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Outline:

(3) Iterating “short” time linearized propagators for long time density 
matrix dynamics, Monte Carlo density matrix element sampling & taming 
the exponential growth of trajectories.

(2) Iterative linearized density matrix propagation provides a successively 
correctible trajectory based mixed quantum-classical dynamics method that 
can represent environmental decoherence and non-adiabatic effects, 
beyond perturbative limts.   

(4) Explore applications to large scale models of excitation energy transfer, 
high efficiency of light harvesting, long range correlated motions, 
coherence?

(1) Motivation: Collective long-range environmental response apparently 
responsible for long-lived quantum coherent dynamics in photosynthetic 
antenna arrays  
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Quantum Mechanics (4):
Entangled states & interaction  

with environment (relationship to measurement)

Ψ(0) = (ψ1(r) + ψ2(r))χ(R) = ψ1(r)χ(R) + ψ2(r)χ(R)

subsystem (r) in 
superposition state State of environment

ih̄
∂

∂t
Ψ = ĤΨ

(initially separable)

Ψ(t) = ψ1(r, t)χ1(R, t) + ψ2(r, t)χ2(R, t)

Non-separable ENTANGLED state “Schroedinger’s Cat”

(r)  (r)  
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Quantum Mechanics (5):
Quantum DECOHERENCE, environment interactions collapse the wave 

function!

Only study the system (sum over all realizations of the environment)

Pred(r, t) =
∫

dR|Ψ(t)|2

+|ψ2(r, t)|2
∫

dR|χ2(R, t)|2

= |ψ1(r, t)|2
∫

dR|χ1(R, t)|2

+2ψ1(r, t)ψ2(r, t)
∫

dRχ1(R, t)χ2(R, t)

Overlap of environment wavefunctions

tχ(R, 0) χ1(R, t)
χ2(R, t)

R

(r)  (r)  

(r)  

(r)  
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FMO complex from green sulfur bacteria 
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Nature, 446, 782 (2007)

FMO
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LHC2 B800-B850 
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Purple bacteria photosynthetic membrane vesicle structure:
Sener, Olsen, Hunter, Schulten; PNAS, 104, 15723 (2007)  
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LH2

LH1
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Reaction Center from purple sulfur bacteria 

BCl (B)

Ph (H)
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Science, 316, 1462 (2007) 
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Science, 323, 369 (2009) 
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LHC2 B800-B850 
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“Spin-Boson” model for exciton transport, 
dissipation, and decoherence in antenna arrays 

c.f. Jang, Newton, Silbey 
J. Phys. Chem. B, 111, 6807 (2007)

LHC2
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Two perturbative limits for 
photosynthetic EET

Electronic coupling 
between pigments

Electron environment 
coupling 

J
Dn

<<
gn

(1) Forster Resonance Energy Transfer (FRET)
incoherent hopping between pigments

Electronic coupling 
between pigments

Electron environment 
coupling 

J
Dn

>>
gn

(2) Master equation approaches e.g. Redfield theory
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Two perturbative limits for 
photosynthetic EET

Electronic coupling 
between pigments

Electron environment 
coupling 

J
Dn

<<
gn

(1) Forster Resonance Energy Transfer (FRET)
incoherent hopping between pigments

Electronic coupling 
between pigments

Electron environment 
coupling 

J
Dn

>>
gn

(2) Master equation approaches e.g. Redfield theory

J Dn

g n~Unfortunately fo
r ty

pical 

Photosynthetic E
ET
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Coupling strengths and energy transfer times from the RG1B S2 (A) and B800A 

Qy (B) transitions to nearby Bchla transitions. Shading 

of the chromophores is as in Figure 2. Near each acceptor pigment is given the 
label, center-to-center separation, coupling strength VCoul, and 

transfer time. For transfer from RG S2, the interaction with both the Qx and Qy 

transitions of the acceptor is given (Qx, Qy), whereas for B800 Qy 

only interaction with the acceptor Qy transition is given. 

Parameters for 
models for use in 

approximate theories
Obtained from 

detailed 
spectroscopy and ab 

initio
calculations 
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Multi-Chromophore FRET
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Mukamel et al., Kleinekarthofer, ...
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[1] M. Mohseni, P. Robentrost, S. Lloyd, and A. Aspuru-Guzik, "Environment assisted quantum walks in photosynthetic energy transfer", 
J. Chem. Phys. 129, 174106 (2008)

[2] P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, "The role of quantum coherence in the chromophoric energy transfer efficiency", 
J. Phys. Chem. B (in press).
[3] A. Olaya-Castro, C.F. Lee, F. Fassioli-Olsen, and N.F. Johnson, "Efficiency of energy transfer in a light-harvesting system under quantum coherence", Phys. Rev. B, 78 (2008).
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Iterative linearized density matrix dynamics

Mapping Hamiltonian formulation

J. Chem. Phys.114106 (2008)

Miller-Meyer
Stock-Thoss
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Time slice forward and backward 
propagators
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Transition amplitudes

Magnitude

Phase
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Density matrix propagation: First step

Mean and difference environmental path variables

Action difference linear in Z & Y

truncate phase difference to linear order in path difference
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Sample initial conditions from Wigner density

First linearized density matrix propagation segment

Different trajectory forces for different final density matrix elements 
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[ραγAγα′ ]W (R̄0, P̄1)〈mα′ |q̃0〉〈q0|mα〉

Bβ′β(R̄N )〈mβ |qN 〉〈q̃N |mβ′〉

R̄(t), P̄ (t)

p(t), q(t) p̃(t), q̃(t)

∑

αα′ββ′
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Second linearized density matrix propagation segment
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Intermediate mapping integrals performed by steepest descent

Intermediate state sums performed by importance sampled MC

Trajectory weights

An Algorithm:

Wednesday, May 5, 2010



Iterative Scheme LAND-Map

(N*N)σ

Dunkel et.al 2008

J. Chem. Phys.114106 (2008)
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Algorithm: Iterative Scheme LAND-Map

>
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>
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Algorithm: Iterative Scheme LAND-Map

>
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Algorithm: Iterative Scheme LAND-Map

>
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Sampling different density matrix elements allows forward and backward paths to 
deviate at longer times when phases of different trajectory segment combinations are 

added coherently
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1D Nonadiabatic scattering models 

Tully I: 5-15 hop attempt, N    = 5x10 traj
5
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Tully II: 10-20 hop attempt, N    = 1x10 traj
6

Stuckelberg Scattering model
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Time dependence of density matrix elements for Stuekelberg scattering k=30

Trajectory weight distributions for Stuekelberg scattering k=30

Phase weightedMC weight distributions

Wednesday, May 5, 2010



Three Coupled Morse Molecular Photodissociation Model 

40 hop attempts, N    = 5x10  , 5x10  traj
4 5
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Asymmetric spin Boson

J(ω) = ξωe−ω/ωc

MCTDH

Linearized

Iterative

Cj
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0

Symmetric spin Boson

Equilibrium Perturbation Theory

Skinner, Pechukas:
Factored non-equilibrium IC

Linearized

QuAPI

Iterative

>>

Cj
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“Spin-Boson” model for exciton transport, 
dissipation, and decoherence in antenna arrays 

c.f. Jang, Newton, Silbey 
J. Phys. Chem. B, 111, 6807 (2007)

LHC2
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-Dipole of donor and acceptors 5.3 D
-Distance between donor and acceptor a 17.6 A
-Distance between donor and acceptor b 16.6 A
-Electronic coupling between acceptors 238 cm-1
-Bias between donor and acceptors 260 cm-1
-Temperature 10 cm-1

MC-FRET rate 
distribution 

averaged over 
40,000 

realizations of 
site disorder

ISLAND-map 
rate 

distribution 
averaged over 

1,000 
realizations of 
site disorder
(converged 

initial condition 
average)

Reduced 3 state model
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Converged Linearized dynamics,18 state model
No site disorder
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Pengfei (Frank) Huo
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Converged Linearized dynamics,18 state model
1 realization of site disorder
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Converged Linearized dynamics,18 state model
another realization of site disorder
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FMO complex from green sulfur bacteria 
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FMO complex from green sulfur bacteria 
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FMO complex from green sulfur bacteria 
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200 Bath modes
DebyeTwo state model of FMO
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200 Bath modes
DebyeFull 7 state model of FMO

T=77K = 35cm  -1 50fs
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Reduced Hierarchy Equations: Ishizaki-Fleming, J.Chem. Phys. 130: 23411 (2009)

“Linearize everything”: Tao-Miller, J. Phys. Chem 1: 891 (2010)
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Tina Rivera
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Synthetic: Dye Sensitized Semi-
Conductor 

Solar Cell (DSSC)

Biological:  Vesicle membrane covered in light harvesting 
chromophore complexes (efficient excitation energy 
transfer), & reaction centers (e-h charge separation)

Reaction 
Center

Light Harvesting Complex 1

Light Harvesting 
Complex 2

TiO   functions like membrane2

Dye functions like Reaction Center

NOTE: Synthetic system lacks 
harvesting capability! 

Reaction 
Center

Light Harvesting 
Complex
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FMO complex from green sulfur bacteria 

Membrane embedded trimer complex

Monomer complex: 7 chlorophylls 
embedded in protein scaffolding

Hybrid 
biological light harvesting complex and 

synthetic DSSC material

!!! 30x increase in Photocurrent!!!
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FMO complex from green sulfur bacteria 

Membrane embedded trimer complex

Monomer complex: 7 chlorophylls 
embedded in protein scaffolding

Hybrid 
biological light harvesting complex and 

synthetic DSSC material

!!! 30x increase in Photocurrent!!!
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Conclusions:

(2) These methods can probe the mechanism underlying long-lived quantum 
coherent excited state dynamics e.g. photosynthetic antenna arrays, 
quantum computing applications.  

(3) Iterating “short” time linearized propagators for long time density 
matrix dynamics, Monte Carlo density matrix element sampling & taming 
the exponential growth of trajectories.

(1) Iterative linearized density matrix propagation provides a successively 
correctible trajectory based mixed quantum-classical dynamics method that 
can represent environmental decoherence and non-adiabatic effects.    
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