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@ Motivation

@® 1D mean-field dynamics

@® Cutting off-diagonal elements
@ Kadanoff-Baym calculations

@ Conclusions & Outline
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Time matters! %NﬁEﬁSl'{TIYE?(F

* Nuclei are self-bound, correlated, many-body systems

* "Scattering" approaches are limited to reaction type & energy...

» Advancements of time-dependent many-body techniques are needed for:
 Central collisions of heavy isotopes = many participants, rearrangement
* Low-energy fusion reactions = sub-barrier fusion, neck formation
° Response of finite nuclei = collective phenomena, deexcitation

T
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Time

—_—
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TDGF for nuclear reactions SURREY

+ Time-Dependent Green’s Functions formalism
+ Fully quantal
- GF's relatively well-understood in static case
- Beyond mean-field correlations in initial state and in dynamics
+ Conservation laws are preserved
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4 UNIVERSITY OF

TDGF for nuclear reactions SURREY

+ Time-Dependent Green’s Functions formalism
+ Fully quantal
- GF's relatively well-understood in static case
- Beyond mean-field correlations in initial state and in dynamics
+ Conservation laws are preserved

+ Peculiarities of our approach:

+ One-body Green’s function < density matrix

- Beyond mean-field < Memory effects & two times

+ Calculations in box < mesh of equidistant N, points
+ Use of FFT < periodic boundary conditions
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Non-equilibrium Green’s functions 1, UNIVERSITY OF
Basic formgliism: conserving approximations SURREY

Dyson Equations

0 Viloq 1)~ s 1/)+/d22(1 2)G(2,1))
Zatl 2m ’ -0 c ’ '

9 Vi G(1,1) = 6c(1 1’)+/d2g(1 2)%(2,1)
Zatl/ 2m ’ IR c ’ ’

www.surrey.ac.uk 4/34



Non-equilibrium Green'’s functions QIRREY

Basic formalism: conserving approximations

o [0 X

Dyson Equations

ii + vi G(1,1") = 6c(1 1/)+/d2 $(1,2)G(2,1")
oty 2m ’ ’ c ’ '

9 Vi G(1,1') = b6c(1 1’)+/d2g(1 2)%(2,1)
8t1/ 2m ’ ’ C ’ ’
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Non-equilibrium Green’s functions «b SURREY

Basic formalism: conserving approximations

o 10-0 +(}) ;
=5 o O [

Dyson Equations Baym, Phys. Rev. 127, 1391 (1962)

2+ Yilga 1y =511 +/d2 5(1,2)G(2,1")
oty 2m ’ ’ c ’ '

9 Vi G(1,1') = b6c(1 1')+/d2g(1 2)%(2,1)
8t1/ 2m ’ ’ C ’ ’

/d22(1,2)g(2,1’) :i/de V(x1 — x2)Grr(1, %2, t1; 1, x2, )
C

d2 g(l, 2)2(27 1,) = i/ng ng(l,xQ7t1/; 1/,X2, t;r/)V(Xz — Xll)
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Kadanoff-Baym equations ¢ %ﬁﬁsﬁﬁf

g1y =it (1ha@) ¢>@ar) = —i(a(m)a’(’))

.9 v < oy _ S s
i— + — > G=(11") = /drlzyF(ll)g>(11 )
8t1 2m

+/t:di [Z>(1i) - 2<(1i)] gS(11) —/t:di »S(11) [g>(11’) - g<(il/)]

. 17} v?/ < ’ _ < = T4/
2y GS(11) = /dr1g>(11)zHF(11 )
8t1/ 2m

+/t:di [¢> a1 - g=an]s=ar) —/t:l,di g= (1) [27 (11) - 3<(11")]

* Evolution of non-equilibrium systems from general principles
* Include correlation and memory effects, via self-energies

* Complicated numerical solution, but very universal framework

Already used in other fields.
Kadanoff & Baym, Quantum Statistical Mechanics (1962)

Danielewicz, Ann. Phys. 152, 239 (1984)
www.surrey.ac.uk 5/34



Kadanoff-Baym equations ¢ %ﬁﬁsﬁﬁf

g1y =it (1ha@) ¢>@ar) = —i(a(m)a’(’))

{4 2] V%} < ’ — 5 < 347
i— 4+ L1 GgSa1) = /drleF(11)g>(11 )
8t1 2m

+/t:di [Z>(1i) - 2<(1i)] gS(11) —/t:'di »S(11) [g>(11’) - g<(il/)]

EHF:}‘__O Z§=>
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Kadanoff-Baym equations ' SURREY

g1y =it (1ha@) ¢>@ar) = —i(a(m)a’(’))

{. 9 Vi} < ’ — 5 < 347
i— 4+ L1 GgSa1) = /drleF(11)g>(11 )
8t1 2m

YHF :}.'——O

Evolution of non-equilibrium systems from general principles

Include correlation and memory effects, via self-energies

* Complicated numerical solution, but very universal framework

Already used in other fields.
Kadanoff & Baym, Quantum Statistical Mechanics (1962)

Danielewicz, Ann. Phys. 152, 239 (1984)
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Kadanoff-Baym equations ' SURREY

 Evolution of non-equilibrium systems from general principles
* Include correlation and memory effects, via self-energies

* Complicated numerical solution, but very universal framework

Already used in other fields.
Kadanoff & Baym, Quantum Statistical Mechanics (1962)

Danielewicz, Ann. Phys. 152, 239 (1984)
www.surrey.ac.uk 5/34



Collisions of 1D slabs fb uﬁEﬁS@'RTYOF

» Frozen & extended y, z coordinates, dynamics in x
+ Attemp to understand nuclear Green’s functions

* 1D provide a simple visualization

* Insight into familiar quantum mechanics problems
+ Simple zero-range mean field (1D-3D connection)

3 2
U(x) = —to TL(Z’) + ]‘-20'

1 ts [n(x)]

www.surrey.ac.uk 6/34



Mean-field evolution: implementation ' g’ﬂ’ﬁ'{ﬁ’f

« The mean-field is time-local

© Bpr(11') =6 (t1 — tyv) Sur(z1, 1)
© Only t; = t;, = t elements needed: G<(t1,t1/) = G=(t)
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Mean-field evolution: implementation g’“ﬁﬁsﬁﬁf

+ The mean-field is time-local
. EHF(lll) =4 (tl - tll) EHF(.’Bl,:Bll)
© Only t; = t;, = t elements needed: G<(t1,t1/) = G=(t)
+ Zero-range mean-field = KB egs. reduce to differential equation

2
i%g<(z,w/;t) = {—Li + U(I,t)} g<(z,z/;t)

2m Ox2

_{_ 1 82 +U(x’7t)}g<(x,x';t)

2m 0z'2
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Mean-field evolution: implementation ¢ SURREY

« The mean-field is time-local
. EHF(lll) =4 (tl - tll) EHF(.’Bl,:Bll)
© Only t; = t;, = t elements needed: G<(t1,t1/) = G=(t)
+ Zero-range mean-field = KB eqs. reduce to differential equation

2
i%g<($,w/;t) = {—La— +U(z,t)}g<(z,z/;t)

2m Ox2

_{_ 1 82 +U(x’7t)}g<(x,x';t)

2m 0z'2

+ Implemented via the Split Operator Method:

_id 2 At J 2 )\ At
Small At = G<(t 4+ At) ~ e {2m+U( ’} g g<(t)e+ { LA )} h

PR T o O
GT+DIAE | iGar iTAt 1S A | OrA
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Mean-field TDGF vs. TDHF %ﬁﬁsﬁﬁf

* MF-TDGF and TDHF are numerically equivalent...
* but expressed in different terms!

Time Dependent Green’s Functions Time Dependent Hartree-Fock

2

el 1 9
i—G<(z, 2’ t) ={ —— —— + U(2) p G (=, 23 1)
ot 2m dx2

fora=1,..., Nq

) 1 92

i—da(e, t) = ——— +U@) | dala,t)

N 52 ot 2m Oz

e + U)o 2’5 | ena
2m dz’2

* 1 equation ... N, x N, matrix

* N, equations ... vectors of size N,
* Testing ground

¢ Limited to mean-field!

* Extension needs additional assumptions

* Natural extension to correlated case via KB

www.surrey.ac.uk 8/34



Initial state and adiabatic switching ' SURREY

« Initial state should be ground state of the Hamiltonian
- Mean-field approx. = solve static Hartree-Fock equations

www.surrey.ac.uk 9/34



Initial state and adiabatic switching ' SURREY

« Initial state should be ground state of the Hamiltonian
- Mean-field approx. = solve static Hartree-Fock equations

» Possible solution: use adiabatic theorem!
H(t) = f(t)Ho + [1 — f(t)] H1

1, t— —o
f(t)_{ 0, t — to
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Initial state and adiabatic switching ' SURREY

« Initial state should be ground state of the Hamiltonian
* Mean-field approx. = solve static Hartree-Fock equations

» Possible solution: use adiabatic theorem!
H(t) = f(t)Ho + [1 — f(t)] H1

1, t— —o
f(t)_{ 0, t — to

+ Advantage: a single code for everything!
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Initial state and adiabatic switching ' SURREY

« Initial state should be ground state of the Hamiltonian
- Mean-field approx. = solve static Hartree-Fock equations

» Possible solution: use adiabatic theorem!
H(t) = f(t)Ho + [1 — f(t)] H1

1, t— —o
f(t)_{ 0, t — to

+ Advantage: a single code for everything!

* For practical applications:
* Hy & Hy with similar specira to avoid crossing
© Ho = 1ka®

© Hy = U

- Adiabatic transient: f(t) = W, T = 00

www.surrey.ac.uk 9/34



Adiabatic switching: practical examples ﬁ SURREY

N, =2 — A=8
1

U = fO 3k + L= FOIUm(e,t) = ()= 1o

www.surrey.ac.uk 10/ 34



den_adiab_w40.mov
Media File (video/quicktime)


Adiabatic switching: practical examples ﬁ SURREY

N, =2 — A=8
1

U = fO 3k + L= FOIUm(e,t) = ()= 1o
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den_adiab_w5.mov
Media File (video/quicktime)


Adiabatic switching & observables % SURREY

Adiabatic switching

E/A [MeV]

Wy
NS

w
=

Width, <[x|> [fm]

w

PR IR B
-1000 -800 -600 -400 -200 0
t [fm/c]
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Adiabatic switching & transient function %

Adiabatic switchings

[\
(=]
T

E/A [MeV]
o

T T T I T

— fo=1/1+"
—— Linear, f(t)=1-t/t _|
—— Piecewise parabola |

Width <IxI> [fm]

S
o0 \O (O8]

(=)

A T R B
200 400 600 800 1000

t [fm/c]
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Collisions of 1D slabs: fusion SURREY

p(ﬂ?, 1", P) _ eiP:cp(m7a:/, P = O)e—iPw/

p(z,z') = Z ba(z)dala’)

a<F

ECM/A = 01 MeV

www.surrey.ac.uk 13/34



denx1d2d_fus.mov
Media File (video/quicktime)


Collisions of 1D slabs: fusion ' SURREY
Ecy/A =0.1MeV

www.surrey.ac.uk 14 /34



den3x2fus.mov
Media File (video/quicktime)


Collisions of 1D slabs: break-up ' SURREY

p(ﬂ?, 1", P) _ eiP:cp(m7m/, P = O)e—iP;c/

p(z,z') = Z ba(z)dala’)

a<F

ECM/A = 4M6V

www.surrey.ac.uk 15/ 34



denx1d2d_fis.mov
Media File (video/quicktime)


Off-diagonal elements: origin SURREY

www.surrey.ac.uk 16/34



Off-diagonal elements: origin SURREY

pla,e) = Y dal@)dh (@)

a<F

Correlation of single-particle states that are far away

www.surrey.ac.uk 16/ 34



Collisions of 1D slabs: multifragment. ' g’“ﬁﬁsﬁiﬁF

p(&?, 1", P) _ eiP:cp(z7m/, P = O)e—iP;c/

p(z,z') = Z ba(z)dala’)

a<F

ECM/A = 25 MeV

www.surrey.ac.uk 17 /34



denx1d2d_mult.mov
Media File (video/quicktime)


Off-diagonal elements: origin SURREY

* Off-diagonal elements describe correlation of single-particle states

Na
p(z,z') = dalx)es (')

a=0

* Diagonal elements yield physical properties

, Na k2 ,
n(z) = p(z, 2’ =2) = Y nalda(@) K:Z%p(k,k = k)
a=0 k

www.surrey.ac.uk 18/ 34



Off-diagonal elements: importance SURREY

Conceptual issues:
* Should far away sp states be connected in a nuclear reaction?
* Decoherence and dissipation might dominate late time evolution...
* Are x # z’ elements really necessary for the time-evolution?

Practical issues:
* Green’s functions are NP x NP x N2 matrices: 20° ~ 10%
* Eliminating off-diagonalities drastically reduces numerical cost

www.surrey.ac.uk 19/ 34



Off-diagonal elements: cutting procedure@ SURREY

t=80 fm/c
20 0.25
10 0.15
£ o 0.05
x
-10 0.05
0.15

-20
20 -10 0 10 20
x [fm]

* How can we delete off-diag. without perturbing diagonal evolution?

www.surrey.ac.uk 20/34



Off-diagonal elements: cutting procedureﬁ SURREY

t=80 fm/c

20 0.25
10 0.15
£ o 0.05
B3
10 -0.05
20 -0.15

20 -10 0 10 20
x [fm]

* How can we delete off-diag. without perturbing diagonal evolution?

* Super-operator: act in two positions of G< instantaneously
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Off-diagonal elements: cutting procedureﬁ SURREY

t=80 fm/c

20 0.25
10 0.15
£ o 0.05
B3
10 -0.05
20 -0.15

20 -10 0 10 20
x [fm]

* How can we delete off-diag. without perturbing diagonal evolution?
* Super-operator: act in two positions of G< instantaneously

* Use a damping imaginary potential off the diagonal
g<(m’ z',t + At) ~ ei(a(:c)+iW(w,:v'))Atg<(z’I/’t)e—i(e(w’)—iW(w,:v'))At

* Properties chosen to preserve: norm, FFT, periodicity, symmetries
Ad hoc decoherence = How large unphysical effects?

www.surrey.ac.uk 20/34



. ~ UNIVERSITY OF
Off-diagonally cut evolution SURREY

ECM/A = 25 MeV

www.surrey.ac.uk 21/34



denx1d2d_cutuncut.mov
Media File (video/quicktime)


" UNIVERSITY OF

Cutting off-diagonal elements SURREY

Eq/A=25 MeV

3 L

=, of Tod ~ E
< |

o

d(t) [fm]
T G T

=
o
T

40
t[fm/c]

+ Total energy and different components are unaffected!
+ Integrated quantities appear to be cut-independent

www.surrey.ac.uk 22/34



~ UNIVERSITY OF

Consequences of cuts: irreversibility SURREY

What processes are sensitive to cuts?
Ecny /A = 25MeV

Uncut evolution, forward Cut evolution forward
& backwards |z — '] < 10 fm, uncut backwards

www.surrey.ac.uk 23/34



denx1drevirrev.mov
Media File (video/quicktime)


. &’ UNIVERSITY OF
Rotated coordinate frame SURREY

www.surrey.ac.uk 24 /34



. NIVERSITY OF
Rotated coordinate frame %URREY

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions
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Rotated coordinate frame % SURREY

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions
« Rotated coordinate frame: z, = 2£% z, =2’ —z
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Rotated coordinate frame 3 SURREY

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions

« Rotated coordinate frame: z, = 2£% z, =2’ —z
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. & NIVERSITY OF
Rotated coordinate frame %URREY

R R

S S S O S RS

1 a
el L 11 1
La

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions

« Rotated coordinate frame: z, = 2£% z, =2’ —z

Control lengths and meshpoints = (L, N,) X (L, N;)

www.surrey.ac.uk 24 /34



. & NIVERSITY OF
Rotated coordinate frame %URREY

R R

S S S O S RS

1 a
el L 11 1
La

« Traditional calculations performed on N, x N, mesh
+ Periodic boundary conditions

« Rotated coordinate frame: z, = 2£% z, =2’ —z

+ Control lengths and meshpoints = (L, N,) X (L, N;)

« Reduce numerical effort by factors of 2 — 10

www.surrey.ac.uk 24 /34



Traditional vs. rotated evolutions | SURREY
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den1d_Na200Nr50_25x25.mov
Media File (video/quicktime)


Research program 3 %ﬁﬁsﬁﬁf

Adiabatic switching

0——7——71 71 T

_10F "J;‘\‘
=5 fmc

8 ol o
= ——— 1=20fm/c | -2942
< 101 .- If30fm/c £
S0 SO | -

-30F .
33— — , :
E32f
231F A
Edhant Pia
B
B 291 =
228k )

-1000 -800 - -

A. Rios et al., in preparation.
* Used adiabatic theorem to solve mean-field ./
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UNIVERSITY OF

Research program SURREY

RS [fm]

-20
20 -10 0 10 20 -10 O 10 -20 -10 O 10 20
x [fm] x [fm] x [fm]

A. Rios et al., in preparation.

* Used adiabatic theorem to solve mean-field ./
* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/

www.surrey.ac.uk 26 /34




Research program %ﬁiﬁ'{ﬁf

Wigner distribution
t=0 fm/c t=30 fm/c t=80 fm/c

3 0.4
2 0.3
0.2
a1 0.1

Eo 0
x g -0.1
0.2
-2 0.3
3 0.4

20 10 0 10 20 -10 0 10 -20 -10 O 10 20
x [fm] x [fm] x [fm]

A. Rios et al., in preparation.
* Used adiabatic theorem to solve mean-field ./
* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/
* Identified lack of correlations in Wigner distribution ./
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Research program ’b SRRy

* Used adiabatic theorem to solve mean-field ./
Full (N2), damped & cut (N, x N,.) 1D mean-field evolution ./
Identified lack of correlations in Wigner distribution ./

Full 1D correlated evolution: Born approximation ~ ./

www.surrey.ac.uk 26/34



Time evolution beyond the mean-field

" UNIVERSITY OF

¥ SURREY

t tqyr
L _/dfleF(1i)}g§(11') :/ AizRA1)gS (1) + [ dizS(a1)gA(dr)
m to

to

<
I (1,175t0)

* Direct Born approximation = simplest conserving approximation

www.surrey.ac.uk 27 /34



Time evolution beyond the mean-field & QURREY

2 t tqyr
{_ii Vi /df-lEHp(li)} g5(11') :/ AizRA1)gS (1) + [ dizS(a1)gA(dr)
ot1 2m to to

<
I (1,175t0)

dp1 d

dp1 dpa
2r 2w
dp1 dp2
2r 2w

< <
S5 (p,tsp/,t) = p—p1)V (P —p2)G>(p1,t;p2,t" )15 (p — p1, t;p" — pa,t’)

< < >
15 (p, t;p',t) = G=(p1,t;p2,t" )G (p2 — ', t';p1 — p, t)

* Direct Born approximation = simplest conserving approximation
* FFT to compute convolution integrals

www.surrey.ac.uk 27 /34



Time evolution beyond the mean-field & g’{j’ﬁﬁﬁf

2 t tqyr
{_ii Vi /df-lEHF(li)} g5(11') :/ AizRA1)gS (1) + [ dizS(a1)gA(dr)
ot1 2m to to

<
I (1,175t0)

o rdp _
I7 (p1,ty;prv, ) =/ dt/% [£7 (p1,t1;5,8) — 2<(p1,t1;5,1)] G~ (P, &; p1s, t1r)
to
b fdp s _ <(s T >0 T
_ dt/EE (p1,t1;0,8) [G< (B, T p1r s t1r) = G7 (B, & p1v s )]
to
* Direct Born approximation = simplest conserving approximation
* FFT to compute convolution integrals

* Collision integrals = memory effects in 2D = (¢,t')

www.surrey.ac.uk 27 /34



Time evolution beyond the mean-field & g’{j’ﬁﬁﬁf

o 10-0 H{}) %
w5 o 10 |3

* Direct Born approximation = simplest conserving approximation
* FFT to compute convolution integrals
* Collision integrals = memory effects in 2D = (¢,t')

First benchmark calculation to get acquainted with methodology

www.surrey.ac.uk 27 /34



Two time Kadanoff-Baym equations SURREY

+ Time off-diagonal time elements are present

* Need of a strategy to deal with memory & two-times

- Use symmetries G5(1,2) = —[G5(2,1)]* to minimize resources
+ Self-consistency imposed at every time step

GY(t, T+AY)

G (T+Att)

t,

t
o T
Kohler et al, Comp. Phys. Comm. 123, 123 (1999)
Stan, Dahlen, van Leeuwen, Jour. Chem. Phys. 130, 224101 (2009)

www.surrey.ac.uk 28 /34



Strategy to solve two-time equations ' SURREY

b
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Strategy to solve two-time equations ' SURREY

to*i::::::t,
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Strategy to solve two-time equations ' SURREY
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Strategy to solve two-time equations ' SURREY

b

-0

t
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Strategy to solve two-time equations ' SURREY

t()#l‘\\\\t,
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Strategy to solve two-time equations ' SURREY
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Strategy to solve two-time equations ' SURREY

t()”##lllllt,

www.surrey.ac.uk 29/34



Strategy to solve two-time equations ' SURREY
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Strategy to solve two-time equations ' SURREY
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Strategy to solve two-time equations ' SURREY

b

t
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Strategy to solve two-time equations ' SURREY

>t
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Strategy to solve two-time equations ' SURREY

t
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Strategy to solve two-time equations ' SURREY
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b

e b
G<(t1, T+ At) = 206 (1, T) — " (1 - eifm) I (t1, T + At)

G (T + At ta) = G (T, ta)e ™2 — T2 (T 4 At ta) (1 - e7*81) !

GX T+ ALT + At) = 8 [67(T,T) = IF (T + At) — I3 (T + At)| e

* Time step N, involves 2N, + 1 operations
* Difficult parallelization due to inherent sequential structure
N Elimination schemes for time off-diagonal elements?
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Nuclear time-dependent correlations ' g’“ﬁﬁ'{ﬁ’f

+ Some experience already gathered for uniform systems
Danielewicz, Ann. Phys. 152, 239 (1984)

H. S. Kéhler, PRC 51 3232 (1995)

Expected physical effects
« Thermalization (0 < na < 1)

+ Damping of collective modes
+ Correlations in the initial state
+ Will a mean-field system evolve to a correlated ground state?
 Adiabatic switching on of correlations?
- Imaginary time evolution to get ground states?

+ Testing ground calculations: 1D fermions on a HO trap
+ No mean-field, only confining potential

+ Test with mock gaussian NN force
+ |ssues with cross section in 1D
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Correlated fermions in a trap SURREY
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Research program ’b SRRy

* Used adiabatic theorem to solve mean-field ./
Full (N2), damped & cut (N, x N,.) 1D mean-field evolution ./
Identified lack of correlations in Wigner distribution ./

Full 1D correlated evolution: Born approximation ~ ./
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1D 2D

* Used adiabatic theorem to solve mean-field ./
* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/
* |dentified lack of correlations in Wigner distribution ./

3D

Full 1D correlated evolution: Born approximation ~ ./

Lessons learned = Progressive understanding of higher D
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Research program | %NﬁEﬁS]'{Tﬁ)(F

Golabek & Simenel, Phys. Rev. Lett. 103, 042701 (2009)

* Used adiabatic theorem to solve mean-field ./
* Full (N2), damped & cut (N, x N,) 1D mean-field evolution ,/
* Identified lack of correlations in Wigner distribution ./

Full 1D correlated evolution: Born approximation ~ ./
LLessons learned = Progressive understanding of higher D

Ultimately: correlated 3D evolution
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Potential & challenges
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* Potential for applications in nuclear reactions & structure

» Microscopic understanding of dissipation
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» Potential for applications in nuclear reactions & structure
» Microscopic understanding of dissipation

* Response for nuclei including collision width
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Potential & challenges

* Potential for applications in nuclear reactions & structure
» Microscopic understanding of dissipation
* Response for nuclei including collision width

Multidisciplinary research: from quantum dots to cosmology!
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