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Open quantum systems

The time  evolution of open quantum system:
Master equation and the density matrix.
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The time  evolution of closed quantum system:
Schrödinger equation and the state vector.   
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Density matrix as an ensemble of state vectors:



Monte Carlo methods in quantum optics: basic idea

At each point of time, density matrix ρ as average of state vectors Ψi:

ρ(t) =
1
N

N∑

i=1

|ψi(t)〉〈ψi(t)|

The time-evolution of each Ψi contains continuous or 
discontinuous stochastic element.
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Simple classification of Monte Carlo/stochastic methods

Jump
methods:

Diffusion
methods:

Markovian non-Markovian

MCWF 
(Dalibard, Castin, Molmer)
Quantum Trajectories
(Zoller, Carmichael)

Fictitious modes (Imamoglu)
Pseudo modes (Garraway)
Doubled H-space (Breuer, Petruccione)
Triple H-space (Breuer)
NMQJ

QSD
(Diosi, Gisin, Percival...)

Non-Markovian QSD
(Strunz, Diosi, Gisin)
Stochastic Schrödinger equations
(Bassi)

Plus: Wiseman, Gambetta, Budini, Gaspard, 
Lacroix...and others
(not comprehensive list, apologies for any 
omissions)



Markovian Monte Carlo wave function method, example

Quantum jump: Discontinuous stochastic change of the state vector.

Example: excited state probability P
for a driven 2-level atom

Unstable excited state

Ground state

E

G

decay channel
(random jump)

coupling
(deterministic)

Time

P

Time

single realization ensemble average

damped Rabi oscillation
 of the atom

Markovian Monte Carlo

Dalibard, Castin, Molmer:  Phys. Rev. Lett. 68, 580 (1992)



Jump probability, example

Time-evolution of state vector Ψi:

At each point of time: decide if quantum jump happened.

Pj: probability that a quantum jump occurs in a given time 
interval δt:

Pj = δt Γ pe

time-step
decay rate

occupation probability
 of excited state

For example: 2-level atom
Probability for atom being transferred from 
the excited to the ground state and photon 
emitted. 

E

G



Markovian Monte Carlo wave function method

Master equation to be solved  
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Master equation to be solved:

Dalibard, Castin, Molmer:  Phys. Rev. Lett. 68, 580 (1992)

Solve the time dependent Schrödinger
 equation.
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dt

Ψ(t) = H Ψ(t)
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H = Hs + Hdec
Use non-Hermitian Hamiltonian H which 
includes the decay part Hdec.
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Key for non-Hermitian Hamiltonian:
Jump operators Cm can be found from the 
dissipative part of the master equation.

€ 

δpm = δtΓm Ψ Cm
†

Cm Ψ
For each channel m the jump probability is 
given by the time step size, decay rate, and 
decaying state occupation probability.

For each ensemble member    :



Markovian Monte Carlo wave function method

General algorithm:

1. Time evolution over time step  

2. Generate random number, did jump occur?

 3. Renormalize     before new time step
 3. Apply jump operator      before
 new time step

 4. Ensemble average over    :s  gives the density matrix 

No Yes



2. Markovian vs. non-Markovian evolution:
Non-Markovian quantum jump method (NMQJ)

Piilo, Maniscalco, Härkönen, Suominen: 
Phys. Rev. Lett. 100, 180402 (2008)

Piilo, Härkönen, Maniscalco, Suominen: 
Phys. Rev. A 79, 062112 (2009)



Markovian vs. non-Markovian evolution (1)

Markovian dynamics: 
Decay rate constant
in time.

Non-Markovian dynamics: 
Decay rate depends on time,
obtains temporarily negative values.

Markovian description of quantum jumps fails, since gives 
negative jump probability. 
For example: negative probability that atom emits a photon.

Example: 2-level atom in photonic band gap.

Time

Pj = δt Γ pe < 0

Decay rate 
(exact)



Markovian vs. non-Markovian evolution (2)
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Markovian: constant rate non-Markovian:
temporary negative rate

At which point of time atom emits photon ?

Waiting time distribution (2-level atom):

Gives the probability that quantum jump occurred
in time interval between 0 and t.

F (t) = 1− exp
[
−

∫ t

0
dt′ ∆(t′)

]

decay rate

1. It is not possible to emit the same photon 3 times.
2. Includes negative increment of probability.
3. What is the process that has positive probability and corresponds to negative 
probability quantum jump ?

photon emission here, here and here ?
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Non-Markovian master equation
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Starting point: 
General non-Markovian master equation local-in-time:

๏ Jump operators  Cm

๏ Time dependent decay rates Δm(t).
๏ Decay rates have temporarily negative values.

σ− = |g〉〈e|
Example: 2-level atom in photonic band gap. 
Jump operator C for positive decay:

dρ(t)
dt

=
1
i! [HS , ρ] + Γ(t)|g〉〈e|ρ|e〉〈g| − 1

2
Γ(t)(|e〉〈e|ρ + ρ|e〉〈e|)

Time



Non-Markovian quantum jump (NMQJ) method

Quantum jump in negative decay region: 
The direction of the jump process reversed

|ψ〉 ← |ψ′〉 =
Cm|ψ〉

||Cm|ψ〉|| , ∆m(t) < 0

|ψ〉 → |ψ′〉 =
Cm|ψ〉

||Cm|ψ〉|| , ∆m(t) > 0

P =
N

N ′ δt|∆m(t)|〈ψ|C†
mCm|ψ(t)〉

Jump probability:

N: number of ensemble members in the target state
N’: number of ensemble members in the source state

The probability proportional to the target state!

Negative rate process creates coherences



NMQJ example

The essential ingredient of non-Markovian system: memory.
Recreation of lost superpositions.

 For example: two-level atom

Γ(t) < 0

Γ(t) > 0
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ag g + ae e
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σ− = |g〉〈e|
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δt|Γ(t)| |〈ψ0|e〉|2Jump probability:



Non-Markovian quantum jumps
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No jumps
2 random jumps 
(channels i, j)1 random jump 

(channel i)

In terms of probability flow in Hilbert space:
Positive rate

Negative rate

Negative rate: earlier occurred random events get undone. 

Memory in the ensemble: no jump realization carries memory
of the 1 jump realization; 1 jump realization carries the memory of 2 jumps 
realization...



NMQJ: general algorithm

Deterministic evolution and positive channel jumps as before...
Negative channel with jumps

...and jump probability for the corresponding channel

where the source state of the jump is

ensemble



Basic steps of the proof

The ensemble averaged state over dt is

Here, other quantities are similar as in 
original MCWF  except:

P’s: jump probabilities
D’s: jump operators
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0 jumps earlier, no jumps to be cancelled

1 jump earlier, 
does not cancel jump at this time 

1 jump earlier, cancels jump 

By plugging in the appropriate
quantities gives the match with 
the master equation !

Basic idea: 
Weighting jump path with jump probability and deterministic path with 
no-jump probability gives the master equation (as in MCWF) 



Example: 2-level atom in photonic band gap
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NMQJ simulation
analytical

The simulation and exact results match.
Typical features of photonic band gap:
๏ Population trapping
๏ Atom-photon bound state.

Density matrix: average over the ensemble

Example of one state vector history:

I: Quantum jump at positive decay region
destroys the superposition.

II: Due to memory, non-Markovian jump  
recreates the superposition.
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Piilo, Maniscalco, Härkönen, Suominen: PRL 100, 180402 (2008)

Single state vector history



Simultaneous positive and negative rates

A

C B

3-level atom
excited state

ground state ground state

channel 1 channel 2 Two channels which can have
different sign of the decay rate

๏ Positive channel generates new 
random jumps
๏ Negative channel undoes the random 
jumps   
๏ Total probability flow consists of 
positive and negative components 
๏Temporary plateau in the excited state 
A probability.

0

1

 D
E

C
A

Y

R
A

T
E

  
[!

]

(a) Channel 1

Channel 2

0

0.2

0.4

0.6

0.8

P
O

P
U

L
A

T
IO

N
S

(b) NMQJ: "
aa

NMQJ: "
bb

NMQJ: "
cc

analytical

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

TIME  [1/!]

C
O

H
E

R
E

N
C

E
S

(c) NMQJ: |"
ab

|

NMQJ: |"
ac

|

NMQJ: |"
bc

|

analytical
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Application of NMQJ: excitonic energy transfer

๏ Our NMQJ description originally developed in the context of 
quantum optics and open quantum systems. 
๏ Recently used to simulate Fenna-Matthews-Olson complex:
energy transfer wire in green sulphur bacteria Chlorobium tebidum
Harvard group:
P. Rebentrost, R. Chakraborty,  A. Aspuru-Guzik



Stochastic process description

Non-Markovian piecewise deterministic process.
Stochastic Schrödinger equation for non-Markovian open system:

d|ψ(t)〉 = −iG(t)|ψ(t)〉dt

+
∑

k

[
Ck(t)|ψ(t)〉

||Ck(t)|ψ(t)〉|| − |ψ(t)〉
]
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∫
dψ′ [|ψ′〉 − |ψ(t)〉] dN−

l,ψ′(t).

Poisson increments for 
positive and negative 
channels

Deterministic evolution

Negative channel jump rate:

Possibility for singularity?

Positive channels

Negative channels

H.-P. Breuer, and J. Piilo: Europhys. Lett.  85, 50004 (2009).



Stochastic process description

๏ Possible to prove:  Whenever the dynamics breaks 
positivity, the stochastic process has singularity.
๏ The system is trying to undo something which did not 
happen.

Stochastic process identifies the point where the description 
loses physical validity. Master equation does not do this.

Negative channel jump rate:

Probability to be in the source state
of negative rate jump

H.-P. Breuer, and J. Piilo: Europhys. Lett.  85, 50004 (2009).
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Examples of identification of positivity violation

3-level ladder atomic system:

๏  Initial state 
๏ Positivity broken when the stochastic process 
hits singularity - master equation has formal 
solution beyond this point.
๏ Implies that some of the approximations in 
deriving the master equation breaks down.
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Information flow and memory

3. Measure for non-Markovianity

Laine, Piilo, Breuer:
arXiv:1002.2583 [quant-ph]

Breuer, Laine, Piilo:
Phys. Rev. Lett. 103, 210401 (2009)



Information flow: Markovian case

Cartoon of the information flow: Markovian case (no memory).

“Small” system.
 “Large” environment.

Environment

System

System-environment interaction
➜
System reaches steady state

Any initial state of the system
leads to same steady state 
➜
The system loses information
on its initial state.

Markovian system:
Information flow from the 
system to the environment.



Information flow and distinguishability of states (1)

Distance measure for two  states ρ1 and ρ2 (density matrices):
Trace distance D: 

D(ρ1, ρ2) = 1/2 tr|ρ1 - ρ2 |

0≤D≤1, identical states D=0, orthogonal states D=1

The physical interpretation:
The probability to distinguish the two states is equal to
1/2 (1+D)

Notation: the change of the trace distance:
σ(t) = dD(t)/dt



Information flow and distinguishability of states (2)

σ(t) < 0
Decreasing trace distance: 
More and more difficult to distinguish the different states.
➜

The information flows from the system to the environment.

In terms of the information flow:
E

S

σ(t) > 0
Increasing trace distance: 
More and more easy to distinguish the different states.
➜

The information flows from the environment to the system.

E

S

The aim: quantify memory by calculating the reverse flow of 
information from the environment to the system.



Measure for non-Markovianity

Allows to define a measure for non-Markovianity:

๏ Gives the total increase of the trace distance during the 
time evolution
๏ The total amount of information that has flown from the 
environment to the  system during the time evolution. 

General definition, independent of the used formalism
to solve the open system dynamics*.

*Property of the map Φ: ρ(t) = Φ(t,0) ρ(0)
(map takes the initial state to final state)

Breuer, Laine, Piilo: Phys. Rev. Lett. 103, 210401 (2009)



Measure for non-Markovianity

For Markovian systems: N=0
The information flows always from the system to the environment.

For non-Markovian system with memory: 0<N≤∞
Periods of time when the information flow direction reversed,
the system regains information it earlier leaked

Breuer, Laine, Piilo: Phys. Rev. Lett. 103, 210401 (2009)

๏ All divisible* maps contractive in trace distance - info flows always out
๏ Master equation description:
    Map divisible if and only if all the rates positive.
๏ Master equations with negative rates include info flow component
    from the environment to the system
๏ Deciding if system has memory does not require information
    about the environment structure - relevant for experiments

*Divisibility of the map: Φ(t,0) = Φ(t,t’) Φ(t’,0)



Example: 2-level atom

The sign of the decay rate gives directly
the direction of the information flow.

decay rate
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Change of the trace distance
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Breuer, Laine, Piilo: Phys. Rev. Lett. 103, 210401 (2009)



Measure for non-Markovianity

Other measures:

๏ Markovianity vs non-Markovianity from a snapshot of the evolution. 

๏ Measure for non-divisibility of the process.
๏ We conjecture: there also exists non-divisible Markovian processes

Wolf, Eisert, Cubitt, Cirac:  Phys. Rev. Lett. 2008

Rivas, Huelga, Plenio: arXiv:0911.4270

Our view (Phys. Rev. Lett. 2009):
๏ Reversed information allows system to “remember” its earlier state 
and this affects what happens at the current point of time
๏ Memory is a feature of a system dynamics which has physical origin 
instead of being a mathematical property of the equation of motion  

Also: do all phenomenological memory-kernel equations describe backflow
of info or memory? No. 

Mazzola, Laine, Breuer, Maniscalco, Piilo, arXiv:1003.3817 (quant-ph)

http://arxiv.org/abs/1003.3817
http://arxiv.org/abs/1003.3817


4. Witness for initial system-environment 
correlations

Laine, Piilo, Breuer:
arXiv:1004.2184 [quant-ph]



Contractivity of the trace distance 

D(Φρ1,Φρ2) ≤ D(ρ1, ρ2)

ρSE(0) = ρS(0)⊗ ρE(0)

Dynamics is described by
a CP-map between the system states

Φ(t, 0) : ρS(0) !→ ρS(t)

Initial product state



Initially correlated system-reservoir state

The maximum amount of information, the system 
can recover from the environment is the amount 
of information flowed out from the system since 
the initial time plus the amount of information in 

the initial correlations.

The increase of the the trace of the reduced system states bounded 
above by the initial information outside the reduced system.

Take         to be         without correlations: 



Initially correlated system-reservoir state

The increase of trace distance of the system states above the initial
 value is a witness of initial correlations:

D(TrE
[
UρSEU

†] ,TrE
[
UρS ⊗ ρEU

†]) > 0

ρSE is initially correlated



Examples

Central spin in N-spin bath for 
initially correlated system-bath state 

Schematic view on various cases 
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Conclusion

1: Non-Markovian quantum jump (NMQJ) method for open
    systems:

 Negative rate random events undo the earlier random events.
 Piilo, Maniscalco, Härkönen, Suominen:
 Phys. Rev. Lett. 100, 180402 (2008), Phys. Rev. A 79, 062112 (2009).

2: General measure for memory in open systems:
 Connection between the information flow and memory:

    Breuer, Laine, Piilo: 
    Phys. Rev. Lett. 103, 210401 (2009)

3: Witness for initial system-environment correlations
    Bound for info flow into open system.
    Laine, Piilo, Breuer: arXiv:1004.2184 [quant-ph]



Turku Centre for Quantum Physics

Vasiliev Piilo Maniscalco Lahti Suominen

Non-Markovian Processes and Complex Systems Group

Funding:
The Academy of Finland
Finnish Academy of Science and 
Letters/Väisälä Foundation             
Magnus Ehrnrooth Foundation

Jyrki Piilo
PhD, Docent,
senior researcher

K. Härkönen
PhD student

E.-M. Laine
PhD student

Laura Mazzola
PhD student

Kimmo Luoma
MSc student

Jan Varho
BSc student

International Collaborations:
H.-P. Breuer (Freiburg, Ger)
B. Garraway (Sussex, UK)
F. Lillo, (Santa Fe Institute, Palermo)
R. Mantegna (Palermo) 



Markovian: 
Constant info flow rate from the system to the environment.

Time-dependent Markovian: 
Time dependent info flow rate from the system to the environment.

Non-Markovian:
Reverse flow of info from the environment to the system.


