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1) Embed an open system in a larger wavefunction

2) Embed a unitary evolution 1in an open system
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Principles of coherent control

Constructive interference in the desired channel
and destructive interference in all other channels
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Principles of coherent control: ground state
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Principles of coherent control: Excited state
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The problem of weak field coherent control

A necessary condition is at least two indistinguishable pathways

If the target operator P commutes with H , [P,H]=0
then weak field phase only control is impossible
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The problem of weak field coherent control

Experimental evidence for weak field phase only control
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Coherent Control of Retinal M -
Isomerization in Bacteriorhodopsin

Valentyn I. Prokhorenko,® Andrea M. Nagy,® Stephen A. Waschuk,? Leonid S. Brown,?
Robert R. Birge,® R. ]. Dwayne Miller™

Fig. 6. Energy dependence of (A)
the AA signal, measured at 630 nm
20 ps after excitation, and (B) the
corresponding isomerization yields.
Both plots show results for the op-
timal (red), anti-optimal (black), and
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transform-limited (blue) pulses. A 0.5

quadratic fit (solid lines) shows the B

energy dependence to be essentially . i 0 .
linear at low energies, with a small 0 5 10 15 0

N 1 1
deviation (due to saturation of the excitation [nJ] excitation [nJ]
absorbance) of less than 18% at the
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The problem of weak field coherent control
of = Experimental evidence

'} Comment on “Coherent Control of
Retinal Isomerization in
. _— 1,2
Bacteriorhodopsin Manuel Joffre
g{ - Prokhorenko et al. {Rese:a-rd'n Articles, 1 September 2006, p. 1257) reported that, in the weak-field
i regime, the efficiency of retinal isomerization in bacteriorhodopsin can be controlled by

modulating the spectral phase of the photoexcitation pulse. However, in the linear excitation
regime, the signal measured in an experiment involving a time-invariant, stationary process can be
shown to be independent of the pulse spectral phase.

Response to Comment on
“Coherent Control of Retinal
Isomerization in Bacteriorhodopsin”

Valentyn I. Prokhorenko,* Andrea M. Nagy,® Stephen A. Waschuk,? Leonid S. Brown,?
Robert R. Birge,® R. ]. Dwayne Miller™

Joffre attempts to show that the linear response of any quantum system to an external perturbation
is phase insensitive, but he uses incorrect mathematical assumptions, misinterprets the time
invariance princple, and ignores causality. We argue that the opposite case—an explicit phase
dependence for a signal measured in the linear excitation regime—can equally be shown using
Joffre’s approach and assumptions.
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The problem of weak field coherent control
of = Experimental evidence

] Quantum control experiment reveals
solvation-induced decoherence

et e e P. van der Walle?!, M. T. W. Milder?, L. Kuipers®®, and J. L. Herek®-1 C
o I — 7714-7717 | PNAS | May 12,2009 | vol. 106 | no. 19 £ [Linear wea e | .
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Model system

) H, Age(t) 0

Energy(au)

Hs = [ fAye)
0 Va
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is the surface Hamiltonian k = {g,b,d}

fi,,(7) represents the transition dipole operator

e(t) represents the time dependent electromagnetic field

Vbd(r) fepresenté the non-adiabatic potential SySte m bath CcOu p I | n g
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Reduced dynamics
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How to describe the bath?

1) Correlated system bath initial state P07 PS®Py

2) Non Markovian description p;ﬁ L (P)

3) System bath coupling is influenced by the external field.

Solution: Surrogate Dynamics

embedding the system in a larger Hilbert space
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Wavefunction descriptio

H=HS+H1|11;+HB ’ H=Hs+ﬁim‘+ﬁ]3
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" The surrogate Hamiltonian approach

If our measurements apply
to system operators A= As®ls For sufficiently short times

— . _ we can dilute the sepctrum
(A)=tr{ps A} where ps—tr{pse} of the bath Hamiltonain

Then we look for a compact bath Hamiltonain
which generates an equivalent system dynamics
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Il Weak coupling limit

I The surrogate Hamiltonian approach

Interface
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HI Discrete bath approximation

[ Hint =f(R) ZUm (BHI+BE1)

Hg = EEmB;::Bm

Renormalizing u‘
: the interaction
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Representative bath modes




JV Alternative spin bath representation

Representative bath modes

Interface .y

System

Hs =T +V5(R) [HB — EEJGJGJ +ZAJKGJG];J

[ Hint =f(R)ZKj(G}+GJT)iaer, Zeiri & kosloff PRB 55 10952 (199]
u a997)




' Vibrational relaxation

._.
~

o
£
%
o
(=1
o
=
8
172]
&




\

Vibrational relaxation

time, 211/0)0
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Vibrational relaxation
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The problem with the Surrogate Hamiltonian method

The simulation cost grows exponentially with the time scale

System bath entanglement and bath—bath entanglement grow without bounds

Solution: Extending the time scale to equilibrium

adding a stochastic layer = secondary bath

Gil Katz, David Gelman, Mark A. Ratner, and Ronnie Kosloff
Stochastic surrogate Hamiltonian J. Chem.Phys. 129 034108 (2008).
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'V Replacing the bath modes Hr=Hs+Hz+Hp+Hss+Hep’

Secondary Bath
Primary Bath
it et
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Swap operation
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Homogenizer

Ps(1) =Tt { Ups(0)®GBU'}
PsN) =Tr{Ux.U,Ps(0)@0BU} UL}

Swap operation: S|I|I>®|q)> =|q)>®|1|f>

Partial swap operation: P(n) = cosm) 1+ Sl'll(n)S

Ziman M, Stelmachovic P, Buzek V, Hillery M, Scarani ¥V, Gisin N , Phys. Rev. A 65, 042105 (2002)
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Decay nf an ﬂsmllator to a bath

J{w) = Mryw 9 bath modes | N=6
00135 N-9
H=l2

— — MN=L3
= 12 bath modes T~
2 -0.016
o
[

0.0165

15 bath modes + swap 9 bath modes + swap
-0.0175 L '
2000 4000 6000
JCP 129, 034108 (2008) Time(fsec)




Cooling to thermal
equilibrium

Coordinate representation
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Approaching thermal equilibrium 9 bath modes+swap
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The ratio between energy and phase relaxation 11/12

The ratio between the primary and secondary rates of energy transfer
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Convergence properties of the stochastic surrogate Hamiltonain
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Wavefunction description

1) The Surrogate Hamiltonian method is a consistent
non-Markovian system-bath reduction.

It can deal with
Finite temperature bath.
Problem: good for only short time dynamics.

2) The stochastic secondary bath extends the timescale
up to equilibrium.

The swap operation limits the growth of entanglement.
Classical limit induced by noise.
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The problem of weak field coherent control
Y Phase only control

Y

The bath introduces a new time scale

g{ T

Energy dissipation time scale T1

Phase loss time scale T

This time scale should be compared to the nonadiabatic time scale h/V |,




Model system for weak field control phase only control

Target: change the branching ratio on the excited state
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Phase only control with relaxation compared to free propagation

=
n

With relaxation

=

&
$|

|
!
e
!

3

4

[~

04} ®

b5 i \Q

2035F e ——— 0 — - R A O -

s | M

o

= 0.3F 9\@.

2 i @~ — g

£ 0.25F e

E _

m I [ I [ ] I [ I
0.2 0.5 0.5 I

|
0
£ Chrip rate




population on excited states

Population dynamics
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The influence of the bath: different system—bath coupling
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Weak field coherent control
Phase only control is possible!

vibrational frequency v=940 cm-! , Vva/h=40cm-!

T The bath introduces a new time scale T1=500fsec
L

Negative chirp is optimal: t =12 fsec, wi=1.38

A turnover: optimum system—bath coupling

/

We have more control in an open system




Efficient simulation of quantum many particle dynamics

‘Basic facts:

1) The computational effort of a
scales with the size of Hilbert space.

2) The size of Hilbert space scales exponentially with the number

of degrees of freedom.
\_ J

( )

Quantum computing

Exploiting the inherent parallellyism in quantum interference

The best example (Feynman):
Simulate one quantum system by another

reduction of exponential complexity
. .




All or nothing approach:

If we know the wavefunction W(rir2rs3,...,...,'n,t)
at all times we can calculate the evolution

of any observable (B) = (V|BIW)

Now ' obeys the time dependent Shrodinger equation 177 W = HW

with solution 'V (t) = —1/hHt WY(0)

The computation resources scale as D

where D is the size of Hilbert space |D = dN
and O is larger then 1.
N number of particles
Nrect solutions become prohibitively expensive!




The Problem: T'unneling Hamiltonian for N

bosons

H= ©.N.4+0sNit+A(ath+bia)+u(Ne+Nz)

single particle inter—particle
tunneling term interaction



What is the # of states?

We define Jy _ _2_11 ( atb—b a)
Jz =%(3Ta—b*b)

and the total number of particles is conserved

Then: 2
H= - JX +g Jz

N =Na+Nb

The # of states

= size of Hilbert space

D=N+1

is the effective many body non linear Hamiltonain



Definition: Zero order scaling

The simulation of dynamics of a Lie subalgebra of observables
is efficient if and only if the necessary memory and the CPU resources
do not depend on the Hilbert space representation D.

A dynamical simulation may be possible if we limit our scope

We will be interested only in a limited set of dynamical observables.

Example: for the Hamiltonian H= 0}, J X

we can solve Heisenberg equations X =i|H,X] for the the set J X J Yo Jz

Jx=1i/h [HaJX] = 0 We get a closed set of 3
. , coupled linear equations
J v=1/h [H ,J y] = — Wz independent of the size

of the Hilbert space
=1/h [H,Jz] - (DJy



What can be done with a non linear Hamiltonain?

_ 2
H= (DJX+%JZ

The H2eise§1berg equations of motion include all powers of operators

Jx . Jx, Jx .. and combinations JxJy . Jfoz,
and we obtain D(D—1) coupled equations of motion.

If we start with the state (all particles in the left well)
Y(0) =|—}) after a short time:

(t) = exp{-i/h Ht } ¥(0) = X Ci )
and Ci has amplitude forall k

In general for H=Ho+H:, If the commutators:
Ai1=[Ho, Hi1] , A2=[Ho. [Ho,H:1], As=... generate the full Hilbert space
The computational problem becomes prohibitively expensive!

If we limit ourselves to the dynamics of {(Jx) ,{Jy ) (Jz)» then ..



Surrogate Dynamics

An equivalent dynamics which preserve the
original dynamics of (Jx).(Jy).(Jz) but are easier to solve.

Information on other expectation values may be lost!

Embedding the unitary dynamics in a non unitary
open system dynamics.

Replacing Schrodingers equation: i all =Hwy
ot

by the Liouville von Neumann equation

d_p ——i[H,p] + Lo (p)




Surrogate Dynamics

We need to solve three problems:

1)What is the open system dynamics that preserves the dynamics
of the expectations (Jx) ,(Jy ), (Jz) ?

2) Can the open system dynamics limit the growth of the representation?

3) Ho to solve the Liouville von Neumann equation without using
a density operator?



Surrogate Dynamics
We start with problem 3

d -
Ho to solve the Liouville von Neumann equation —p =1 [H ’p] T LD (p)

without using a density operator? dt

where L (p) is Lindblad form VpV 1= 12{v TV p}

Gisin,(PRL 1984) Percival, Diosi .. developed a
Stochastic Non Linear Schrodinger Equation (SNLSE) where:

oy = {-i Halt + (F((V))dE by
where <§J> =0 and <EAJ E,»k> = Sjk’y dt

and the density operator () is the average of stochastic realizations

p(t) = 1/NZ‘\|I|><\|I|\ ~ when N—seo

This realization is not unique !



Surrogate Dynamics 2y Can the open system dynamics
moving to problem 2 limit the growth of the representation?

|dea: Aplying a measurement of the operator A
collapses the state of the system to an eigenfunction of A

We employ the theory of weak continuous measurement, (Diosl)

causing partial collapse.
This process can be described by the Lindblad semigrop generator:

Lo(p) =—v[A [Ap]]

Specifically collapsing on to the submanifold

Lo(p) = =v( [ Ix [3pll+[ Iy, [I.pI] +1 v, [IvpIl)

This is realized by the sSNLSE

dy = {-i Hdt — ’Yig(\]i—<\]i>w)2dt +é(\]i—(\]i>w)d§j}\|l



Surrogate Dynamics
lets solve problem 1:

1)What is the open system dynamics that preserves the dynamics
of the expectations (Jx) , (Jy ), (Jz) ?

Analogy with pure dephasingL (p) :—i[H,p] — Y [ H, [H,P]]

The dissipator does not change energy
The Heisenberg equation of motion:

X = iHXI7809, BX]] HE -0 dor U3,

The eigenvalue of the linear part:Y(t) = exp( (-1 ®w—Cy)T)
Therefore when Y C << ® the dynamics of Jj is not affected

We have a competition between localization caused by the d|SS|pator
and dispersion on all states caused by the non linear term J

How can we exploit this property?



Generalized Coherent states (GCS)

Choice of time dependent basis functions xn

Looking for the states with minimum uncertainty with respect

to the operators of the algebra: A (\P) :<AJ§<> +<AJ§/ -+ (A.Jzz>
— <-sz + y+Jzz> _( <Jx>2+<Jy>2+ <Jz>2)
Generalized purity: P(y)=( (JX>ZW+(Jy>2\|,+ <Jz>2\|1)
Casimir C= Jx+Jy+J: (C)=j(j+1)
Maximum purity = Minimum uncertainty

The purity is invariant to a unitary transformation U (rotation)
generated by the group U= exp(-i ((odx +BJy +yJz))

P(y) =P(Uy)



Generalized Coherent states (GCS)
Choice of time dependent basis functions yn

Xn=UnVW, =12 8 N non—orthogonal basis states

Any matrix element can be calculated within the algebra.
.l.
for example: (¥ n|Jy [y, = (WoUn[dy Uy

The computation complexity is independent of
the size of the Hilbert space.

We start by creating a uniform distribution of GCS: Yn
. . -l
We find the overlap matrix S, :<Xn IXm> and invert it S

We can either move the basis functions (, or the operators
by a global time dependent unitary operator

U(t)=exp(=i (a()Ix +B1) Iy +(t)Jz))



Generalized Coherent states (GCS)

The global stable solution of the Stochastic Schrodinger equation
Khasin &Kaosloff, JPA 41 (2008) 365203

X = i0[J, X]=7ZL 3 [BXI]

Superposition initial state
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Surrogate Dynamics
Efficient simulation of quantum evolution using dynamical coarse graining

Khasin & Kosloff PRA 78 (2008) 012321

Expanding the wavefunction with time dependent GCS functions:

M
y(t)= ;ci(t) U)o

Efficient simulation is obtained if M does not depend on the size

of the Hilbert space ~] e fing M=(2j+1)(1-VP) =

generalized purity PEU[E}[W]

—4

=
oo
T

0.2f

15
time (in units of w™")

22.5

P the purity
2 2 2
<\JX>\|I +<Jy >\|I+ <\J Z>I|J

When the Hilbert
space increases the
# of expansion
states M decreases



A Tunneling Hamiltonian Surrogate Dynamics

N= 20 000 particles

2000 stochastic realizations
Size of the expansion M=60

decreasing values of Y

H= (DNa+Q)Nb+A(aTb+bTa)+U(NaJ2rNb)2:—00 Jx + HJE

1

=
iy

U/2m=1

S

W70 yand P o [yl
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A Tunneling Hamiltonian Different values of the
Inerparticle coupling

H=-w J, +%.JZZ

change in tunneling dynamics at U/2m=1
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Surrogate Dynamics
Analysis: Breakup of mean field solutions
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Surrogate Dynamics
Analysis: Two individual realizations of the SNLSE

At short times thee is no difference in dynamics
At longer times the dynamical events appear at different times.
Averaging deceases the purity
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Surrogate Dynamics Generalization

1) The observables (Xi) are a member of the set { Xi}
forming a Lie algebra.

2) The Hamiltonain has the form:

H= Z aj X +Z bijij+Z Cikik Xj Xk XI+....

3) L=-ilHpl+Lo() Lo ==1X [X. DXipll)
non unitary dynamics

dy = {-i Hdt — Yé(Xi-(Xi)w)zdt +§(Xi—<Xi>w)d§j}\|f
SNLSE where (&,J) =0 and <E_,J Ci = Oy dt

4)  y(t)= Zc ) U@w)d; ¢ generalized coherent states GCS

hasis set maximizing the purity, |P = Z(X,)



Surrogate Dynamics

Flowchart

Selected observables (Xj)

GCS X& |Q,y,) Fictitious Bath
representation —v2[Xi5,[Xi, pl]

Simulating the bath by
the stochastic non—linear
Schrodinger equation for vy,

The # of basis functions M
IS much smaller than N
N=20000 M~60

The # of realizations
Is determined by the
dispersion or purity

| | Averaging
Uil E@”N (Xip=Xi)st = n 2<\|fk‘xl‘\|fk>




Thank you

A







Coherent control in the context of many body dynamics
U 2
H=-0(1) J,+LJ;]

Mathematically our many body Hamiltonian is compleatly controllable.
This means that there exist an external field w(t) that will lead the system
from any initial state to any final state.

Moreover the control can generate any unitary transformation U

We found that when the size of the Hilbert space increases
the only possible state to state control is between GCS states.

Control between states that are not GCS become

extremaly sensative any noise in the control (0(t) will collapse
the system to a GCS!

This fact could severely restrict the possibility of quantum computing.



Semiclassical viewpoint

Y= C(T,T*)E_TJJ’\—j) T=C0S 0/2 ¢

~i0

7 -1

T+ 1

)

S T+ T 27— 1
H(r, %) = <*.-:r H e> = —w] - U
(r7") = (i) =~ T 2220
g W 27 — IT]* -1
—iF = ——(1 — 7° .
iT 2( ) + > {J 11
The unstable fixed point  H(—1,—1) = wj.
.. _ 29 —1
The initial state chosen is T=0 H(0,0) = J L.

ul

The initial state is unstable if: H(—1,—1) = H(0,0),

Then: v 2

1
= =1+—+40(j?), ~1
2w 2j—1 +2J+(( )




Stochastic version of the mean field solution:

SU{E}[w]

><J>and P

<J > </

O
n
T

. o1 2 _
. [ L -'—'j — ]- ' |T| ]'
dr = id{ —=(1—7%) + Ur— dt
{ 2 2 T|*+ 1

1 , L,
+ (L= 7)dG + (14 7%)dE, + TdE.

< g‘f&z =— (), :’]!:E!drfj. — 2"‘.. I!i;g_j:ﬂ{t.

Z
o

>=-0.5

X
I
'

time in units of @~
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