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One-dimensional quantum tunneling is simplel
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What we do:
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M = M - V(R) + Ho(q) + Vint(q. R)
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Sometimes it is easier to think of an idealized
problem...










Calculating the fusion cross-section:




Eigenchannels, assume Hy<«< E
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Eigenchannels, assume Hy<«< E
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Subbarrier Fusion - Experimental Observables
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One-dimensional Model
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Classical versus Quantum Tunneling
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What may be missing from coupled-channels calculations?
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But in a practical
coupled-channels > n)nl <1
calculation we have states included




An outstanding question: Why is the diffuseness for both
fusion and quasi-elastic scattering equal to 1.5 to 2 times
the diffuseness for elastic scattering?
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For asymmetric systems Coulomb force is relatively weaker;
hence the tail of the nuclear potential can "turn over” the sum,

forming the barrier at a relatively large separation:
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On the other hand for symmetric systems Coulomb force is
relatively stronger; hence it takes more of the nuclear
potential to "fturn over” the sum, forming the barrier at very

close separations:
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Another example: Neutrino Oscillations in
fluctuating electron background
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(NE(r)NE(r')) = B2 Ne(r)Ne(r") exp(—|r — r'| /7c)



Does the solar density
fluctuate?

Electron Neutrino Survival Probability with Fluctuations

Effect of KamLAND on

0,,= /6

-~ I 1 T l

1 1 | 1 L 1 | 1

0 0.025 0.05 0.075

llll 1 1 Jllllll 1 1 Lol L L1l B

107 10 10°
2 2
6m; /E (eV'/MeV)

Balantekin and Yuksel,
PRD 68, 013006 (2003)



Solar data only

Fluctuations
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Solar + KamLAND
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Another example: Neutrino Oscillations in
fluctuating electron background
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A Simple Model of "Environment” - Balantekin & Takigawa
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Note that the strength distribution is not Ohmic: J(w) = nw




Subbarrier Fusion of °Li with 79Zn
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Could °Li be capturing two neutrons from
70Zn prior to tunneling since !lLi is also
stable?

Add a small potential to describe this
two-neutron transfer:
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Questions

* For asymmetric systems the barrier is outside the region
where nuclei touch. Multidimensional barrier penetration is
conceptually well-defined. Do we really understand the
fusion of such nuclei? What is the large diffuseness telling
us?

* What happens when nuclei fuse at energies well-below the
barrier? What physics does the very shallow potentials
needed to fit the data mimic?

* Do we understand how we should theoretically formulate
the fusion of unstable nuclei? What can we learn by
studying fusion of nuclei off the line of stability?

- We need data for the fusion of exotic nuclei, both below
and above the Coulomb barrier. Such data would open a new
chapter in the study of multidimensional quantum tunneling.



