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Dynamics & Reactivity in Molecular Systems

• often markedly non-Markovian: subsystem and bath (solvent, cluster,
protein environment) evolve on similar time scales

• primary zone: solute or
chromophore carrying initial
excitation

• secondary zone: “first solvent
shell”, i.e., zone where
system-bath correlations are
dominant

• dissipative zone: external bath
which can often be described by
Markovian models

modes

}{ϕ(κ)

primary

modes

}{χ(n)

dissipative

secondary

modes
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Effective-Mode Picture, in a Nutshell

• construct effective, Brownian oscillator type modes for secondary zone:

ĤSB = ĥS ∑i cnx̂n ceffĥSX̂eff + eff–residual bath coupling

• carry out explicit dynamics in the augmented space of primary +
effective/secondary modes

• approximate dissipative effects exerted by residual modes – in the simplest
case, by Ohmic friction, or else by truncated Mori chains

• by-product of the analysis: hierarchy of reduced spectral densities

• non-Markovian equations for the primary subspace can be formulated – but
are not the most practical way to proceed

• This approach is most useful for processes where short-time dynamical effects
dominate, e.g., in photochemistry
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Photochemistry: Femtosecond Events in Excited States

A. Piryatinski, http://cnls.lanl.gov/External/people/AndreiPiryatinski.php

• ultrafast processes, non-exponential decays, interfering dynamical pathways
• many processes require (non-adiabatic) quantum dynamics
• direct quantum propagation is often the method of choice
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Landmark Topology: Conical Intersections (CoIn’s)

CoIn = photochemical funnel

Schultz et al., J. Am. Chem. Soc. 125, 8098 (2003)

• Double cone topology at degeneracy

• CoIn topology highly anharmonic

• Extreme breakdown of the
Born-Oppenheimer approximation

• Ultrafast decay (fs to ps scale)

• CoIn’s are ubiquitous
(Truhlar/Mead:“Principle of
non-rareness of CoIn’s”)

• Polyatomic molecules; Jahn-Teller
effect in solids

Köppel, Domcke, Cederbaum, Adv. Chem. Phys. 57, 59 (1984)

Conical Intersections, Eds. Yarkony, Köppel, Domcke (2004)
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Photochemistry of “Complex” Systems

• polyatomic molecules

• solute-solvent systems

• biological chromophores & photoswitches

• extended, multi-chromophoric systems

• molecular nano-scale assemblies

• delocalized excitations

• ultrafast processes (fs–ps)

• quantum coherence & decoherence
(vibrational and electronic)

• special topologies, e.g., conical
intersections
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Excitons, EET, Charge Transfer

• exciton formation, delocalization & trapping

• Frenkel excitons: |Ψexciton〉= ∑
nexc
n cn|Φn〉 with nexc ∼ 5-10,

where |Φn〉 = configuration with the nth monomer excited
• trapping due to exciton-phonon interactions

• excitation energy transfer (EET, exciton migration)1

• coherent vs. non-coherent (Förster limit) transfer
• examples: EET in semiconducting polymers, light-harvesting systems,

DNA, carbon nanotube (CNT) and quantum dot (QD) assemblies

• charge separation/transfer (exciton dissociation)1

• examples: photovoltaic materials, e.g., semiconducting polymers,
CNT-porphyrin assemblies, photosynthetic reaction center

1often involve non-adiabatic dynamics
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Example 1: Excitation Energy Transfer (EET)

Tamura, Mallet, Oheim, Burghardt, J. Phys. Chem. C, 113, 7548 (2009)

H = ∑
i

ωi

2

(
p2

i + x2
i

)
+

(
κ

(1)
i x(1)

i VCoulomb
12

VCoulomb
12 κ

(2)
i x(2)

i

)

VCoulomb
12 =

∫
drD drA

ρ
(eg)
D (rD)ρ

(ge)
A (rA)

|rD− rA|
• inter-monomer couplings via transition densities
• generalization of Förster rate theory & transition dipole approximation
• coherent regime: photosynthesis, artificial light-harvesting systems
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“Coherence Dynamics in Photosynthesis: Protein Protection
of Excitonic Coherence”

Lee, Cheng, Fleming, Science 316, 1462 (2007)

5, 6

3, 7

2, 41

• one would expect an extremely rapid dephasing (decoherence): τdec < 50 fs

• but observed coherence lifetimes are ∼ 600 fs to 1 ps
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Example 2: Exciton Dissociation at a Polymer Interface
(Heterojunction)

exciton = electron + hole

photovoltaic devices, organic light-emitting diodes (OLED’s), . . .

Peumans, Uchida, Forrest, Nature 125, 8098 (2003)

F8BT:

TFB:

NN
S

NN

RR

R

R

RR

N

S
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R

molecular-level understanding of interactions & dynamics
at the polymer interface is required

Burghardt Coherence and Decoherence in Ultrafast Molecular Processes



Introduction: Ultrafast Processes in Molecular Systems
Model Hamiltonians & Quantum Dynamics

Implications of Effective-Mode Picture

Hierarchically Structured Environments
Photochemistry and Conical Intersections
Energy and Charge Transfer: Examples

Zeroth-Order Picture of a Heterojunction

K
ar

a
b

u
n

ar
li
ev

&
B

it
tn

er
,

J.
C

h
em

.
P

h
ys

.
1

1
8

,
4

2
9

1
(2

0
0

3
)

polymer/polymer interface:

F8BT

1.92eV

-3.54eV

3.16 eV

PFB/TFB

-2.75 eV (PFB)

-2.98eV (TFB)

• HOMO/LUMO valence/conduction band
• 1st bound excited state: singlet exciton (1B−u in PPV); Frenkel type exciton
• @junction: compare band offset vs. exciton binding energy (εB ∼ 0.5 eV)
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Objective: More Detailed Perspective of Ultrafast Events
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• initial photogeneration of an exciton state (XT, bright state)

• exciton decay to an interfacial charge transfer state (CT, exciplex)

• the XT CT transition is mediated by electron-phonon coupling
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3-State Electron-Phonon Coupling Model
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parameterization for TFB:F8BT:
polymer lattice model based on dimer;
TDDFT and semi-empirical (PM3) calculations
+ Wannier-function representation

Bittner et al., JCP 122, 214719 (2005)

H =
N∼30

∑
i

Hi = ∑
i

ωi

2
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i + x2
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)
+V lin

i

V lin
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λ
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i xi λ

(23)
i xi κ

(3)
i xi



state 1 = exciton (XT) state
state 2 = charge transfer (CT) state
state 3 = intermediate (IS) state

phonons = C=C stretch + ring torsions

Tamura, Ramon, Bittner, Burghardt, J. Phys. Chem. B 112, 10269 (2008)
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Quantum Dynamics of Exciton Dissociation

3-state

2-state

• 3-state 28-mode model

• MCTDH calculations

• sample over relevant
interface configurations

• intermediate states
play a key role

• qualitative agreement
with time-resolved
photoluminescence

Tamura, Ramon, Bittner, Burghardt,

Phys. Rev. Lett. 100, 107402 (2008)
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Methods for “Large” Systems

Approximate Potentials

& Approximate Dynamics

On−The−Fly Electronic Structure

& Classical / Semiclassical Dynamics

Parametrized Model Hamiltonians

& Accurate Quantum Dynamics

Accurate Potentials

& Accurate Quantum Dynamics

Vibronic Coupling & Lattice Models;

Accurate Multiconfigurational 

Techniques (MCTDH)

High−Level or Semi−Empirical

Electronic Structure Methods;

Surface Hopping,

Gaussian Wavepackets
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Model Hamiltonians

• multi-mode vibronic coupling models (quasi-diabatic)
Taylor expansion around reference geometry (CoIn; FC point)

H = (TN +V0)1+V

Vnn′ = εnn′ +∑
i

ξ
nn′
i xi +∑

i,j
γ

nn′
ij xixj + . . .

Köppel, Domcke, Cederbaum, Adv. Chem. Phys. (1984)

• lattice models
site-site interactions + electron(exciton)-phonon coupling, e.g.,

H = ∑
n

E0a†
nan− J(a†

nan+1 +a†
n+1an)+

p2
n

2M
+

W
2

(qn+1−qn)2 + χa†
nan(qn+1−qn)

A. S. Davydov, Phys. Scr. 20, 387 (1979), Groves & Silbey, J. Chem. Phys. 52, 2099 (1970)

• in both cases: ab initio or semiempirical parametrization
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Electronic Structure – Lattice Model

   

j1eiC ­ j1hiVj1eiC ­ j1hiVj1eiC ­ j1hiV

j1eiC ­ j2hiVj1eiC ­ j2hiVj1eiC ­ j2hiV

j1eiC ­ j3hiVj1eiC ­ j3hiVj1eiC ­ j3hiV

• singly-excited electron-hole (e-h)
config’s: |n〉= |nen̄′h〉= |ne〉C⊗|n̄′h〉V
(Wannier function basis)

• set up Hamiltonian in this basis:

Hel = ∑mn

(
Fmn +Vmn

)
a†

man

• creation and annihilation op’s for e-h pairs:
a†

n|0〉= |n〉= |nen̄′h〉
• Fmn/Vmn = single/two-particle matrix

elements
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Lattice Model Including Electron-Phonon Coupling

H = Hel +Hel-ph +Hph

= ∑
nm

(Fmn +Vmn)a†
man +∑

nm
∑
kα

(
∂Fmn

∂qkα

)
a†

manqkα +∑
`α

1
2

(
ω

2
`α q2

`α +p2
`α

)

diagonalize H0 = Hel +Hph

& select typically 2-3 lowest
states

H = ∑i 1/2
(

ωi
2x2

i +p2
i

)
+V lin

i where V lin
i =

 κ
(1)
i xi λ

(12)
i xi λ

(13)
i xi

λ
(12)
i xi κ

(2)
i xi λ

(23)
i xi

λ
(13)
i xi λ

(23)
i xi κ

(3)
i xi


Karabunarliev & Bittner, J. Chem. Phys. 118, 4291 (2003), Groves & Silbey, J. Chem. Phys. 52, 2099 (1970)
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Linearized Models & CoIn Topology∗

VCoIn(xt,xc) = V0(x0
t ,x

0
c)

+
(

κ(1)∆xt λ∆xc

λ∆xc κ(2)∆xt

)
∆xt = xt− x0

t tuning mode
∆xc = xc− x0

c coupling mode

2 dimensions: CoIn point
3 dimensions: CoIn seam
N dimensions: (N-2) dimensional

intersection space

∗ quasi-diabatic linear vibronic coupling (LVC) form
∗ can be embedded in a correct representation of the

overall potential via regularized diabatic states
Köppel et al., J. Chem. Phys. 110, 9371 (1999); 115, 2377 (2001)
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Quantum Dynamics Approaches

1 explicit, multidimensional dynamics for the full system + bath space:
wavefunction ψSB(t) or density operator ρ̂SB(t) = ∑n pn|ψn,SB(t)〉〈ψn,SB(t)|

2 reduced dynamics (master equation) methods: ρ̂S(t) = TrBρ̂SB(t)

3 intermediate methods: explicit treatment of subsystem + effective-mode (E)
part of the bath + master equation for residual (R) bath:

∂ ρ̂SE

∂ t
= − i

h̄
[ĤSE, ρ̂SE(t)]+ ˆ̂L(R)

dissρ̂SE(t) ; ρ̂SE(t) = TrRρ̂SER(t)

ˆ̂L(R)
dissρ̂SE = −i

γ

h̄
[X̂E, [ P̂E, ρ̂SE]+]− 2γMkT

h̄2 [X̂E, [X̂E, ρ̂SE]]

• efficient multiconfigurational methods for S +E, suitable for 10-100 modes

• Caldeira-Leggett type master equations for residual (R) modes
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Multiconfigurational Methods (MCTDH & Co)

modes

}{ϕ(κ)

primary

secondary

modes

{g(f)}

modes

}{χ(n)

dissipative

Ψ(r, t) = ∑
J

AJ(t) ΦJ(r, t)

with ΦJ(r, t) =
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)

Multi-Configuration Time-Dependent Hartree
Meyer et al., CPL 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

Gaussian-based hybrid method: G-MCTDH

ΦJ(r, t) =
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)︸ ︷︷ ︸

primary nodes

P

∏
κ=M+1

g(κ)
jκ (rκ , t)︸ ︷︷ ︸

secondary modes

Burghardt, Meyer, Cederbaum, JCP 111, 2927 (1999)

Burghardt, Giri, Worth JCP 129, 174104 (2008)
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Variationally Optimized Dynamics

Ψ(r1, . . . ,rP, t) = ∑
j1

. . .∑
jP

Aj1...jP(t)
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)

P

∏
κ=M+1

g(κ)
jκ (rκ , t)

g(κ)
j (rκ , t) = exp

[
rκ ·a(κ)

j (t) · rκ + ξ
(κ)
j (t) · rκ + η

(κ)
j (t)

]
multidimensional Gaussian functions:
• quasi-classical motion
• on-the-fly dynamics
• analytical integrals

Dirac-Frenkel variational principle:

〈δΨ|H− i ∂

∂ t |Ψ〉= 0 dynamical equations (symplectic structure)

• up to 50-100 modes – exponential scaling problem ( ∼ fNf +1) is alleviated
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Dynamical Equations

Burghardt, Meyer, Cederbaum, JCP 111, 2927 (1999)

coefficients:

spf’s (primary modes):

gwp’s (secondary modes):

iȦ = S−1
[

H− iτ
]

A

iϕ̇(κ) =
(

1̂− P̂(κ)
)[

ρ
(κ)
]−1

Ĥ(κ)
ϕ

(κ)

iΛ̇(κ) =
[
C(κ)

]−1
Y(κ)

C(κ)
jα,lβ = ρ

(κ)
jl 〈

∂g(κ)
j

∂λ
(κ)
jα

∣∣∣∣(1̂− P̂(κ))
∣∣∣∣ ∂g(κ)

l

∂λ
(κ)
lβ

〉 ; Y(κ)
jα = ∑

l
〈

∂g(κ)
j

∂λ
(κ)
jα

∣∣∣∣(1̂− P̂(κ))Ĥ(κ)
jl

∣∣∣∣g(κ)
l 〉

• evolution under multiconfigurational mean-field Hamiltonian

• coupled, variational equations for Gaussian parameters

• correlations between primary vs. secondary subspace
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Reduced-Dimensional Models for Large Systems

e.g. N secondary-zone modes coupled to electronic subsystem (primary zone)

H =
N

∑
i=1

H(i)
0 +

 κ
(1)
i xi λixi

λixi κ
(2)
i xi

 ? Heff =
neff

∑
i=1

H̃(i)
0 +

 K(1)
i Xi ΛiXi

ΛiXi K(2)
i Xi



N potentially very large! neff small

• approximation should be valid on
short time scales

• Xi’s are collective modes –
“generalized reaction coordinates”
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Conical Intersection (CoIn): Three Effective Modes

Precursors in solid state physics:
“cluster modes”
“interaction modes”
(O’Brien 1971, Toyozawa, Inoue 1966)

electronic subsystem

effective modes {X1,X2,X3}

residual modes {X4, . . . ,XN}
• effective modes describe short-time

dynamics exactly

• for n electronic states:
n(n+1)/2 effective modes

Cederbaum, Gindensperger, Burghardt, Phys. Rev. Lett., 94, 113003 (2005)

Burghardt, Gindensperger, Cederbaum, Mol. Phys. 104, 1081 (2006)

Gindensperger, Burghardt, Cederbaum, J. Chem. Phys. 124, 144104, 144105 (2006)
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Why Three Effective Modes?

H =
N

∑
i=1

Hi =
N

∑
i=1

ωi

2

(
p2

i + x2
i

)
+V lin

i V lin
i =

1
2

κ
(+)
i xi +

(
1
2 κ

(−)
i xi λixi

λixi − 1
2 κ

(−)
i xi

)

X+ = ∑i κ
(+)
i xi shift

X− = ∑i κ
(−)
i xi energy gap

XΛ = ∑i λi xi coupling

• X−, XΛ span the branching plane (cf. Atchity & Xantheas & Ruedenberg (1999))

• X+ lies in the (N−2)-dimensional intersection space
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Additional Transformations in Residual Space

Hierarchical Electron-Phonon (HEP) Model:

effective modes + chain(s) of residual modes

• the chain “unravels” the dynamics as a function of time

• more precisely: truncation at the order n (i.e., 3n+3 modes) conserves the
Hamiltonian moments (cumulants) up to the (2n+3)rd order

Tamura, Bittner, Burghardt, JCP 127, 021103 (2007), Gindensperger, Cederbaum, JCP 127, 024107 (2007)
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Hierarchical electron-phonon (HEP) model

Ĥ(n) = Ĥeff +
n

∑
l=1

Ĥ(l)
res

Ĥ(l)
res =

3l+3

∑
i=3l+1

Ωi

2
(P̂2

i + X̂2
i )1̂+

3l+3

∑
i=3l+1

i−1

∑
j=i−3

dij

(
P̂iP̂j + X̂iX̂j

)
1̂

d =



• • • �
• • • � �
• • • � � �
� � � • • • �

� � • • • � �
� • • • � � �

� � � • • • . . .

� � • • • . . .

� • • • . . .
... ... ...



d =
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... ... ...


chain + Markovian closure

Tamura, Bittner, Burghardt, JCP 126, 021103 (2007); Gindensperger, Köppel, Cederbaum, JCP 126, 034106 (2007)
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Effective Modes for TFB:F8BT Heterojunction

HEP hierarchy / 2-state model:

(X1,X2,X3): high-frequency

(X4,X5,X6): low-frequency

(X7,X8,X9): high-frequency

• phonon branches appear in alternation!

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-0.5

0.0

0.5

1.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14

mode ð

Min

high-freq

F8BT modes TFB modes

Tamura, Bittner, Burghardt, JCP 126, 021103 (2007),
Pereverzev, Bittner, Burghardt, JCP 131, 034104 (2009)
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Nonadiabatic Coupling Region

representation in the branching space coordinates (X1,X2)

2-state XT/CT model 3-state XT/CT/IS model
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The dynamics happens “below” a conical intersection
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2-State Model: Effective-Mode Dynamics (Cont’d)

Tamura, Bittner, Burghardt, JCP 126, 021103 (2007), JCP 127, 034706 (2007)
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+ torsions

• 3 effective modes: not a good approximation on relevant time scale
• 6 effective modes: qualitatively correct torsional modes are crucial!
• 9 effective modes: very close to exact 24-mode result
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3-State Effective-Mode Model

Tamura, Ramon, Bittner, Burghardt, J. Phys. Chem. B 112, 495 (2008), Phys. Rev. Lett. 100, 107402 (2008)

Heff = H0 +
6

∑
i=1

 K(1)
i Xi +DiXi Λ

(12)
i Xi Λ

(13)
i Xi

Λ
(12)
i Xi K(2)

i Xi−DiXi Λ
(23)
i Xi

Λ
(13)
i Xi Λ

(23)
i Xi K(3)

i Xi

+ bilinear couplings

X1 . . .X6: high-frequency

X7 . . .X12: low-frequency

X13 . . .X18: high-frequency

same pattern as 2-state!
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Minimal Model: High-Frequency Mode + Low-Frequency Bath

connections to models of electron transfer (Sumi-Marcus etc.)
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Why Do the Torsional (Slow) Modes Play a Key Role?

• XT-CT transition induced by low-frequency motion

• location of avoided-crossing seam decisive
Hughes, Christ, Burghardt, J. Chem. Phys., 131, 024109 (2009)
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High-Frequency Mode + Eff. Low-Frequency Mode +
Dissipation

spectral density

J(ω) =
2γωD2

(Ω2−ω2)2 +4γ2ω2

0 500 1000 1500 2000
time /fs

0

0.2

0.4

0.6

0.8

1

Po
pu

la
tio

n

H
S

H
S
+H

eff

H
S
+H

eff
+bath

H
S
+H

bath

0.005 0.01 0.015
ω /eV

0

5e-06

1e-05

c n

• Brownian-oscillator picture: effective low-frequency mode + dissipation
• note: very strong friction can quench the transfer
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Electronic Coherence Preserved on Short Time Scales
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• electronic coherence evolves concerted with low-frequency motion

Burghardt Coherence and Decoherence in Ultrafast Molecular Processes



Introduction: Ultrafast Processes in Molecular Systems
Model Hamiltonians & Quantum Dynamics

Implications of Effective-Mode Picture

Vibronic Coupling and Lattice Models
Quantum Dynamics Approaches
Effective-Mode Models

Bottom Line – Vibronic-Coupling Mechanism

• XT-CT transfer mechanism
• high-frequency modes largely determine coupling to electronic subsystem but

exhibit essentially diabatic dynamics
• low-frequency modes induce XT–CT transition (cf. Bixon-Jortner theory:

resonant decay via quasi-continuum of vibronic states)

• coherent nature of the transfer
• collective modes dominate on short time scales
• hierarchical electron-phonon model: sequential correlations
• as a result, coherence can persist on the relevant transfer time scale
• dissipation acts with a delay

• even though we’ve studied a model Hamiltonian, these conclusions should
have some general validity
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Spectral Densities

• generalized Brownian oscillator models

• construct a series of approximate spectral densities based upon HEP model

• continued fraction form (cf. Mori chain)

J(M)(ω) = lim
ε→0+

Im K(M)(ω− iε)

Garg et al., J. Chem. Phys. 83, 4491 (1985), Hughes, Christ, Burghardt, J. Chem. Phys. 131, 024109 (2009)

• �
� • �

� • �
� • �

� • �
� • �

� • �
� • �

K̂(M)(z) =− D2

Ω2
1− z2−

d2
1,2

Ω2
2− z2−·· ·

d2
M−2,M−1

Ω2
M−1− z2−

d2
M−1,M

Ω2
M− z2 + i2γz
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Hierarchy of Approximate Spectral Densities
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• approximation =
Mth order Mori chain
+ Markovian closure

• this is equivalent to an
Mth order spectral
density

• the environment’s
spectral density is
successively resolved as
a function of time

Hughes, Christ, Burghardt, J. Chem. Phys. 131, 024109, 124108 (2009)
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Spectral Densities, Cont’d
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• fit an arbitrary spectral
density to a Kth order Mori
chain model

• construct successive Mth
order, M < K,
approximations

• here, K = 3, M = 2, M = 1

• dynamics according to Mth
order Mori chain with
Markovian closure
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S2-S1 CoIn in Pyrazine: 4+20 Mode Model

tuning-mode bath, Hint = ∑
NB
i=1 κ

(−)
i xiσz ≡ KX1σz: 1 effective mode per order M
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• 20-mode bath fitted to
K = 3 Mori chain +
Markovian closure

• construct successive
Mth order, M < K,
approximations

• here, M = 2,3 in very
good agreement
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CoIn’s: Extension to Correlated Spectral Densities

Ĥ = Ĥ0 + ĤSB = Ĥ0 +∑
NB
i=1

[
κ

(+)
B,i x̂B,i 1̂+κ

(−)
B,i x̂B,iσ̂z +λB,i x̂B,i σ̂x

]

J(ω) = −
NB

∑
n=1


−κ

(−)2
n −iκ(−)

n κ
(+)
n κ

(−)
n λn

iκ(−)
n κ

(+)
n −(κ(−)2

n +λ 2
n ) −iλnκ

(+)
n

κ
(−)
n λn iλnκ

(+)
n −λ 2

n

δ (ω−ωB,n)

• J written in the basis of subsystem Heisenberg operators {σ̂x, σ̂y, σ̂z}
• three system-bath coupling mechanisms (tuning, coupling, shift)

• diagonal vs. cross-correlated spectral densities
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Connection to Reduced-Dynamics Approach

• spectral densities are related to correlation functions,

C (2,2n)(t) =
∫

∞

−∞

dω J(M=n+1)
eff (ω)

exp(−iωt)
exp
(

ω

2kBT

)−1

• correlation functions appear in a 2nd-order master equation for the subsystem
density operator, here for the interaction ĤSB = ∑

N
i cix̂iσ̂z ≡ DX̂1σ̂z,

∂ ρ̂S

∂ t
= −i ˆ̂LS(t)ρ̂S(t)−

∫ t

t0
dt′
[

σ̂z(t) , σ̂z(t′)ρ̂S(t′)
]
C

(2,k)
B (t, t′; t0)

+
∫ t

t0
dt′
[

σ̂z(t) , ρ̂S(t′) σ̂z(t′)
]
C

(2,k)
B (t′, t; t0)

• beyond 2nd order, memory kernel can be developed in a double perturbation
theory, w.r.t. the interaction strength and the Mori-chain order
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Transfer Processes in Fluctuating Environments
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Excitation transfer vs. trapping
& dissipation & decoherence

• transition between coherent and
non-coherent (Förster) transfer

• long-lived excitonic coherences?

• site-local vs. shared (correlated)
modes: significant differences

• extend to include thermal gradients
Bittner, Goj, Burghardt, Chem. Phys., in press.
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Exciton Migration & Long-Lived Coherences

Collini, Scholes, Science 323, 369 (2009), Bredas & Silbey, Science 323, 348 (2009)

V lin = ∑
i


κ

(1)
i xi λ

(12)
i xi

λ
(12)
i xi κ

(2)
i xi λ

(23)
i xi

λ
(23)
i xi κ

(3)
i xi λ

(34)
i xi

λ
(43)
i xi κ

(3)
i xi λ

(45)
i xi

... ... ...


• coherent “surfing” rather than Förster-type hopping?
• role of site-local vs. shared (correlated) modes
• do shared modes contribute to the conservation of electronic coherence?
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Heterojunction Dynamics: Charge Separation + Photocurrent

• • •

XT CT D1 . . . Dn

XT

CT

D1

D2
• • •

Dn

• tuning by low-frequency
modes

• tuning by
conformational
fluctuations

• both factors could on
average ensure transfer
efficiency

Burghardt Coherence and Decoherence in Ultrafast Molecular Processes



Introduction: Ultrafast Processes in Molecular Systems
Model Hamiltonians & Quantum Dynamics

Implications of Effective-Mode Picture

Spectral Densities
Connection to Reduced-Dynamics Approach
Transfer Processes in Fluctuating Environments

Detailed Picture of Exciplex Break-Up
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• 4 effective tuning modes
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Summary

1 Molecular-Level Approaches for Extended Systems
• charge transfer, excitation energy transfer
• combine model Hamiltonians & electronic structure information
• alternative/complementary to QM/MM + on-the-fly approaches

2 System-bath perspective

• collective modes dominate on short times scales
• structured environments are gradually explored by the quantum subsystem
• as a result, coherence can persist longer than expected

3 Development of Quantum Dynamical Hybrid Methods

• Gaussian-based multiconfigurational methods
• effective-mode methods
• approximate spectral densities
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Quantum-Classical, Multi-Scale Approach

quantum solute + classical mesoscopic environment

O

S

O

• e.g., photoswitches in solution, EET in polar/polarizable environments, . . .

• complementary approach to QM/MM-MD type methods
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Quantum-Classical Liouville Equation

quantum solute + classical mesoscopic environment

• quantum-classical Liouville equation, for f̂rp = ∑nm fnm(r,p)|n〉〈m|,
∂ f̂rp

∂ t
=− i

h̄
[Ĥrp, f̂rp ]+

1
2

(
{Ĥrp, f̂rp} −{f̂rp, Ĥrp}

)
• propagate either the single-particle phase-space functions fnm(r,p, t)

• or propagate the corresponding hydrodynamic quantities:
local density ρnm(r, t), current density gnm(r, t)1

Burghardt & Bagchi, Chem. Phys. 329, 343 (2006)

1local density: ρnm(r, t) =
∫

dp fnm(r,p, t), current: gnm(r, t) =
∫

dpp fnm(r,p, t)
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Classical Dynamical Density Functional Theory (DDFT)

∂

∂ t
ρ(r, t) =− 1

m
∇r ·g(r, t)

∂

∂ t
g(r, t) =−ρ(r, t)∇r

δF [ρ]
δρ

+Ξdiss[g]

F [ρeq]

F [ρ(t)]

S2

S1

• coupled equations for local density
ρ(r, t) and current density g(r, t)

• free energy functional F [ρ(r, t)] =
kTlnΛ3 ρ(r, t) − ∫ dr′C2(r− r′)δρ(r′, t)

• transpose to quantum-classical setting:
coupled equations for {ρnm,gnm}:
dynamics on coupled Marcus parabolas!
Burghardt & Bagchi, Chem. Phys. 329, 343 (2006)

Burghardt Coherence and Decoherence in Ultrafast Molecular Processes



Quantum Solute + Classical Mesoscopic Environment

Translational Solvation in 1D: Classical

solute-dipole

solvent-dipole

1D model: pure
translational motion

p
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0.00 4.00 8.00 12.00 16.00 20.00 24.00

 r

1

phase-space density f (r,p, t)

• initial condition: homogeneous density f (r,p,0) = ρ0 exp(−p2/4mT)
• repulsive electrostatic solute-solvent interaction: “dip” in solvent density
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Translational Solvation in 1D: Quantum-Classical (2-State)
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population f22(r,p, t)

coherence f12(r,p, t)

population f11(r,p, t)

• initial condition: homogeneous density for state 1: f11(r,p,0) = ρ0(r)fM(p)
Hughes, Ramanathan, Burghardt, to be submitted
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