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Quantum system with environment

Quantum optical paradigms:

• Cavity system

• Photonic band-gap system
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Fermi Golden rule

• Golden rule

• Population decay

Quantum system

Environment
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A first decay problem

Initial condition:

•TLS

•RWA

• Empty initial bath ⇒ ⇒ ⇒ ⇒ 
Restricted Hilbert space

• Direct numerical simulation 

possible (nb. recurrences)
(SYSTEM)

energy



• State vector:

• Complex amplitude equations (∆λ = ωλ - ω):

• Integro-differential equation for atomic amplitude

• Reservoir structure function: we let

Amplitude equations for dynamics



• The bath is flat (or ‘fairly’ flat):

Integro-differential equation for atomic amplitude

With population decay rate:

Digression: Weisskopf-Wigner theory



Excitation of bath modes

• Define excitation spectrum as S(ωωωωλλλλ)= ρρρρλλλλ | cλλλλ|
2

• Use ODE:

• For W-W:

• Width governed by decay rate

• Applies also for smooth structure



Digression: Master Equations

Approximation 1:

Schrödinger Eqn. for system+bath; ρ=|Ψ〉〈Ψ|

Integrate and iterate ?

Bath is “large”, unaltered by interaction



Trace over bath for system operator

Insert interaction Hamiltonian (+ make RWA)

Approximation 2: For a “broad” reservoir structure ρS(t ') ≈ ρS(t)

Integral contributes around t’=0; short correlation time for bath

This master equation is a weak coupling limit of PM theory.

End digression
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• Coupled amplitude equations (∆λ = ωλ - ω):

• Integro-differential equation for atomic amplitude

• Reservoir structure function D(ω) or ρ|g|2: we let

Pseudomode development

Normalisation:

B.M. Garraway, Phys. Rev. A 55, 2290 (1997). 



• System behaviour depends on the reservoir structure function  D(ωωωωλλλλ) 
with weight  Ω2 = ∫∫∫∫ dωωωωλλλλ ρρρρ(ωωωωλλλλ) |gλλλλ|

2

• Pseudomode idea based on considering poles of D(ωωωωλλλλ) in the lower 
half complex ωωωωλλλλ plane.
Poles at z1, z2, z3?., residues r1, r2, r3?

• Extend ω to -∞∞∞∞

• Evaluate contour for any 

meromorphic function

• Kernel →→→→

Could solve for atomic c1(t), 

but instead ?



• Introduce effective amplitudes b
l
and then

Where are PM couplings

• Atom-pseudomode system satisfies simple equations

• Pseudomodes replace continuum structure

• An exact description  (within RWA ?)

• Can derive exact master equations: examples follow...

• New kernel for same integro-differential equation:



Single pole   (l=1)

ρρρρ is an enlarged atomic density matrix

with

Pseudomode master equation:



Damped Rabi Oscillations

Solve the single pole pseudomode equations to give (resonance):

where

• Exact and approximate 

solutions possible

• Numerical solution of 

equations with full bath 

possible, too.

• We can extract the bath 

ck?



Vacuum Rabi Splitting

• Single pole example

• Excitation oscillates 

backwards and forwards 

between atom and reservoir.

•Reservoir excitation is an 

idealised spectrum.

• Final splitting is the Rabi 

frequency Ω

• Width of final peaks is ΓΓΓΓ/2 (=γ)

• Each  Rabi oscillation 

increases the number of peaks 

in reservoir spectrum by one.

•Finite numerical bath has a 

recurrence time 

=1/(level-spacing)



What do we learn?

• We can solve this example easily, e.g. by Laplace 

transform of the Integro-differential Eqn. – do we need to 

talk about “pseudomodes”?

• Answer: Yes – for other problems - if we want to talk 

about master equations.

• No perturbation theory was needed

• Link to a master equation: is this general ??



A simple band gap model (double pole)

with

ρ |g|2

ω

DOS:

Master equation:



• Atom-pseudomode system satisfies Lindblad form 

master equations (effect of augmentation)

• Pseudomodes can be coupled

• Can be problems e.g. with branch cuts

• Multiple excitations ...
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Three approaches to system description



Fano treatment: fields

True Mode Annihilation Operator – connection to internal and external QMs

Quasi-mode annihilation operators in terms of true modes:



The inverse problem

• Given a density of states ρρρρ can we construct a 

pseudomode master equation?

• Represent actual ρρρρ g2 by model with poles 

(pseudomodes)

• Errors at high frequency (off resonant) in the model 

become discrepancies at long time scales.
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Time-local MEs and the pseudomodes

Non-Markovian dynamics in time-local Lindblad form (Breuer 

Petruccione Theory of open quantum systems, 2001)

Preserves trace, positivity



Quantum jump simulations

Deterministic evolution: Jump process:

Jump probability

Complete time step:



Non-Markovian quantum 

jumps (Piilo et al 2008)

γγγγ(t) can be negative!

Simulation problems: negative 

probabilities

? use new NMQJ approach

Why needed?



Time-local MEs and the pseudomodes

Breuer Petruccione master equation

Pseudomode master equation

(Lorentzian structure)

Density matrix ρρρρ is in an enlarged space. 

Trace out the PM:

The connection

Mazzola et al. Phys. Rev. A 80, 012104 (2009) 
Normal QJ simulation possible.

Link to pseudomodes yields interpretation with



Environment division:

• Memory part

• Non-memory part
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Time-dependent reservoir structures

• Cavity realisation: A time dependent position of the mirror affects mode structure

A B

A: Essentially straightforward and 

previously studied (GSA+?).

B: Could lead to a different kind of 

dynamic structure. Quantify and 

explore. 



Atomic dynamics

Solve the Schrödinger equation to give:

Eliminate Bath Modes

Memory Kernel



A chirped bath model

Macroscopic structure remains static while a ‘wind’ of modes pass through the 

resonance ⇒ linear chirp of bath modes: ω(k,t) = ωk + χt

• A new feature of this model is the presence of TWO-TIME reservoir structure function

• Branch cuts ⇒⇒⇒⇒ mostly numerical approach $



Different regimes of interest

Linington & Garraway, J Phys B (2006),    D→→→→ΩΩΩΩ0/2



Population Recycling

Rabi-oscillations become stable 

due to recycling of reservoir 

population.

?if the mode-frequencies are 

modulated at this characteristic 

rate, then the left-hand Rabi peak 

may be repeatedly brought back 

onto resonance.



High chirp-rate – Markov limit

(Analytic approach)

In the high-chirp limit (ξξξξ >> 1), each bath mode is effectively coupled to 

the atom for only a very short time; there is no time for memory effects.

Approximate Markovian form – even 

for strong coupling

Can extract energy from the cavity on a very short time-scale!



Case 2: Oscillating frequency manipulation

Non-linear phase-term:

Can be Fourier-decomposed as a sum of simple phase-factors:

d



Two equivalent ways of thinking about 

the problem?

$either the atom is 

coupled to a single bath 

with time dependent 

frequencies and 

couplings$

$or the atom is coupled 

to a collection of baths 

with time-dependent 

couplings and static 

frequencies.



Observable effects

Weak coupling: Inhibition of decay-rate by a factor of up to 1000

Strong coupling: Enhancement of decay-rate by up to a factor 15, 

(or modest suppression).

(Numbers borrowed from PRL 93, 233603 (2004) – Kimble group)

Linewidth:

Modulation frequency:

Coupling strength:



Summary
• Pseudomodes:

– Pseudomode: the part of the reservoir structure which retains a memory.

– Meromorphic reservoir structures lead to standard master equations

– Multiple excitations covered and checked

– No representation when branch cuts present – does it matter?

– Expect application to local density of states (reservoir structure)

• Time dependent reservoir structures:

– At present pseudomodes only useful in perturbative limit

– High chirp →→→→ Markovian decay (which can be fast!)

– Enhanced and inhibited decay via χχχχ seen for linear and oscillatory chirp

– Rich behaviour ?
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