Non-Markovian quantum dynamics: a stochastic Schrödinger equation approach

ECT* WORKSHOP DECOHERENCE IN QUANTUM DYNAMICAL SYSTEMS

Angelo Bassi

Department of Physics, University of Trieste

www.qmts.it

Outline

- 1. SDEs in Quantum Mechanics
- 2. SDEs for open quantum systems: stochastic unravellings
- 3. ½ spin example
- 4. SDEs for non-Markovian systems
- 5. Non-Markovian generalization of the Joos-Zeh model

SDEs in Quantum Mechanics

SDE = Stochastic differential equation

SDE in Hilbert spaces: random corrections to the unitary evolution given by the Schrödinger equation.

Use in quantum mechanics:

- Continuous quantum Measurement theory: describe the effect of a continuous measurement on a quantum system
- 2. Collapse models: solve the measurement problem
- Open quantum systems: effective description of the interaction system with environment

Stochastic unravellings

Lindblad equation (Markovian evolution)

$$\frac{d}{dt}\rho(t) = -\frac{i}{\hbar}[H, \rho(t)] + \gamma \sum_{n} A_n \rho(t) A_n - \frac{\gamma}{2} \{A^2, \rho(t)\}$$

Stochastic unravelling $ho(t) = \mathbb{E}[|\psi_t
angle\langle\psi_t|]$

$$d|\psi_t\rangle = \begin{bmatrix} -\frac{i}{\hbar}Hdt + \sqrt{\gamma}\sum_n(\xi A_n - \xi_R\langle A_n\rangle_t)dW_t^{(n)} - \frac{\gamma}{2}\sum_n(A_n^2 - 2\xi\xi_RA_n\langle A_n\rangle_t + \xi_R^2\langle A_n\rangle_t^2)dt \end{bmatrix} |\psi_t\rangle$$

$$\xi_R = Re[\xi]$$

$$\xi \in \mathbb{C}, \quad |\xi| = 1 \qquad \langle A_n\rangle_t = \langle \psi_t|A_n|\psi_t\rangle$$

$$Mindependent standard Wiener processes = White noises = Markovian noises$$

 $(\delta$ -correlation in time)

Two special cases

There are infinitely many stochastic unravellings. Two are particularly useful

1. $\xi = 1$: collapse equation (= continuous quantum jumps)

$$d|\psi_t\rangle = \left[-\frac{i}{\hbar}Hdt + \sqrt{\gamma}\sum_n(A_n - \langle A_n\rangle_t)dW_t^{(n)} - \frac{\gamma}{2}\sum_n(A_n - \langle A_n\rangle_t)^2dt\right]|\psi_t\rangle$$
 Collapse to a common eigenstate of A_n

2. $\xi = i$: random quantum potential (quantum jumps analogy?)

$$d|\psi_t\rangle = \left[-\frac{i}{\hbar}Hdt + i\sqrt{\gamma}\sum_n A_n dW_t^{(n)} - \frac{\gamma}{2}\sum_n A_n^2 dt\right]|\psi_t\rangle$$
 "Itô term". It disappears from solutions

Advantages

1. Computational: Size of the problem

Density matrix $\sim N^2/2$

State vector ~ N

In some cases: easier to solve for state vector and average over a few samples

- Visualization: It allows to think in terms of a state vector under a unitary evolution + external random potential
- 3. SDEs vs Quantum Jumps approach: More advanced mathematical tools

1/2 spin example

$$d|\psi_t\rangle = \left[-i\omega\sigma_x dt + \sqrt{\gamma}(\sigma_z - \langle \sigma_z \rangle_t)dW_t - \frac{\gamma}{2}(\sigma_z - \langle \sigma_z \rangle_t)^2 dt\right]|\psi_t\rangle$$

In the standard quantum case:

$$\frac{d}{dt}\rho_t = -i[\sigma_x, \rho_t] - \frac{\gamma}{2}[\sigma_z, [\sigma_z, \rho_t]]$$

A. Bassi and E. Ippoliti: Phys. Rev. A 69, 012105 (2004).

Case $\gamma < \omega$

In the standard quantum case: Hamiltonian stronger than other terms

Two effects:

1. The rotation plane drifts towards the yz plane of the Bloch sphere

Case $\gamma < \omega$

2. Relative phases of the different trajectories randomly change in time.
Randomization increases in time.

Case $\gamma > \omega$

$$\gamma = 50$$
 $\omega = 1$

Reduction: state vector jumps to one of the two eigenstates of σ_z .

Reduction time = the smaller, the bigger γ .

Persistence of collapse: the state vector remains in one eigenstate the longer, the greater the value of γ .

Eventually, the state will jump to the eigenstate, than back, ...

This effect is more rare, for larger y.

Collapse probability ≈ **Born rule**

Non-Markovian dynamics

No general theory so far developed.

Three approaches:

- Fundamental description: effective equations from microscopic dynamics → non-Markovian quantum Brownian motion
- 2. Mathematical analysis: general structures from fundamental requirements → generalization of Lindblad structure
- Phenomenological approach: "guess" a reasonable form of the equations

We follow the third approach, with SDEs.

IDEA: replace the white noise with a colored noise

Non-Markovian SDEs

Linearized non-Markovian equation

$$\frac{d}{dt}|\psi_t\rangle = \left[-\frac{i}{\hbar}H + \sqrt{\lambda}qw_t - 2\sqrt{\lambda}q\int_0^t\!\!ds\,\alpha(t,s)\frac{\delta}{\delta w_s}\right]|\psi_t\rangle$$
L. Diosi and W. T. Strunz: Phys. Lett. A 235, 569 (1997). Noise's correlation function

- 1. Quantum measurement theory: non-Markov generalization of the continuous measurement of the particle's position
- 2. Collapse models: non-Markov spontaneous collapse of the wave function
- Open quantum systems: non-Markov interaction of the particle with the environment, via its position = non-Markov generalization of the Joos-Zeh model

Free particle solution

Green's function

$$\psi_t(x) = \int_{-\infty}^{+\infty} dx_0 \ G(x, t; x_0, 0) \ \psi_0(x_0)$$

Path integration

$$G(x, t; x_0, 0) = \int_{q(0)=x_0}^{q(t)=x} \mathcal{D}[q] \exp[S(q)]$$

Non standard action

$$S(q) = \int_0^t ds \left[\frac{im}{2\hbar} \dot{q}(s)^2 + \sqrt{\lambda} \, q(s) w(s) - \lambda q(s) \int_0^t dr \, q(r) \alpha(s,r) \right]$$

A. Bassi and L. Ferialdi: Phys. Rev. Lett. 103, 050403 (2009).

Green's function

$$G(x,t;x_0,0) = \sqrt{\frac{m}{2i\pi\hbar t u(t)}} \exp\left[-A_t(x_0^2 + x^2) + B_t x_0 x + C_t x_0 + D_t x + E_t\right]$$

Time-translation invariant correlation function $\alpha(t,s)=\alpha(|t-s|)$

Same structure as in the white noise case

$$A_t = \frac{i\hbar}{2m}\dot{f}_t(0)$$
 $B_t = \frac{i\hbar}{m}\dot{f}_t(t)$

Deterministic functions

$$C_{t} = -\frac{i\hbar}{2m}\dot{h}_{t}(0) + \frac{\sqrt{\lambda}}{2}\int_{0}^{t}ds \ w_{s}f_{t}(s) \quad D_{t} = \frac{i\hbar}{2m}\dot{h}_{t}(t) + \frac{\sqrt{\lambda}}{2}\int_{0}^{t}ds \ w_{s}f_{t}(t-s)$$

$$E_t = \frac{\sqrt{\lambda}}{2} \int_0^t ds \ w_s h_t(s)$$

Random functions depending on the noise

Green's function

Two unknown functions

$$\frac{im}{2\hbar}\ddot{h}_t(s) + \lambda \int_0^t dr \ \alpha(s,r)h_t(r) = \frac{\sqrt{\lambda}}{2}w_s$$

In general, not exactly solvable

$$\frac{im}{2\hbar}\ddot{f}_t(s) + \lambda \int_0^t dr \ \alpha(s,r)f_t(r) = 0$$

Exponential correlation function $\alpha(t,s) = \frac{\gamma}{2} e^{-\gamma |t-s|}$

The second-order integro-differential equations can be transformed into fourthorder ordinary differential equations

All functions explicitly known

Gaussian wave functions

FIG. 1. Time evolution of the **spread** in **position**, for small times.

 $y = \infty$: white-noise case.

FIG. 2. Time evolution of the **spread in position**, for large times.

White-noise case = straight line at 1.27×10^{-15} m.

Average values

Position

$$\frac{d}{dt}\mathbb{E}[\langle q \rangle_t] = \frac{1}{m}\mathbb{E}[\langle p \rangle_t]$$

Momentum

$$\frac{d}{dt}\mathbb{E}[\langle p \rangle_t] = 0$$

Like in the Markovian case

Energy

$$\frac{d}{dt}\mathbb{E}[\langle H \rangle_t] = \frac{\lambda \hbar^2}{m} \int_0^t ds \; \alpha(t,s)$$

Exponential correlation function

$$\mathbb{E}[\langle H \rangle_t] \ = \ \mathbb{E}[\langle H \rangle_0] + \frac{\lambda \hbar^2}{m} \left(t + \frac{e^{-\gamma t} - 1}{\gamma} \right)$$

Non-Markovian master equation

Equation for the state vector

$$\frac{d}{dt}|\psi_t\rangle = \left[-\frac{i}{\hbar}H + \sqrt{\lambda}qw_t - 2\sqrt{\lambda}q\int_0^t ds\,\alpha(t,s)\frac{\delta}{\delta w_s}\right]|\psi_t\rangle$$

Statistical operator = ensemble of states

$$\rho_t = \mathbb{E}[|\psi_t\rangle\langle\psi_t|]$$

Problem: how to compute averages

Having the explicit expression of the Green's function, the problem is solved

Harmonic oscillator

... after a long calculation

$$\frac{d}{dt}\rho_t = -\frac{i}{\hbar}[H,\rho(t)] - \gamma \int_0^t ds \,\alpha(t,s)\cos\omega(t-s) \left[q,[q,\rho_t]\right]
+ \frac{\gamma}{m\omega} \int_0^t ds \,\alpha(t,s)\sin\omega(t-s)[q,[p,\rho_t]], \qquad H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$$

- 1. White noise case: it reduces to the Joos-Zeh model
- 2. Time dependent functions: explicit expression
- 3. New term: q-p commutator
- 4. Positivity is preserved!

Comparison with Hu-Paz-Zhang

Hu-Paz-Zhang

$$\frac{d}{dt}\rho_{t}(x,y) = \frac{i\hbar}{2m} \left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}} \right) \rho_{t}(x,y) - \frac{i}{\hbar} \frac{m\omega^{2}}{2} \left(x^{2} - y^{2} \right) \rho_{t}(x,y) - \frac{i}{\hbar} \frac{m}{2} \delta\Omega^{2}(t) \left(x^{2} - y^{2} \right) \rho_{t}(x,y)
- \Gamma(t)(x-y) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) \rho_{t}(x,y) - \frac{m}{\hbar} \Gamma(t)h(t)(x-y)^{2} \rho_{t}(x,y)
- i\Gamma(t)f(t)(x-y) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \rho_{t}(x,y)$$

Our case

 $\frac{d}{dt} \rho_t(x,y) = \frac{i\hbar}{2m} \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} \right) \rho_t(x,y) - \frac{i}{\hbar} \frac{m\omega^2}{2} \left(x^2 - y^2 \right) \rho_t(x,y) - \frac{i}{\hbar} \frac{m}{2} \delta \Omega^2(t) \left(x^2 - y^2 \right) \rho_t(x,y) \\ - \Gamma(t)(x-y) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) \rho_t(x,y) - \frac{m}{\hbar} \Gamma(t) h(t)(x-y)^2 \rho_t(x,y) \\ - i\Gamma(t) f(t)(x-y) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \rho_t(x,y) \qquad \qquad \text{Dissipative term}$

Frequency shift

Conclusions

- Interest in stochastic evolutions for quantum mechanical systems ranges over a large variety of contexts
- 2. SDEs are a very powerful mathematical tool for dealing with such situations (in the Markovian case)
- 3. SDEs suggest how to generalize the dynamics to the non-Markovian case, at least phenomenologically
- 4. Technical details in the articles ...

Case with $\xi=1$ (collapse)

More complicated equations.

The CSL Model

G.C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 78 (1990).

$$d|\psi_t\rangle = \left[-\frac{i}{\hbar} H dt + \sqrt{\lambda} \int d^3x (N(\mathbf{x}) - \langle N(\mathbf{x}) \rangle_t) dW_t(\mathbf{x}) - \frac{\lambda}{2} \int d^3x (N(\mathbf{x}) - \langle N(\mathbf{x}) \rangle_t)^2 dt \right] |\psi_t\rangle$$

Quantum Hamiltonian

NEW COLLAPSE TERMS

$$N(\mathbf{x}) = a^{\dagger}(\mathbf{x})a(\mathbf{x})$$
 particle density operator, $\langle N(\mathbf{x})\rangle_t = \langle \psi_t|N(\mathbf{x})|\psi_t\rangle$ nonlinearity

$$W_t(\mathbf{x}) = \text{noise}, \quad \mathbb{E}[W_t(\mathbf{x})] = 0, \quad \mathbb{E}[W_t(\mathbf{x})W_s(\mathbf{y})] = \delta(t-s)e^{-(\alpha/4)(\mathbf{x}-\mathbf{y})^2}$$
 stochasticity

$$\lambda \sim 10^{-17} \, \mathrm{s}^{-1}$$
 collapse strength

$$r_C = 1/\sqrt{\alpha} \sim 10^{-5} \text{ cm}$$
 correlation length

Mass proportional CSL model:

$$\lambda \longrightarrow \lambda \left(\frac{m}{m_N}\right)^2$$
, $m_N = \text{nucleon mass}$

Usefulness of collapse models

- 1. Collapse models as a solution of the measurement problem of Quantum Mechanics. These models offer a paradox-free description of quantum measurements (and of all physical processes).
- 2. Collapse models as a rival theory of Quantum Mechanics.

 Important, in order to give a quantitative meaning to experiments testing quantum linearity. They are an alternative theory, which makes different predictions, to which these experiments can be compared.
- 3. Collapse models as phenomenological models of an underlying pre-quantum theory. If quantum mechanics is not exact, and spontaneous collapse-type effects are seen in experiments, these model may offer a direction to look for a new theory.

Collapse rate

Small superpositions

No collapse

Large superpositions

Collapse

$$\Gamma = \lambda n^2 N$$
 (rate = s⁻¹)

 $n = number of particles within <math>r_C$

N = number of such clusters

n increasing

2. Lower bounds

$$\gamma + AgBr \rightarrow Ag^{+} + Br^{-}$$
 $\rightarrow Ag^{+} + Br + e^{-} (e^{-} \text{ trapped by a grain})$
 $\rightarrow Ag + Br \qquad (Ag \text{ trapped by a grain})$

Collapse in the eye

Threshold of vision: ~6 photons photon absorbed by the rhodopsin cis-trans transf. of the rhodopsin interaction with ~20 transducins a-subunit splits, binding to a PDE PDE activated PDE hydrolyzes ~100 cGMP to GMP Closure of ~300 ionic channels ~10 Na+/channel blocked

a-subunit of the transducin: $n \sim 3.9 \times 10^4, \ N \sim 20$ Other terms give similar a contribution

$$\lambda \sim 1.4 \times 10^{-7} \, \mathrm{s}^{-1}$$

Time: $\sim 100 \text{ms}$

The collapse occurs when $\sim 10^4$ - 10^5 particles are involved

3. Upper bounds

Destruction of quantum interference

The nonlinear terms work against the superposition principle.

In interference experiments, one should see a reduction of interference fringes

Prediction of quantum mechanics (no environmental noise)

Prediction of collapse models (no environmental noise)

Upper bounds

Destruction of quantum interference

Diffraction of macro-molecules:

- C60 (720 AMU)
 - M. Arndt et al, *Nature* 401, 680 (1999)
- C70 (840 AMU)
 - L. Hackermüller et al, *Nature* <u>427</u>, 711 (2004)
- C30H12F30N2O4 (1,030 AMU)
 - S. Gerlich et al, Nature Physics 3, 711 (2007)

Future experiments

They include much larger molecules (~11,000 a.m.u., possibly up to 1,000,000 a.m.u.). A three orders of magnitude increase in the number of particles would become interesting

C60 diffraction experiment

	Distance (orders of magnitude) from the standard CSL value	Distance (orders of magnitude) from the enhanced value
Diffraction of macro- molecules	12-13	3-4

Destruction of quantum interference

Time evolution of the spread

Upper bounds

Spontaneous emission of radiation

FREE PARTICLE

1. Quantum mechanics

2. Collapse models

$$\frac{d\Gamma_k}{dk} = \frac{e^2 \lambda \hbar}{2\pi^2 \epsilon_0 m^2 c^3 k}$$

Q. Fu, Phys. Rev. A 56, 1806 (1997)

BOUND STATE

1. Quantum mechanics

2. Collapse models

$$\frac{d\Gamma_k}{dk} = 2 \left[1 - \frac{1}{(1 + (ka_0/2)^2)^2} \right] \frac{e^2 \lambda \hbar}{2\pi^2 \epsilon_0 m^2 c^3 k}$$

S.L. Adler, F. Ramazanoglu, J. Phys. A 40, 13395 (2007)

Spontaneous emission of radiation

Comparison with experimental data

The original CSL models (with the weak value for λ) is ruled out!

In the **mass-proportional** model (noise having a gravitational origin?), one assumes

$$\lambda \to \lambda \left(\frac{m}{m_N}\right)^2$$

TABLE I. Experimental upper bounds and theoretical predictions of the spontaneous radiation by free electrons in Ge for a range of photon energy values.

Energy (keV)	Expt. upper bound (counts/keV/kg/day)	Theory (counts/keV/kg/day)
11)	0.049	0.071
101	0.031	0.0073
201	0.030	0.0037
301	0.024	0.0028
401	0.017	0.0019
501	0.014	0.0015

Q. Fu, Phys. Rev. A 56, 1806 (1997)

which implies, for example:

$$\frac{d\Gamma_k}{dk} = \frac{e^2 \lambda \hbar}{2\pi^2 \epsilon_0 m^2 c^3 k} \rightarrow \frac{e^2 \lambda \hbar}{2\pi^2 \epsilon_0 m_N^2 c^3 k}$$

Compatibility is restored

Spontaneous emission of radiation

Current upper bound on the mass proportional CSL model, coming from spontaneous X-ray emission

So far, this is the strongest known upper bound.

If one takes non-white noises into account (non-Markovian dynamics)

$$\frac{d\Gamma_k}{dk}\bigg|_{\text{colored}} = \gamma(\omega_k) \left. \frac{d\Gamma_k}{dk} \right|_{\text{white}}$$

	Distance (orders of magnitude) from the standard CSL value	Distance (orders of magnitude) from the enhanced value
Spontaneous X-ray emission from Ge	6	-2

γ = Fourier transform of the correlation function of the noise.

S.L. Adler, F. Ramazanoglu, J. Phys. A 40, 13395 (2007)

Cutoff at frequencies ~ 10¹⁸ s⁻¹ sufficient for compatibility with known data

S.L. Adler, F. Ramazanoglu, ibid.

Cutoff at frequencies $c/r_c \sim 10^{15} s^{-1}$

A. Bassi and G.C. Ghirardi, *Phys. Rep.* 379, 257 (2003)

Upper bounds on the parameter λ

Laboratory experiments	Distance (in orders of magnitude) from standard CSL value	Cosmological data	Distance (in orders of magnitude) from standard CSL value
Fullerene diffraction experiments	3-4	Dissociation of cosmic hydrogen	9
Decay of supercurrents (SQUIDs)	6	Heating of Intergalactic medium (IGM)	0
Spontaneous X-ray emission from Ge	-2	Heating of protons in the universe	4
Proton decay	10	Heating of Interstellar dust grains	7

S.L. Adler and A. Bassi, Science 325, 275 (2009)

Present day technology allows for crucial tests.

4. A cosmological noise field?

	Markovian models	non-Markovian models
	(white noise)	(colored noise)
	All frequencies appear with the same weight	The noise can have an arbitrary spectrum
Models without		
dissipation	GRW / CSL	non-Markovian CSL
(q-coupling)	,	P. Pearle, in <i>Perspective in Quantum Reality</i> (1996)
	QMUPL	S.L. Adler and A. Bassi, Journ. Phys. A 41,
Only the noise acts	L. Diosi, <i>Phys. Rev. A</i> <u>40</u> , 1165 (1989).	395308 (2008). arXiv: 0807.2846
on the wave		non-Markovian QMUPL
function		A. Bassi and L. Ferialdi, arXiv: 0901.1254
Models with dissipation		
([q+ip]-coupling)	Thermal QMUPL model	

Noise and wave function act on each other

Thermal QMUPL model

A. Bassi, E. Ippoliti and B. Vacchini, J. Phys. A 38, 8017 (2005). ArXiv: quant-ph/0506083

The "true" model?

Comparison between models

Conclusion

Two messages:

1. Threshold micro-macro (quantum-classical) for 10⁴-10⁵ particles

Present-day technology allows for crucial tests of the superposition principle.

Collapse models provide quantitative estimates.

2. A random cosmological field with "typical" features for temperature and spectrum can induce an efficient collapse of the wave function

The collapse as a physical process, caused a background cosmological field

Underlying deeper lever theory?

Open questions

Collapse models assume the existence of a random field filling space.
 What is the origin of such a field? Does it have a gravitational nature?
 Can it be connected e.g. to dark energy/matter?

```
(S.L. Adler and A. Bassi: J. Phys. A 41, 395308, 2008)
```

- 2. The coupling between the random field and the wave function is anti-Hermitian: what is the origin of this non-standard coupling? Could it be cosmological?
- 3. Collapse models appear as **phenomenological models of an underlying pre-quantum theory**: what does this theory look like?

```
(Adler, "Quantum Theory as an Emergent Phenomenon", C.U.P. 2004)
```

4. What are the most promising **experiments**, which can detect possible violations of quantum mechanics, as predicted by collapse models?

```
(Sience, 1st July issue, 2005)
```

A dedicated experiment

Spontaneous emission of radiation

Spontaneous X-ray emission from Ge offers the strongest upper bound.

This suggests that a **dedicated experiment** which tests collapse models, thus the superposition principle of Quantum Mechanics, should look in this direction.

Main difficulty: one needs to isolate the experimental setup very well.

Solution: underground experiment.

Collaboration with the INFN-LNF laboratories in Frascati, which have also underground facilities (Gran Sasso).

Energy non-conservation

The stochastic terms induce a random motion of particles.

The noise pumps energy into the system.

For one nucleon (GRW's value)

$$\frac{dE}{dt} = \frac{\lambda \alpha \hbar^2}{4m} \simeq 10^{-25} \text{eV s}^{-1}$$

1 eV increase in 10^{18} yr

For a gas (GRW's value)

Temperature increase: 10^{-15} K/yr

G.C. Ghirardi, A. Rimini, T. Weber, *Phys. Rev. D* <u>34</u>, 470 (1986)

Energy non-conservation

Cosmological observations

The smart thing to do is to look at large structures in the universe.

The larger the system, the bigger the spontaneous-collapse effect.

So far, cosmological data are compatible with collapse models.

Cosmological data	magnitude) from the standard CSL value	(orders of magnitude) from the enhanced value
Dissociation of cosmic hydrogen	17	9
Heating of the Intergalactic medium (IGM)	8	0
Heating of protons in the universe	12	4
Heating of Interstellar dust grains	15	7

Distance

(orders of

S.L. Adler, *Jour. Phys. A* <u>40</u>, 2935 (2007), arXiv:quant-ph/0605072

Distance