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Time matters!

Nuclear reactions are time-dependent processes!

• Nuclei are self-bound, correlated, many-body systems

• "Scattering" approaches are limited to reaction type & energy...

• Advancements of time-dependent many-body techniques are needed for:
• Central collisions of heavy isotopes⇒ many participants, rearrangement
• Low-energy fusion reactions⇒ sub-barrier fusion, neck formation
• Response of finite nuclei⇒ collective phenomena, deexcitation

www.surrey.ac.uk 1 / 34



TDGF for nuclear reactions

Our goal
Simulate time evolution of correlated nuclear systems in 3D

• Time-Dependent Green’s Functions formalism
• Fully quantal
• GF’s relatively well-understood in static case
• Beyond mean-field correlations in initial state and in dynamics
• Conservation laws are preserved

• Peculiarities of our approach:
• One-body Green’s function⇔ density matrix
• Beyond mean-field⇔ Memory effects & two times
• Calculations in box⇔ mesh of equidistant Nx points
• Use of FFT⇔ periodic boundary conditions
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Non-equilibrium Green’s functions
Basic formalism: perturbation expansion

t

0t
t’

iG(x1, t1;x1′ , t1′) =
〈
TC
[
aH(x1, t1)a†H(x1′ , t1′)

] 〉
=

〈
TC

[
exp

(
−i
∫
C
dt′H1

I (t′)

)
aI(x1, t1)a†I(x1′ , t1′)

]〉
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〈
TC

[
exp

(
−i
∫
C
dt′H1

I (t′)

)
aI(x1, t1)a†I(x1′ , t1′)

]〉
1. Wick decomposition can be performed
2. Feynman diagrams can be defined out of equilibrium!
3. Time-dependent observables can be computed〈
ÔH(t)

〉
= −i lim

x→x′

∫
dx o(x)G<(x, t;x′, t)

ρ(x, x′; t) = −iG<(x, t;x′, t′ = t)

n(x, t) = −iG<(x, t;x′ = x, t′ = t)

U(t) = −i1
4

∫
dp
2π

{
i∂t − i∂t′ −

p2

m

}
G<(p, t; p, t)
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Non-equilibrium Green’s functions
Basic formalism: conserving approximations

...

Dyson Equations{
i
∂

∂t1
+
∇2

1

2m

}
G(1,1′) = δC(1,1

′) +

∫
C
d2Σ(1,2)G(2,1′){

−i ∂

∂t1′
+
∇2

1′

2m

}
G(1,1′) = δC(1,1

′) +

∫
C
d2G(1,2)Σ(2,1′)

∫
C
d2Σ(1,2)G(2,1′) = i

∫
dx2 V (x1 − x2)GII(1,x2, t1;1′,x2, t

+
1 )∫

C
d2G(1,2)Σ(2,1′) = i

∫
dx2 GII(1,x2, t1′ ;1

′,x2, t
+
1′)V (x2 − x1′)
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Non-equilibrium Green’s functions
Basic formalism: conserving approximations
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Kadanoff-Baym equations
G<(11

′
) = i

〈
â
†
(1
′
)â(1)

〉
G>(11

′
) = −i

〈
â(1)â

†
(1
′
)
〉

{
i
∂

∂t1
+
∇2

1

2m

}
G≶

(11
′
) =

∫
dr̄1ΣHF (11̄)G≶

(1̄1
′
)

+

∫ t1

t0

d1̄
[
Σ
>

(11̄)− Σ
<

(11̄)
]
G≶

(1̄1
′
)−
∫ t

1′

t0

d1̄Σ
≶

(11̄)
[
G>(1̄1

′
)− G<(1̄1

′
)
]

{
−i

∂

∂t1′
+
∇2

1′

2m

}
G≶

(11
′
) =

∫
dr̄1G≶

(11̄)ΣHF (1̄1
′
)

+

∫ t1

t0

d1̄
[
G>(11̄)− G<(11̄)

]
Σ

≶
(1̄1
′
)−
∫ t

1′

t0

d1̄G≶
(11̄)

[
Σ
>

(1̄1
′
)− Σ

<
(1̄1
′
)
]

• Evolution of non-equilibrium systems from general principles

• Include correlation and memory effects, via self-energies

• Complicated numerical solution, but very universal framework

• Already used in other fields.
Kadanoff & Baym, Quantum Statistical Mechanics (1962)

Danielewicz, Ann. Phys. 152, 239 (1984)

www.surrey.ac.uk 5 / 34



Kadanoff-Baym equations
G<(11

′
) = i

〈
â
†
(1
′
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†
(1
′
)
〉

{
i
∂

∂t1
+
∇2

1

2m

}
G≶

(11
′
) =

∫
dr̄1ΣHF (11̄)G≶

(1̄1
′
)

+

∫ t1

t0

d1̄
[
Σ
>

(11̄)− Σ
<

(11̄)
]
G≶

(1̄1
′
)−
∫ t

1′

t0

d1̄Σ
≶

(11̄)
[
G>(1̄1

′
)− G<(1̄1

′
)
]

ΣHF ⇒ Σ≶ ⇒

• Evolution of non-equilibrium systems from general principles

• Include correlation and memory effects, via self-energies

• Complicated numerical solution, but very universal framework

• Already used in other fields.
Kadanoff & Baym, Quantum Statistical Mechanics (1962)

Danielewicz, Ann. Phys. 152, 239 (1984)

www.surrey.ac.uk 5 / 34



Kadanoff-Baym equations
G<(11

′
) = i

〈
â
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Kadanoff-Baym equations

1D atoms

PRA 81, 022510 (2010)

Quantum transport nanostructures

PRB 80, 115107 (2009)

Nonequilibrium QFT

PRD 80, 085011 (2009)
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Collisions of 1D slabs

• Frozen & extended y, z coordinates, dynamics in x
• Attemp to understand nuclear Green’s functions
• 1D provide a simple visualization
• Insight into familiar quantum mechanics problems
• Simple zero-range mean field (1D-3D connection)

U(x) =
3

4
t0 n(x) +

2 + σ

16
t3 [n(x)]

(σ+1)
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Mean-field evolution: implementation

• The mean-field is time-local
• ΣHF (11′) = δ (t1 − t1′) ΣHF (x1, x1′)
• Only t1 = t1′ = t elements needed: G<(t1, t1′)⇒ G<(t)

• Zero-range mean-field⇒ KB eqs. reduce to differential equation

i
∂

∂t
G<(x, x

′
; t) =

{
−

1

2m

∂2

∂x2
+ U(x, t)

}
G<(x, x

′
; t)

−
{
−

1

2m

∂2

∂x′2
+ U(x

′
, t)

}
G<(x, x

′
; t)

• Implemented via the Split Operator Method:
Small ∆t⇒ G<(t+ ∆t) ∼ e

−i
{
∇2

2m
+U(x)

}
∆t
~ G<(t)e

+i

{
∇′2
2m

+U(x′)
}

∆t
~

e
i(T̂+Û)∆t ∼ ei

Û
2

∆t
e
iT̂∆t

e
i Û

2
∆t

+O[∆t
3
]

• Calculations in a box & FFT to switch representations
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Mean-field TDGF vs. TDHF

• MF-TDGF and TDHF are numerically equivalent...
• but expressed in different terms!

Time Dependent Green’s Functions Time Dependent Hartree-Fock

i
∂

∂t
G<(x, x

′
; t) =

− 1

2m

∂2

∂x2
+ U(x)

G<(x, x
′
; t)

−

− 1

2m

∂2

∂x′2
+ U(x

′
)

G<(x, x
′
; t)

• 1 equation ... Nx ×Nx matrix
• Testing ground
• Natural extension to correlated case via KB

for α = 1, . . . , Nα

i
∂

∂t
φα(x, t) =

− 1

2m

∂2

∂x2
+ U(x)

φα(x, t)

end

• Nα equations ... vectors of size Nx
• Limited to mean-field!
• Extension needs additional assumptions
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Initial state and adiabatic switching

• Initial state should be ground state of the Hamiltonian
• Mean-field approx. ⇒ solve static Hartree-Fock equations

• Possible solution: use adiabatic theorem!
H(t) = f(t)H0 + [1− f(t)]H1

f(t) =

{
1, t→ −∞
0, t→ t0

• Advantage: a single code for everything!

• For practical applications:
• H0 & H1 with similar spectra to avoid crossing

• H0 = 1
2
kx2

• H1 = Umf

• Adiabatic transient: f(t) = 1

1+e(t−τ0)/τ , τ →∞
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Adiabatic switching: practical examples

Nα = 2 ⇐⇒ A = 8

U(t) = f(t)
1

2
kx

2
+ [1− f(t)]Umf(x, t) ⇐⇒ f(t) =

1

1 + e(t−τ0)/τ
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Media File (video/quicktime)
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Adiabatic switching & observables
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Adiabatic switching & transient function
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Collisions of 1D slabs: fusion

ρ(x, x′, P ) = eiPxρ(x, x′, P = 0)e−iPx
′

ρ(x, x′) =
∑
α<F

φα(x)φα(x′)

ECM/A = 0.1MeV
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denx1d2d_fus.mov
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Collisions of 1D slabs: fusion
ECM/A = 0.1MeV
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den3x2fus.mov
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Collisions of 1D slabs: break-up

ρ(x, x′, P ) = eiPxρ(x, x′, P = 0)e−iPx
′

ρ(x, x′) =
∑
α<F

φα(x)φα(x′)

ECM/A = 4MeV
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denx1d2d_fis.mov
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Off-diagonal elements: origin

α|φ (  )|x’

|φ (  )|xα

x=
x’

x

x

x’ x’

|φ (  )|xα

α|φ (  )|x’

x

x

x’ x’

ρ(x, x′) =
∑
α<F

φα(x)φ
∗
α(x
′)

Correlation of single-particle states that are far away
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Collisions of 1D slabs: multifragment.

ρ(x, x′, P ) = eiPxρ(x, x′, P = 0)e−iPx
′

ρ(x, x′) =
∑
α<F

φα(x)φα(x′)

ECM/A = 25MeV
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denx1d2d_mult.mov
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Off-diagonal elements: origin

α|φ (  )|x’

|φ (  )|xα

x=
x’

x

x

x’ x’

|φ (  )|xα

α|φ (  )|x’

x

x

x’ x’

• Off-diagonal elements describe correlation of single-particle states

ρ(x, x
′
) =

Nα∑
α=0

φα(x)φ
∗
α(x
′
)

• Diagonal elements yield physical properties

n(x) = ρ(x, x
′

= x) =

Nα∑
α=0

nα|φα(x)|2 K =
∑
k

k2

2m
ρ(k, k

′
= k)
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Off-diagonal elements: importance

α|φ (  )|x’

|φ (  )|xα

x=
x’

x

x

x’ x’

|φ (  )|xα

α|φ (  )|x’

x

x

x’ x’

Conceptual issues:
• Should far away sp states be connected in a nuclear reaction?

• Decoherence and dissipation might dominate late time evolution...

• Are x 6= x′ elements really necessary for the time-evolution?

Practical issues:
• Green’s functions are ND

x ×ND
x ×N2

t matrices: 206 ∼ 108

• Eliminating off-diagonalities drastically reduces numerical cost
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Off-diagonal elements: cutting procedure

• How can we delete off-diag. without perturbing diagonal evolution?

• Super-operator: act in two positions of G< instantaneously

• Use a damping imaginary potential off the diagonal

G<(x, x′, t+ ∆t) ∼ ei(ε(x)+iW (x,x′))∆tG<(x, x′, t)e−i(ε(x
′)−iW (x,x′))∆t

• Properties chosen to preserve: norm, FFT, periodicity, symmetries
• Ad hoc decoherence⇒ How large unphysical effects?

www.surrey.ac.uk 20 / 34
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Off-diagonally cut evolution

ECM/A = 25MeV
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Cutting off-diagonal elements

-40

-20

0

20

40

E
/A

 [
M

eV
]

0 %
20 %
40 %
60 %
80 %
90 %

E
CM

/A=25 MeV

0 20 40 60 80
t [fm/c]

5

10

15

20

25

d(
t)

 [
fm

]

Kinetic

Total

Potential

• Total energy and different components are unaffected!
• Integrated quantities appear to be cut-independent
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Consequences of cuts: irreversibility

What processes are sensitive to cuts?

ECM/A = 25MeV

Uncut evolution, forward
& backwards

Cut evolution forward
|x− x′| < 10 fm, uncut backwards
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Rotated coordinate frame

α|φ (  )|x’

|φ (  )|xα Nx

Nx x=
x’

x

x

x’ x’

1

1

. . .

. . .

• Traditional calculations performed on Nx ×Nx mesh

• Periodic boundary conditions

• Rotated coordinate frame: xa = x+x′

2 , xr = x′ − x
• Control lengths and meshpoints⇒ (La, Na)× (Lr, Nr)

• Reduce numerical effort by factors of 2− 10
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Traditional vs. rotated evolutions
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Research program
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A. Rios et al., in preparation.

• Used adiabatic theorem to solve mean-field
√

• Full (N2
x ), damped & cut (Na ×Nr) 1D mean-field evolution

√

• Identified lack of correlations in Wigner distribution
√

• Full 1D correlated evolution: Born approximation ∼
√
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Time evolution beyond the mean-field

{
−i

∂

∂t1
−
∇2

1

2m
−
∫

dr̄1ΣHF (11̄)

}
G≶(11′) =

∫ t1

t0

d1̄ΣR(11̄)G≶(1̄1′) +

∫ t1′

t0

d1̄Σ≶(11̄)GA(1̄1′)︸ ︷︷ ︸
I
≶
1 (1,1′;t0)

• Direct Born approximation⇒ simplest conserving approximation

• FFT to compute convolution integrals

• Collision integrals⇒ memory effects in 2D⇒ (t, t′)

• First benchmark calculation to get acquainted with methodology
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Two time Kadanoff-Baym equations

• Time off-diagonal time elements are present

• Need of a strategy to deal with memory & two-times

• Use symmetries G≶(1,2) = −[G≶(2,1)]∗ to minimize resources

• Self-consistency imposed at every time step

t 0

t

t

T

T

2

1

1

<

2

>

G (t ,T+  t)∆

∆G (T+  t,t )

Köhler et al, Comp. Phys. Comm. 123, 123 (1999)

Stan, Dahlen, van Leeuwen, Jour. Chem. Phys. 130, 224101 (2009)
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Strategy to solve two-time equations

1tt

t

0

2

G<(t1, T + ∆t) = e
iε∆tG<(t1, T )− ε−1

(
1− eiε∆t

)
I<2 (t1, T + ∆t)

G>(T + ∆t, t2) = G>(T, t2)e
−iε∆t − I>1 (T + ∆t, t2)

(
1− e−iε∆t

)
ε
−1

G<(T + ∆t, T + ∆t) = e
iε∆t

[
G>(T, T )− I<1 (T + ∆t)− I<2 (T + ∆t)

]
e
−iε∆t

• Time step Nt involves 2Nt + 1 operations

• Difficult parallelization due to inherent sequential structure

• Elimination schemes for time off-diagonal elements?
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Nuclear time-dependent correlations

• Some experience already gathered for uniform systems
Danielewicz, Ann. Phys. 152, 239 (1984)

H. S. Köhler, PRC 51 3232 (1995)

• Expected physical effects
• Thermalization (0 < nα < 1)
• Damping of collective modes

• Correlations in the initial state
• Will a mean-field system evolve to a correlated ground state?
• Adiabatic switching on of correlations?
• Imaginary time evolution to get ground states?

• Testing ground calculations: 1D fermions on a HO trap
• No mean-field, only confining potential
• Test with mock gaussian NN force
• Issues with cross section in 1D
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Correlated fermions in a trap
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Research program

vs.

• Used adiabatic theorem to solve mean-field
√

• Full (N2
x ), damped & cut (Na ×Nr) 1D mean-field evolution

√

• Identified lack of correlations in Wigner distribution
√

• Full 1D correlated evolution: Born approximation ∼
√

• Lessons learned⇒ Progressive understanding of higher D

• Ultimately: correlated 3D evolution
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Research program

Golabek & Simenel, Phys. Rev. Lett. 103, 042701 (2009)
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Nuclear Kadanoff-Baym
Potential & challenges

• Potential for applications in nuclear reactions & structure

• Microscopic understanding of dissipation

• Response for nuclei including collision width

• Multidisciplinary research: from quantum dots to cosmology!
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Thank you!
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