1))




Non-Markovian quantum
jumps (Piilo et al 2008)

DECAY RATE

Why needed?
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dt
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Time-local MEs and the pseudomodes

Pseudomode master equation
Breuer Petruccione master equation (Lorentzian structure)

5(r)

. | :
[or,o_.pa] + '}"':L"_:||:l'_l'_f_l_,-|l'_l'_ - ;-{r_r,,r_r_,p._l}

ral i

Density matrix p is in an enlarged space.
Trace out the PM:
Alt) 1

- (o, o_,psl+ B(t)| o_pao, — ;I a.o_.pat|.
i

e =

d|b,(1)|?

+ by (1) = y(0)|er(0)]?

Link to pseudomodes yields interpretation with

dt

Normal QJ simulation possible.
Mazzola et al. Phys. Rev. A 80, 012104 (2009)



ATOM
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TWO LEVEL ATOM STRUCTURED
b6y RESERVOIR

ix, il

Environment division:
« Memory part
 Non-memory part
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Time-dependent reservoir structures

« Cauvity realisation: A time dependent position of the mirror affects mode structure

A: Essentially straightforward and B: Could lead to a different kind of
previously studied (GSA+...). dynamic structure. Quantify and
explore.

Hi(t) = ;gk(t) [ 67 b! exp (-i/ot (wo — wk(f)}d7>

+ 61 by exp <+i /Ot (wo — wk(T)]dT) ]



Atomic dynamics

Solve the Schrodinger equation to give:

= Ek:gk(t) exp (-I—i /Ot [wo — wkz(T)]dT) c(t)

.Ocq (1)
7
ot

%G — gty oxp (=i [ fwo —wn(r)dr) ealt

Eliminate Bath Modes

Ocqy(t)
ot

= — /t K(t,t )cq(t) dt’

\ J
Y

Memory Kernel

K(t,t') = ) gr(t)ge(t’)exp (+i /tt (wo — wk(T)}dT)



A chirped bath model

Macroscopic structure remains static while a ‘wind’ of modes pass through the
resonance = linear chirp of bath modes: w(k,t) = w, + xt

redistributed
" underneath

(Q0/2)%~

prgr(t)gr(t’) =

T/ [72 + (wo — wi(t))?] [v2 + (wo — wi(?'))?]

* A new feature of this model is the presence of TWO-TIME reservoir structure function

* Branch cuts = mostly numerical approach ...



Different regimes of interest
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Linington & Garraway, J Phys B (2006), D—Q,/2



Population Recycling

...if the mode-frequencies are
modulated at this characteristic

| rate, then the left-hand Rabi peak
(L T may be repeatedly brought back

.z | ||| fl II III || | |I “ II“I
Il AR VALY i . onto resonance.

I‘I [l I || || |I ||
1 - .

1)
._1 |

Rabi-oscillations become stable
due to recycling of reservoir
population.




High chirp-rate — Markov limit
(Analytic approach)

In the high-chirp limit (¢ >> 1), each bath mode is effectively coupled to
the atom for only a very short time; there is no time for memory effects.

Oc, (t 02 ¢ e exp |+i (wo — wy) t — Xt?

Cat( e —cq(t) 407 / dt’ / dwy, [ - }
™ —o0

: NETr——

exp [—z’ (wog — wg) t/ + %‘t’z}

X
\/(’72 + (wo — wi — Xt')z)
Oca(t) _ _co(t)T(t)  Approximate Markovian form — even
ot for strong coupling
y
02~

1 2
o  Gows)
dovwg

Can extract energy from the cavity on a very short time-scale!

I'ec = lim {I'(¢t)} =
Jim ()} =

(84657



Case 2: Oscillating frequency manipulation

wk(t) — Wk —|— dsin(ﬂt)

Non-linear phase-term:

. .d
exp (—I—z[wo — wg|t + zﬁ[l - cos(ﬂt)])
Can be Fourier-decomposed as a sum of simple phase-factors:

> (i)' Ji(d/Q) exp (i[wk, — wo — 1Q]t + %)

l=—co



Two equivalent ways of thinking about
the problem...

...Oithee tHtoatctupled
twapeldatinsintlabiath
with time-dependent
fregpiengesnrhdtatic
teqpiéngies.

7

ﬁfﬁ[(ﬁ) = Z}:(ﬁ‘(f) [5‘_?};{ exp (—i/@ [wo — LU}E(T)]CZT) [)t4-id /2

- gt
5By, exp (‘l-f /o [wo — wg(7)]dT

) ]Z)t—i.d/Q] }



Observable effects
Modulation frequency:
Q/27 < 107s™1

Linewidth:
v/2m < 10951

Coupling strength:
D/27 < 4 x 107s1

(Numbers borrowed from PRL 93, 233603 (2004) — Kimble group)

Weak coupling: Inhibition of decay-rate by a factor of up to 1000

Strong coupling: Enhancement of decay-rate by up to a factor 15,
(or modest suppression).
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Pseudomodes:
Pseudomode: the part of the reservoir structure which retains a memory.

Summary

Meromorphic reservoir structures lead to standard master equations
Multiple excitations covered and checked

No representation when branch cuts present — does it matter?
Expect application to local density of states (reservoir structure)

Time dependent reservoir structures:

At present pseudomodes only useful in perturbative limit

High chirp — Markovian decay (which can be fast!)

Enhanced and inhibited decay via x seen for linear and oscillatory chirp
Rich behaviour ...
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