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Time-dependent Schroedinger equation
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Time-independent treatment
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Time-dependentapproaches

Solve equation with scattering boyndary condition
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Observables: cross section, etc.




Why time-dependent?

e \Wave-packet dynamics provides intuitive picture

e NO need for scattering boundary condition
Advantage for complex systems: non-spherical potential, 3-body reaction, ...
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e Full spectral information from single wave-packet dynamics

Two topics with time-dependent method

1. Three-body reaction of halo nuclei
2. TDDFT studies



Fusion reaction of halo nuclel

A real-time wave-packet method for
three-body tunneling dynamics

Time-dependent approach to guantum dynamics
In low-energy reaction
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Fusion reaction in terms of flux loss inside a Coulomb barrier

Time-independent (radial) Schroedinger equation for I=0

Eu(r,t):{—%:—;+V(r)+iW(r)}u(r,t)
V(r) G U (1)
> uout(r)

Flux absorbed by W(r)
iW(r) represents fusion.

We need to take account of a boundary condition at r - o ,
when solving the differential equation.

Time-dependent (radial) Schroedinger equation for |=0

n2ulr.)- —%:—;+V(r)+iW(r)}u(r,t)

Use of wave packet does not require a boundary condition.



Wave packet dynamics of fusion reaction
potential scattering with absorption inside a Coulomb barrier

Radial Schroedinger equation for [=0

ih%u(r,t): —%:—;Jrv(r)ﬂw(r)}u(r,t)

with incident Gaussian wave packet

10Be-208Pb (A,Z=10,4 and 208,82)

u (I’ , tO ) — exp\-— |k|’ — 7/ (r — rO )2 J V0=-50 W0=-10, RV=1.26,RW=1.215, AV=0.44, AW=0.45

E_inc=28 MeV (+Coulomb at R_0), R_0=40fm, gamma=0.1fm-2
Nr=400, dr=0.25, Nt=10000, dt=0.001
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Wave packet dynamics include scattering information for wide energy region.
Then, how to extract reaction information for a fixed energy?



Extract static (fixed-E) information from wave-packet dynamics:
define energy distribution
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Fusion probability

I:)fusion (E) — Pinit(E)_ I:)final (E)

Pinit (E) ] differential. eq. (static cal)
— wave packet method
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Fusion probability for whole barrier region from single wave-packet calculation.
No boundary condition required in the wave packet calculation.



Fusion probabillity of three-body reaction
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Case (1): Tightly-bound projectile

3-body dynamics
Tightly-bound projectile (E,=-3.5MeV)
(n-10Be)-40Ca

Initial wave packet:

u, (R,1t,) =6, exp[— iKR - (R - RO)ZJUO(F)

neutron or proton
N
A
7

Head-on collision (J=0)

p(R,r,t)= jd(cos@){w(R, r,o,t) p(r,0,t)= de\t//(R, r,o,t)
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Enhancement of fusion probability at sub-barrier energies



Transfer probability and Q-value matching

Ep = - 3.5MeV £
;

Projectile I Target Change n-T potential depth

E ~E Strong mixing of projectile-target orbitals,
P =~ =T large transfer probability
energy-dependent barrier for fusion
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Case (2): Weakly-bound projectile (Neutron-halo)
y

n-C orbital energy: -0.6 MeV (Halo)

neutron
N
A
7

11Be(n+1°Be)-"8Pb

head-on collision (J=0)

p(R,r,t)= jd(cos@){w(R, r,o,t) p(r,0,t)= de\yx(R, r,o,t)




Fusion probability of neutron-halo nuclei is suppressed
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Why different from other studies?

Fusion Probability

1.0 T T T T . .
— 2-body (10Be-208Pb) Conclusions of other studies
= Coulomb+Nuclear, 1<=70 . .
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We need to include high-partial waves for n-1°Be motions.

The low-partial-wave truncation leads to an opposite conclusion!



Fusion Cross Section of 11Be

Fusion cross section ( mb )

Three body full calculation of "Be +

209 -
Bi

-
o
w

-
o
N

—
o_\

10 209 -
Be + " Bi

36

48

Fusion probability is hindered
by the presence of the halo neutron

neutkon
. O
10Be R
209B;
Experiment
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Fusion cross section of eHe+238U

Di-neutron model for *He=*He+(2n)
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®He + 238U R. Raabe et.al, Nature 431(2004, Oct.) 823

Calculation: 12 16
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Phys. Lett. B 637, 53(2006)



Fusion cross section of 1°C+144Sm

Fusion Cross Section ( mb )
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11Be-208Ph fusion probability

Comparison between
Proton halo (p-19Li) -298Pb
and Neutron halo (n-1°Be)-2%8pPh
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Strong enhancement of Fusion Probability for Proton-Halo case



Summary

Time-dependent approaches to quantum
mechanical problems

— Gross properties over a wide energy range
— Continuum boundary condition
Three-body nuclear fusion problem

— Accurate calculation within the 3-body model

Electronic TDDFT dynamics coupled with
classical ionic dynamics
— Dynamics under strong laser pulses suggest that the

energy transfer from electrons to ions strongly
depends on the pulse duration



