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The nuclear many-body problem as an open quantum object
Generalities: Reduction of information

“Few” relevant degrees of freedom
-==\ needs to be selected (System)

lllustrations discussed here S~ - -

> Fusion reactions: the role of open channels (discrete and continuous)
System: collective space Env: intrinsic degrees of freedom
> The nuclear many-body problem

System: one-body observables Env: two-body and higher correlations



The nuclear many-body problem as an open quantum object

(i) Macroscopic reduction
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The nuclear many-body problem as an open quantum object

(i) Macroscopic reduction

Other collective space: deformation, mass/charge asymmetry ...



The nuclear many-body problem as an open quantum object

Open channels : discrete internal excitations

Internal
Excitation

One of the difficulty is to treat both discrete and continuous
channels in a common framework



The nuclear many-body problem as an open quantum object

Stochastic semi-classical treatment of discrete channels

Excitation Collective Motion + Coupling
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> Initial Phase-space sampling of zero point motion

> Classical dynamics of system+environment
With stochastic initial condition




The nuclear many-body problem as an open quantum object

Stochastic semi-classical treatment of discrete channels
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The nuclear many-body problem as an open quantum object

. Microscopic reduction
Mean-field:

(DFT)
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Courtesy to C. Simenel

Self-consistent

Mean-field
“Simple” Trial state: |®pr) = Iaf |0)
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Selection of few relevant degrees of freedom:
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Fusion reactions: macroscopic vs microscopic dynamics

Role of continuous channel: Disorder and Dissipation

Expected One-body origin of dissipation

-transfer of particle

1 -reflection of particles




Macroscopic reduction: dissipation

Washiyama, DL, PRC78 (2008).
Washiyama, DL, Ayik, PRC79 (2009). = Kinetic ~~
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Fluctuations associated to dissipation

Ayik, PLB 658, (2008).
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Application to fusion

G

Mean-field

< p TR — (ROR
dt ~  dR Y

Mean-field+Initial fluct.

iP)=_ d

U(R") — y(R*)R* + &5(1)

dt d R*
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What next?

Add standard Dissipation
(Markovian/Non-Markovian)

Semi-classical
Phase-space
dynamics

Incoherent Channels

A

.

Coherent Channels

Microscopic
one-body
dynamics

Add quantum
Fluctuations associated
To discrete channels



Part Il
Mapping many-body systems
To
Open quantum systems

Microscopic one-body space

' Macro. space
<Q1> (Q2 “ &




Dynamics beyond mean-field

Projection technique
Y. Abe et al, Phys. Rep. 275 (1996)

D. Lacroix et al, Progress in Part. and Nucl. Phys. 52 (2004)

Short time evolution

d
dt

d
1775/)12 = [Ame(1) + Amp(2), pra]

ith—p1 = [’&MF,Pl]+T7‘2 [")12,012]

+ (1= p)(1 = py)vizp1py — prpavia(l — py)(1 — py)

Correlation
Cia = p12 — (p1p2)a

Approximate long time evolution+Projection (Nakajima-Zwanziq)

d Dissipation (Extended TDHF)
ih—p1 = [hmr, p1] +Tr2 [v12, Ci2] d
dt ihﬁp = [hmr,p] + K(p)
C
with
Y 14 . . . .
Cho(t) = _%/ Uss (t,3) Fip (s) Ul, (¢, 5) ds +M DllsS|pat|on and fluctuation
to C

' th—p = [hur,p|+ K(p)+ 0K (p
projected two-body  Propagated initial dt [hat, p] ) )

effect correlation Random initial —1

condition



Dynamics beyond mean-field

ihp1 = [h1[]. p1] + $Tra [12, Ca)
with
1 t

Cl-) (t) =

) = | Una(t,s) Fia (s) Ul, (t,s)ds 4+ 6Co(t)
tg

1T

(I = p)(1 = py)viap1ps — prpyvia(1 — py )(1 = py)

Non-Markovian master equation
f

%n,\(t) = /dt'{n’,\(t') Wi (1,2 —my (1Y Wy (¢,1) }

to

Example: two interacting fermions

in 1dimension
4 I

1D

. 4

DL, Chomaz, Ayik, Nucl. Phys. A (1999).

Non-Markovian effects

Occupation number evolution
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Non-Markovian dynamics beyond mean-field

application to collective motion
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Non-Markovian dynamics beyond mean-field

application to collective motion
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Markovian limit, quantum-diffusion and stochastic Schrédinger Equation

GOAL: Restarting from an uncorrelated state D = |®q) (Pg| we should:

1-have an estimate of D = |U(¢)) (¥(¢)|
2-interpret it as an average over jumps between “simple” states

Weak coupling approximation : perturbative treatment
Reinhard and Suraud, Ann. of Phys. 216 (1992)

1) = 1860~ 5 [ sora(e)|B(e) ds— 5T ( I/ am(s)am(s’)dsds’) 18(s))

Residual interaction in the mean-field
interaction picture

Statistical assumption in the Markovian limit :

We assume that the residual interaction
can be treated as an ensemble of
two-body interaction:

{ (5’2}12 (S) =0
Sv12(s)6v12(s) < Fuiy(s)e= (=) /2"



Time-scale and Markovian dynamic

Mean-field time-scale
t HMF ~ cte t+Dt
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Average time between two collisions
Hypothesis : 7T & At & e

Average Density Evolution:
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Dissipation: link between Extended TDHF and Lindblad Eq.

One-body density At At
Master equation D= —|[Hyp, D] - i 5 [0v12, [dv12, D]
step by step ih 2h
Initial simple state p -
I 4 T
D = |<I>) <<I>| md_tp = [hmr, p] — WD(P)

p = Tala)(al with  (j[Dli) = (|[afa;, 000, dviz] )

2p-2h nature —_ N
of the interaction
_— ,’-|C~1{> D(p) = T’I‘2 [?)12, 012]

\ o)
\ —
A

- o) with  Ci2 = (1= p1)(1 — p2)vizp1p2
—p1p2v12(1 — p1)(1 — p2)
Separability of the

interaction w2 =Y 0,(1)0,(2) D(p) = > (AxAxp + pAp Ay — 2Akp Ar)
X k

® Dissipation contained in Extended TDHF is included
® The master equation is a Lindblad equation
® Associated SSE DL, PRC73 (2006)




Application to Bose-Einstein condensates

1D bose condensate with gaussian two-body interaction

N-body density: D = |N : a) (N : a|

SSE on single-particle state :

dt . dtt » o
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Self-interacting vs Open Quantum systems
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[> Towards Exact stochastic methods for N-body and Open systems



Self-interacting vs Open Quantum systems
Approximate and exact Quantum jump

Lindblad master Eq.

Lindblad master Eq. '
. . I

+quantum Diffusion |
|

|

|
+quantum Diffusion :
|
|

ps = |¢)(|

Gardiner and Zoller, Quantum noise (2000)
Breuer and Petruccione, The Theory of Open Quant. Syst.

(2002).
l Quantum Monte-Carlo (Exact)

Stoch. master Eq.
+ quantum Diff.

Stoch. master Eq.
+ quantum Diff.

' D= ps ® pE
' ps = |91) (P2

(G. Hupin talk) e e - - )




Mean-field from variationnal principle

More insight in mean-field dynamics: Included part: average evolution
. ., d(4.) t Ehrenfest
Exact state Trial states = = (o, H]) - 2 on

1Q(1))
[P(1)) —) ‘ . il
{IQ + 0Q) = eza"qaﬁ«‘@ H=PH+(1-P)H

The approximate evolution is obtained
by minimizing the action:

Missing part: correlations

dQ) = Y _dgaAa |dQ) = ;,%'Pl(t)H Q)

Q

S = / ds(Qlihd, — H|Q) i1 200 4 (4, 4, m)

J 1y dt

Hamiltonian splitting

HIP]H—T'-(I —Pl)H

Relevant degrees System Environment

of freedom
-field

Complex
self-interacting
System

The idea is now to treat the missing information
as the Environment for the Relevant part (System)




Existence theorem : Optimal stochastic path from observable evolution

D. Lacroix, Ann. of Phys. 322 (2007).
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evolves exactly over a short time scale.
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illustration: simulation of the free wave spreading with “quasi-classical states”

Hy = ho(ata + 1) He i’_- s ﬁ:’ (a* — a)?
/ 2m
=0
5 1 #n,
2\ 1 - _mw 2y~ %2
() = 2 ~it ey ) 2n s e

Reduction of the information: I want to simulate the expansion with Gaussian wave-
function having fixed widths. (z*) =cte, (1) =cte

— AN

Trial states

Mean-field evolution:

v

Relevant/Missing information:

Relevant degrees
of freedom

(z), (p) (@), ("), (xp) 1 Coherent states

(a*), (a) (a*?), (a?), (a*a) jor + dor) = e |x)

Missing information 000 = eZ;’”r*’ﬂ 0)



Guess of the SSE from the existence theorem

Stochastic c-number evolution
from Ehrenfest theorem

Densities do = da + d&?,
o) (B (B+ dp| = (ple { df” = df" + dn®
D= Bl with 2+ dor) = e | mean values ‘ fluctuations
d{a) = da d((T) = 2ada + dE2ldEl]
d{a*t) = dp* d{a+?) = 28*dB* + dnyPdnR]
— X

Nature of the stochastic mechanics

TR U {XVEW+ﬂW {¢¥=£m+dm

Y S P=ih/}(F ~2) dP = dx,,
+~
) S
Wl"'h dZI de —_ = dt

\ 0 D
".AMA;X

the quantum wave spreading can
1 2y _ 1 2
Tr(Dx) =5, + X be simulated by a classical brownian

1 motion in the complex plane

5 1 Wn,
—/_\bx Tr(Dx'):—-+-lt'

2y 2m?




SSE for Many-Body Fermions and bosons

D. Lacroix, Ann. Phys. 322 (2007)
STGI"Tng pOinTZ H = Z i\T|j)a) a; + = Z (ijlvi2|lk)a; a aa Observables U'pl |1> — <ai| a‘j>

2 ijkl

Dy = |@a) (Ps|  with (@4 | ®,) =1
pr=>_ | (Bl

Ehrenfest theorem wmp BBGKY hierarchy Stochastic one-body evolution

Fluctuations (ij|p\,|kl) = (a; a; a;a;)

ih g p1 = [hmr, p1l, dpr = [hwmr, /)1]
= P1 = |AmF,
dt 1 1 V12 = Z Ox(1)Ox(2 n Z df (= )00 Z (1r, o0

s
1755/)12 = [Ame(1) + hme(2), pys)

it
+ (1= p)(1 = pa)viapipy = prpavia(l = p)(1 = o) with dlae) = —andland = sz

® The method is general.
the SSE are deduced easily

mm) extension to Stochastic TDHFB
DL, arXiv nucl-th 0605033 but. ..

® The mean-field appears naturally
and the interpretation is easier

0.2 .
“two-level sys’ren)r ungfable
rajlectories

Bosons

e the numerical effort can be
reduced by reducing the number
of observables

Occupation probability




Summary, stochastic methods for Many-Body Fermionic and bosonic systems

Approximate evolution

Mean-field Simplified QJ Generalized QJ Exact QJ I variational QJ
= |®) (D] D = [®,) (®] D = |®) (| = [®,) (®,] I D=101)(Q:]
| Q1) = a1, an)
Fluetuation Fluctuationy” Fluctuation vy _ Partially
—Bissipation- —Dissipation Dissipation v Everything v/ everything v/

Numerical issues
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