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SDE =

 

Stochastic differential equation 

SDE in Hilbert spaces:

 

random corrections to the unitary evolution given 

by the Schrödinger equation.

Use in quantum mechanics:

1.

 

Continuous quantum Measurement theory:

 

describe the effect of a 
continuous measurement on a quantum system

2.

 

Collapse models:

 

solve the measurement problem

3.

 

Open quantum systems:

 

effective description of the interaction 
system with environment

SDEs
 

in Quantum Mechanics
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Stochastic unravellings

Lindblad

 

equation (Markovian

 

evolution)

Stochastic unravelling

ξ ∈ C, |ξ| = 1

ξR = Re[ξ]

hAnit = hψt|An|ψti

n independent standard 
Wiener processes

=
White noises

= 
Markovian

 

noises          
(δ-correlation in time)

ρ(t) = E[|ψtihψt|]

d|ψti =
"
− i
~
Hdt+

√
γ
X
n

(ξAn − ξRhAnit)dW (n)
t − γ

2

X
n

(A2n − 2ξξRAnhAnit + ξ2RhAni2t )dt
#
|ψti

d

dt
ρ(t) = − i

~
[H, ρ(t)] + γ

X
n

Anρ(t)An −
γ

2
{A2, ρ(t)}
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Two special cases

There are infinitely many stochastic unravellings. Two are particularly useful

1.

 

ξ

 

= 1: collapse equation (= continuous quantum jumps)

2.

 

ξ

 

= i: random quantum potential (quantum jumps analogy?)

“Itô

 

term”. It disappears 
from solutions

Collapse to a common 
eigenstate

 

of An

d|ψti =
"
− i
~
Hdt +

√
γ
X
n

(An − hAnit)dW (n)
t − γ

2

X
n

(An − hAnit)2dt
#
|ψti

d|ψti =
"
− i
~
Hdt+ i

√
γ
X
n

AndW
(n)
t − γ

2

X
n

A2ndt

#
|ψti
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Advantages

1.

 

Computational:

 

Size of the problem

Density matrix ~ N2/2

State vector ~ N

In some cases: easier to solve for state vector and average over

 

a few 
samples

2.

 

Visualization:

 

It allows to think in terms of a state vector under a 
unitary evolution + external random potential

3.

 

SDEs

 

vs

 

Quantum Jumps approach:

 

More advanced mathematical 
tools
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x

Bloch sphere

z,

z,

½
 

spin example

d|ψti=
h
−iωσxdt+

√
γ(σz−hσzit)dWt− γ2(σz−hσzit)

2dt
i
|ψti

In the standard quantum case:

A. Bassi

 

and E. Ippoliti: Phys. Rev. A 69, 012105 (2004).

d

dt
ρt = −i[σx, ρt]−

γ

2
[σz , [σz, ρt]]
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x

z,

z,

Case γ< ω

In the standard quantum case: Hamiltonian stronger than other terms

Two effects:

1. The rotation plane drifts towards the yz

 

plane of the Bloch sphere

Bloch sphere
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1
 tra

je
cto

ry

2. Relative phases of 
the different 
trajectories 
randomly change in 
time. 
Randomization 
increases in time.

x

z,

z,

Linked to decoherence

Case γ< ω

5
 tra

je
cto

rie
s

5
0

 tra
je

cto
rie

s
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Reduction:

 

state vector jumps to one of the 
two eigenstates

 

of σz

 

. 

Reduction time = the smaller, the bigger γ.

Persistence of collapse:

 

the state vector 
remains in one eigenstate

 

the longer, the 
greater the value of γ.

Eventually, the state will jump to the 
eigenstate, than back, …

This effect is more rare, for larger γ. 

x

z,

z,

Case γ> ω

Collapse probability ≈

 

Born rule
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Non-Markovian
 

dynamics

No general theory so far developed.

Three approaches:

1.

 

Fundamental description:

 

effective equations from microscopic 
dynamics      non-Markovian

 

quantum Brownian motion

2.

 

Mathematical analysis:

 

general structures from fundamental 
requirements       generalization of Lindblad

 

structure

3.

 

Phenomenological approach:

 

“guess”

 

a reasonable form of the 
equations

We follow the third approach, with SDEs.

IDEA:

 

replace the white noise with a colored noise
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Non-Markovian
 

SDEs

d

dt
|ψti =

∙
− i
~
H +

√
λqwt − 2

√
λq

Z t

0

dsα(t, s)
δ

δws

¸
|ψti

L. Diosi and W. T. Strunz: Phys. Lett. A 235, 569 (1997).

1.

 

Quantum measurement theory:

 

non-Markov generalization of the 
continuous measurement of the particle’s position

2.

 

Collapse models:

 

non-Markov spontaneous collapse of the wave 
function

3.

 

Open quantum systems:

 

non-Markov interaction of the particle with 
the environment, via its position = non-Markov generalization of the 
Joos-Zeh

 

model

Linearized

 

non-Markovian

 

equation

Noise’s correlation function
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Free particle solution

ψt(x) =

Z +∞

−∞
dx0 G(x, t;x0, 0) ψ0(x0)

Green’s function

Path integration

G(x, t;x0, 0) =

Z q(t)=x

q(0)=x0

D[q] exp[S(q)]

Non standard action

A. Bassi

 

and L. Ferialdi: Phys. Rev. Lett. 103, 050403 (2009).

S(q) =

Z t

0

ds

∙
im

2~
q̇(s)2 +

√
λ q(s)w(s)− λq(s)

Z t

0

dr q(r)α(s, r)

¸
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Green’s function

G(x, t;x0, 0) =

r
m

2iπ~tu(t)
exp

£
−At(x20 + x2) +Btx0x+ Ctx0 +Dtx+ Et

¤
Time-translation invariant correlation function

Same structure as in the white noise case 

At =
i~
2m
ḟt(0) Bt =

i~
m
ḟt(t)

α(t, s) = α(|t− s|)

Ct = −
i~
2m
ḣt(0) +

√
λ

2

Z t

0

ds wsft(s) Dt =
i~
2m
ḣt(t) +

√
λ

2

Z t

0

ds wsft(t− s)

Et =

√
λ

2

Z t

0

ds wsht(s)

Random functions depending on the noise

Deterministic functions
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Green’s function

im

2~
ḧt(s) + λ

Z t

0

dr α(s, r)ht(r) =

√
λ

2
ws

im

2~
f̈t(s) + λ

Z t

0

dr α(s, r)ft(r) = 0

Two unknown functions

Exponential correlation function α(t, s) =
γ

2
e−γ|t−s|

In general, not exactly 
solvable

The second-order integro-differential equations can be transformed into fourth-

 order ordinary differential equations

All functions explicitly known
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Gaussian wave functions
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FIG. 1. Time evolution of the spread 
in position, for small times.

γ

 

= ∞: white-noise case.

FIG. 2. Time evolution of the 
spread in position, for large 
times. 

White-noise case

 

= straight line 
at 1.27x10−15

 

m. 
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Average values

d

dt
E[hqit] =

1

m
E[hpit]Position

Momentum

Energy

Like in the Markovian

 cased

dt
E[hpit] = 0

d

dt
E[hHit] =

λ~2

m

Z t

0

ds α(t, s)

Exponential correlation function

E[hHit] = E[hHi0] +
λ~2

m

µ
t+

e−γ t − 1
γ

¶
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Non-Markovian
 

master equation

Problem: how to compute averages

ρt = E[|ψtihψt|]

Statistical operator = ensemble of states

Having the explicit expression of the Green’s function, the problem is solved

d

dt
|ψti =

∙
− i
~
H +

√
λqwt − 2

√
λq

Z t

0

dsα(t, s)
δ

δws

¸
|ψti

Equation for the state vector
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Harmonic oscillator 

…

 

after a long calculation

1.

 

White noise case:

 

it reduces to the Joos-Zeh

 

model

2.

 

Time dependent functions:

 

explicit expression

3.

 

New term:

 

q–p commutator

4.

 

Positivity is preserved!

d

dt
ρt = − i

~
[H, ρ(t)]− γ

Z t

0

ds α(t, s) cosω(t− s) [q, [q, ρt]]

+
γ

mω

Z t

0

ds α(t, s) sinω(t− s)[q, [p, ρt]], H =
p2

2m
+
1

2
mω2q2
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Comparison with Hu-Paz-Zhang 

Hu-Paz-Zhang

d

dt
ρt(x, y) =

i~
2m

µ
∂2

∂x2
− ∂2

∂y2

¶
ρt(x, y)−

i

~
mω2

2

¡
x2 − y2

¢
ρt(x, y)−

i

~
m

2
δΩ2(t)

¡
x2 − y2

¢
ρt(x, y)

−Γ(t)(x− y)
µ
∂

∂x
− ∂

∂y

¶
ρt(x, y)−

m

~
Γ(t)h(t)(x− y)2ρt(x, y)

−iΓ(t)f(t)(x− y)
µ
∂

∂x
+

∂

∂y

¶
ρt(x, y)

Our case

d

dt
ρt(x, y) =

i~
2m

µ
∂2

∂x2
− ∂2

∂y2

¶
ρt(x, y)−

i

~
mω2

2

¡
x2 − y2

¢
ρt(x, y)−

i

~
m

2
δΩ2(t)

¡
x2 − y2

¢
ρt(x, y)

−Γ(t)(x− y)
µ
∂

∂x
− ∂

∂y

¶
ρt(x, y)−

m

~
Γ(t)h(t)(x− y)2ρt(x, y)

−iΓ(t)f(t)(x− y)
µ
∂

∂x
+

∂

∂y

¶
ρt(x, y)

Frequency shift

Dissipative term
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Conclusions 

1.

 

Interest in stochastic evolutions

 

for quantum mechanical systems ranges 
over a large variety of contexts 

2.

 

SDEs

 

are a very powerful mathematical tool for dealing with such 
situations (in the Markovian

 

case)

3.

 

SDEs

 

suggest how to generalize the dynamics to the non-Markovian

 case, at least phenomenologically

4.

 

Technical details in the articles …
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Case with ξ=1 (collapse)

More complicated equations. 
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The CSL Model

Quantum Hamiltonian NEW COLLAPSE TERMS New Physics

d|ψti =
∙
− i
~
H dt +

√
λ

Z
d3x(N (x)− hN (x)it)dWt(x) −

λ

2

Z
d3x(N(x)− hN (x)it)2dt

¸
|ψti

nonlinearity

stochasticity

Mass proportional CSL model:

G.C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 78 (1990).

λ −→ λ

µ
m

mN

¶2
, mN = nucleon mass

N (x) = a†(x)a(x) particle density operator, hN (x)it = hψt|N (x)|ψti

Wt(x) = noise, E[Wt(x)] = 0, E[Wt(x)Ws(y)] = δ(t − s)e−(α/4)(x−y)2

rC = 1/
√
α ∼ 10−5 cm correlation lengthλ ∼ 10−17 s−1 collapse strength
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Usefulness of collapse models

1.

 

Collapse models as a solution of the measurement problem of 
Quantum Mechanics.

 

These models offer a paradox-free description of 
quantum measurements (and of all physical processes).

2.

 

Collapse models as a rival theory of Quantum Mechanics.

 Important, in order to give a quantitative meaning to experiments testing 
quantum linearity. They are an alternative theory, which makes different 
predictions, to which these experiments can be compared.

3.

 

Collapse models as phenomenological models of an underlying 
pre-quantum theory.

 

If quantum mechanics is not exact, and  
spontaneous collapse-type effects are seen in experiments, these model 
may offer a direction to look for a new theory.
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Collapse rate

Γ
 

= λn2N
 

(rate = s-1)

n = number of particles within   

+

¿ rC

+

Small superpositions

≥ rC

Large superpositions

No collapse Collapse

+

rC

N = number of such clusters   
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2. Lower bounds

γ +AgBr → Ag+ +Br−

→ Ag+ +Br + e− (e− trapped by a grain)

→ Ag +Br (Ag trapped by a grain)

Microscopic world 
(few particles) 

Latent image formation 
(~ 5-6000 particles)

Macroscopic world 
(1013

 

particles)

Q
U

A
N

T
U

M Q
U

A
N

T
U

M

C
L
A

S
S

IC
A

L

C
L
A

S
S

IC
A

L

λ
∼
1
0
−
1
7
s−
1

λ
∼
1
0
−
8
s−
1

n
 i
n

cr
e
a
si

n
g



ECT* Trento: April 26th - 30th , 2010 31

Collapse in the eye

α-subunit of the transducin: 

Other terms give similar a contribution
λ ∼ 1.4 × 10−7 s−1

n ∼ 3.9 × 104, N ∼ 20

photon absorbed by the rhodopsin

cis-trans transf. of the rhodopsin

interaction with ~20 transducins

α-subunit splits, binding to a PDE

PDE activated

PDE hydrolyzes ~100 cGMP

 

to GMP

Closure of ~300 ionic channels

~10 Na+/channel blocked

Threshold of vision: ~6 photons

Time: ~100ms

The collapse occurs when ~104-105

 

particles are involved
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3. Upper bounds
Destruction of quantum interference 

The nonlinear terms work against the superposition principle.

In interference experiments, one should see a reduction of interference fringes

Prediction of quantum mechanics
(no environmental noise)

Prediction of collapse models
(no environmental noise)
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Phenomenology 1

Diffraction of macro-molecules:

•

 

C60 (720 AMU)
M. Arndt et al, Nature 401, 680 (1999)

•

 

C70

 

(840 AMU)
L. Hackermüller

 

et al, Nature 427, 711 (2004)

•

 

C30H12F30N2O4

 

(1,030 AMU)
S. Gerlich

 

et al, Nature Physics 3, 711 (2007)

Upper bounds 
Destruction of quantum interference

Future experiments

They include much larger molecules 
(~11,000 a.m.u.,

 

possibly up to 
1,000,000 a.m.u.). A three orders of 
magnitude increase in the number of 
particles would become interesting 

Distance 
(orders of 

magnitude) 
from the 

standard CSL 
value

Distance 
(orders of 

magnitude) 
from the 
enhanced 

value

Diffraction 
of 

macro-

 
molecules

12-13 3-4

C60

 

diffraction experiment
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Destruction of quantum 
interference
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Time evolution of the spread

n = 103
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Upper bounds
Spontaneous emission of radiation 

dΓk
dk

=
e2λ~

2π2²0m2c3k

FREE PARTICLE

1. Quantum mechanics

BOUND STATE

1. Quantum mechanics

2. Collapse models 2. Collapse models

S.L. Adler, F. Ramazanoglu, J. Phys. A 40, 13395 (2007)Q. Fu, Phys. Rev. A 56, 1806 (1997)

dΓk
dk

= 2

∙
1− 1

(1 + (ka0/2)2)2

¸
e2λ~

2π2²0m2c3k
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Upper bounds
Spontaneous emission of radiation

Q. Fu, Phys. Rev. A 56, 1806 (1997)

Comparison with experimental 
data

The original CSL models (with the 
weak value for λ) is ruled out!

In the mass-proportional

 

model 
(noise having a gravitational 
origin?), one assumes

which implies, for example:

λ → λ

µ
m

mN

¶2

dΓk
dk

=
e2λ~

2π2²0m2c3k
→ e2λ~

2π2²0m2
Nc

3k
Compatibility is restored
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Upper bounds
Spontaneous emission of radiation

Distance 
(orders of 

magnitude) 
from the 

standard CSL 
value

Distance 
(orders of 

magnitude) 
from the 
enhanced 

value

Spontaneous 
X-ray 

emission 
from Ge

6 -2

Current upper bound on the 
mass proportional CSL model, 
coming from spontaneous X-ray 
emission

So far, this is the strongest  known 
upper bound.

If one takes non-white noises into 
account (non-Markovian

 

dynamics)
γ

 

= Fourier transform of the 
correlation function of the noise.

Cutoff at frequencies ~ 1018 s-1 sufficient for compatibility with known data

S.L. Adler, F. Ramazanoglu, ibid.

Cutoff at frequencies c/rC

 

~ 1015

 

s-1

A. Bassi

 

and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

S.L. Adler, F. Ramazanoglu, J. Phys. A 40, 13395 (2007)

dΓk
dk

¯̄̄̄
colored

= γ(ωk)
dΓk
dk

¯̄̄̄
white
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Laboratory 
experiments

Distance (in orders 
of magnitude) from 
standard CSL value

Cosmological data
Distance (in orders 
of magnitude) from 
standard CSL value

Fullerene diffraction 
experiments 3-4 Dissociation of cosmic 

hydrogen 9

Decay of supercurrents

 
(SQUIDs) 6 Heating of Intergalactic 

medium (IGM) 0 

Spontaneous X-ray 
emission from Ge -2 Heating of protons in 

the universe 4

Proton decay 10 Heating of Interstellar 
dust grains 7

Upper bounds on the parameter λ

S.L. Adler and A. Bassi, Science 325, 275 (2009)

Present day technology allows for crucial tests.
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4. A cosmological noise field?
Markovian

 

models 
(white noise)

All frequencies appear with 
the same weight

non-Markovian

 

models 
(colored noise)

The noise can have an 
arbitrary spectrum

Models without 
dissipation 

(q-coupling) 

Only the noise acts 
on the wave 

function

GRW

 

/ CSL

QMUPL
L. Diosi, Phys. Rev. A 40, 1165 (1989).

non-Markovian

 

CSL
P. Pearle, in Perspective in Quantum Reality 

(1996)
S.L. Adler and A. Bassi, Journ. Phys. A 41, 

395308 (2008). arXiv: 0807.2846

non-Markovian

 

QMUPL
A. Bassi

 

and L. Ferialdi, arXiv: 0901.1254

Models with 
dissipation

([q+ip]-coupling)

Noise and wave 
function act on 

each other

Thermal QMUPL model
A. Bassi, E. Ippoliti and B. Vacchini, J. Phys. A 
38, 8017 (2005). ArXiv: quant-ph/0506083

?
The “true”

 

model?
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Comparison between models
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Conclusion

Two messages:

1.

 

Threshold micro-macro (quantum-classical) for 104-105

 

particles

2.

 

A random cosmological field with “typical”

 

features for 
temperature and spectrum can induce an efficient collapse of the

 wave function

Present-day technology allows for crucial tests of the superposition 
principle. 

Collapse models provide quantitative estimates.

The collapse as a physical process, caused a background cosmological 
field

Underlying deeper lever theory?
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Open questions

1.

 

Collapse models assume the existence of a random field filling space.

 What is the origin of such a field? Does it have a gravitational

 

nature? 
Can it be connected e.g. to dark energy/matter?

2.

 

The coupling between the random field and the wave function is anti-

 Hermitian: what is the origin of this non-standard coupling? Could it be 
cosmological?

3.

 

Collapse models appear as phenomenological models of an 
underlying pre-quantum theory: what does this theory look like? 

4.

 

What are the most promising experiments, which can detect possible 
violations of quantum mechanics, as predicted by collapse models?

(S.L. Adler and A. Bassi: J. Phys. A 41, 395308, 2008)

(Adler, “Quantum Theory as an Emergent Phenomenon”, C.U.P. 2004)

(Sience, 1st

 

July issue, 2005)
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Spontaneous X-ray emission from Ge

 

offers the strongest upper bound.

This suggests that a dedicated experiment

 

which tests collapse models, thus 
the superposition principle of Quantum Mechanics, should look in

 

this direction.

Main difficulty:

 

one needs to isolate the experimental setup very well. 

Solution:

 

underground experiment.

Collaboration with the INFN-LNF laboratories

 

in Frascati, which have also 
underground facilities (Gran Sasso). 

A dedicated experiment
Spontaneous emission of radiation
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The stochastic terms induce a random motion of particles.

The noise pumps energy into the system.

Upper bounds 
Energy non-conservation

dE

dt
=

λα~2

4m
' 10−25eV s−1

1 eV increase in 1018 yr

For one nucleon (GRW’s

 

value)

For a gas (GRW’s

 

value)

Temperature increase: 10−15 K/yr

G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)
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Upper bounds
Energy non-conservation

Cosmological observations

The smart thing to do is to look 
at large structures in the 
universe.

The larger the system, the bigger 
the spontaneous-collapse effect.

So far, cosmological data are 
compatible with collapse 
models.

Cosmological 
data

Distance 
(orders of 

magnitude) 
from the 

standard CSL 
value

Distance 
(orders of 

magnitude) 
from the 

enhanced value

Dissociation of 
cosmic 

hydrogen 
17 9

Heating of the 
Intergalactic 

medium (IGM)
8 0

Heating of 
protons in the 

universe
12 4

Heating of 
Interstellar 
dust grains

15 7
S.L. Adler, Jour. Phys. A 40, 2935 (2007), 

arXiv:quant-ph/0605072
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