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1 Perturbation Theory

1.1 Green’s function methods

Integral solutions of inhomogeneous equations

Suppose the potential term in a Schrödinger equation is composed of two parts Uc and V . The solution

[T + Uc + V − E]ψ = 0 (1)

can also be found by solving

[T + Uc − E]ψ = −V ψ
or ψ = [E − T − Uc]−1V ψ (2)

This might not seem much of an advantage, since ψ is on both sides of the equation, but once this
operator G+ = [E − T − Uc]−1 is found, we will be able to make different approximations for ψ in its
two occurrences, and this will prove to be very useful.

If we write a source term as S(R) = V ψ(R) , then we have to solve the inhomogeneous equation
[T (R) + Uc(R)− E]ψ(R) + S(R) = 0 .

The outgoing-wave boundary conditions are

ψ(R) =
i
2
(H−(R)−H+(R)S) = F (R) +H+(R)T . (3)

The T and S matrices are related by S = 1 + 2iT since H± = G± iF .

Definition of G+(R,R′)

Let us use Green’s function methods to find the outgoing solution of the linear equation[
d2

dR2
− L(L+1)

R2
−Ŭc(R)+k2

]
ψ(R) =

2µ
~2
S(R) , (4)

where Ŭc(R) ≡ 2µ
~2Uc(R).

The desired solution is a superposition of all the G+(R,R′) with amplitudes corresponding to the
magnitude of the source term at R′, namely 2µ

~2 S(R′). This gives the wave function in terms of the
integral expression

ψ(R) = F (R) +
2µ
~2

∫
G+(R,R′)S(R′)dR′ , (5)

where we have added in the homogeneous solution F (R). This equation is often written more com-
pactly in operator notation

ψ = F + Ĝ+S , (6)

2



where Ĝ+ is defined as the Green’s integral operator that has the kernel function 2µ/~2 G+(R,R′), and
where F is the homogeneous solution. Furthermore, because Ĝ+S is the solution ψ of the differential
equation [E − T ]ψ = S with T the kinetic energy operator, the Green’s operator with the ‘distorting’
potential Uc can be written as

Ĝ+ = [E − T − Uc]−1 (7)

with the specified outgoing boundary conditions. Eq. (6) can also be written as

ψ = F + [E − T − Uc]−1S . (8)

We now specialise to Uc being the point Coulomb potential

Uc(R) =
Z1Z2e

2

R
. (9)

To find G+(R,R′)

We know F (R) and H+(R) as the the regular and irregular solutions of the Coulomb equation[
d2

dR2
− L(L+1)

R2
− Ŭc(R) + k2

]{
F (R)
H+(R)

}
= 0 . (10)

where F (R) being regular means that F (0) = 0, and H(R) being irregular means that H(0) 6= 0.

Using standard derivations for second-order differential equations, the full Green’s function is then

G+(R,R′) = −1
k

{
H+(R′)F (R) for R < R′

F (R′)H+(R) for R > R′ (11)

= −1
k
F (R<)H+(R>) (12)

where R< = min(R,R′) and R> = max(R,R′).

The solution of the original inhomogeneous equation is therefore

ψ(R) = − 2µ
~2k

∫
F (R<)H+(R>)S(R′)dR′ . (13)

At large distances R > R′, by construction ψ(R) → TH+(R), because of Eq. (3), so

TH+(R) = − 2µ
~2k

H+(R)
∫
F (R′)S(R′)dR′ , (14)

and we arrive at a very useful integral expression for the partial wave T matrix element:

T = − 2µ
~2k

∫
F (R′)S(R′)dR′ . (15)

This may be rewritten in Dirac braket notation as

T = − 2µ
~2k

〈F ∗|S〉 (16)

= − 2µ
~2k

〈F (−)|S〉 . (17)
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The complex conjugation in Eq. (16) is necessary to cancel the conjugation implicit in the matrix
elements. The (−) superscript in the second form Eq. (17) is used to indicate the conjugate wave
function F ∗ (though in our case, F ∗ and F are equal).

When Uc(R) = 0, the integral expression is called a plane wave T matrix element, and when Uc(R)
is the Coulomb distorting potential in the exit channel α, the integral becomes a Coulomb distorted
wave T matrix element.

An operator notation is often used, so Eq. (5) can be written more compactly as

ψ = φ+ Ĝ+S (18)
= φ+ Ĝ+V ψ , (19)

using φ to refer to the homogeneous solution present only in the elastic channel, and using the operator
definitions of Eq. (8), Ĝ+ = [E − T ]−1, with the + sign indicating outgoing boundary conditions of
Eq. (3), and T the kinetic energy operator. The equation (19) is called a partial-wave Lippmann-
Schwinger equation, and in this notation the T-matrix (17) is the integral

T = − 2µ
~2k

〈φ(−)|V |ψ〉 ≡ − 2µ
~2k

∫
φ(R)V (R)ψ(R)dR . (20)

In a multichannel formulation, ψ and φ are interpreted as vectors (φ being only non-zero in the elastic
channel), V as a matrix, and Ĝ+ is a matrix of integral operators.

1.2 Two potential formula

If a channel potential is composed of two parts U(R) = U1(R) + U2(R), then it is possible to use U1

as the distorting potential, U2 as the coupling interaction, and derive a T matrix integral expression
for the scattering from their combined U(R) potential. This will be useful when U1 can be thought of
as ‘strong but easy’ and U2 as ‘small but difficult’, but first we derive an exact two-potential formula.

For each partial wave, let us define solutions φ for the free field, χ for U1 only, and ψ for the full case,
and use Eq. (19) to write down the corresponding Lippmann-Schwinger equations. Their asymptotic
amplitudes will be derived from Eq. (20):

Free: [E − T ]φ = 0 Ĝ+
0 = [E − T ]−1 φ→ F

Distorted: [E − T − U1]χ = 0 χ = φ+ Ĝ+
0 U1χ χ→ φ+ T(1)H+

Full: [E − T − U1 − U2]ψ = 0 ψ = φ+ Ĝ+
0 (U1+U2)ψ ψ → φ+ T(1+2)H+.

Then we can prove the two potential formula, that T(1+2) = T(1) + T2(1), with an additional term

T2(1) = − 2µ
~2k

∫
χU2ψ dR ≡ − 2µ

~2k
〈χ(−)|U2|ψ〉 (21)

as the scattering T matrix contribution from coupling U2, with U1 appearing as a distorting potential
in χ. This is valid for both real and complex potentials U1, U2. It uses the (−) superscript to indicate
an additional complex conjugation for the left-hand wave function, as in Eq. (17). It is an exact
equation.
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Figure 1: Illustrating the Born series (23) for the wave function χ, as a sum of a homogeneous term
with single, double, and higher-order rescattering contributions to the outgoing wave χ.

The exact wave function ψ is the solution of the implicit equation

ψ = χ+ Ĝ+
1 U2ψ , (22)

using Ĝ+
1 = [E − T −U1]−1 with outgoing wave boundary conditions. The first term χ represents the

contribution present if U2 = 0.

1.3 Born series and approximations

One-potential scattering

For a potential U(R), solving the Lippmann-Schwinger equation χ = φ + Ĝ+
0 Uχ provides an exact

solution for the wave function χ for potential U . This however is an implicit equation, as χ appears
on both the left and right sides. To find it explicitly, we would have to sum the iterated Born series:

χ = φ+ Ĝ+
0 U [φ+ Ĝ+

0 U [φ+ Ĝ+
0 U [· · · ]]]

= φ+ Ĝ+
0 Uφ+ Ĝ+

0 UĜ
+
0 Uφ+ Ĝ+

0 UĜ
+
0 UφĜ

+
0 Uφ+ · · · , (23)

from which the outgoing T matrix amplitude is

T = − 2µ
~2k

[
〈φ(−)|U |φ〉+ 〈φ(−)|UĜ+

0 U |φ〉+ · · ·
]
. (24)

The equation (23) may be illustrated by the figure 1, where each node of the graph is an action of the
potential U and each line a propagation by Ĝ+

0 .

If the potential U(R) is weak, in the sense that we could treat it as a perturbation, then we might
truncate these series and still achieve sufficient precision. The first term is called the plane wave Born
approximation (PWBA):

TPWBA = − 2µ
~2k

〈φ(−)|U |φ〉 . (25)
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Figure 2: First, second and all-order couplings within a 0+, 2+ and 4+ rotational band, starting from
the ground state.

This partial wave PWBA, when written explicity with the radial wave functions, is

TPWBA
L = − 2µ

~2k

∫ ∞

0
FL(0, kR) U(R) FL(0, kR) dR . (26)

Substituting these T matrix elements into

f(θ) =
1
k

∞∑
L=0

(2L+ 1)PL(cos θ)TL , (27)

the three-dimensional form for the PWBA scattering amplitude is

fPWBA(θ) = − µ

2π~2

∫
dR e−iq·R U(R) , (28)

where the momentum transfer q = k′ − k so q = 2k sin θ/2. The PWBA amplitude is thus simply
proportional to the Fourier transform of the potential. The PWBA is expected to be more accurate
at very high energies when potentials are weak, such as in electron-nucleus scattering.

Two-potential scattering

From Eq. (21), the two-potential formula, the exact T matrix expression is again

T(1+2) = T(1) − 2µ
~2k

〈χ(−)|U2|ψ〉 (29)

where, from Eq. (22), the exact wave function is the solution of the implicit equation ψ = χ+ Ĝ1U2ψ.
We may therefore again by iteration form a Born series

T(1+2) = T(1) − 2µ
~2k

[
〈χ(−)|U2|χ〉+ 〈χ(−)|U2Ĝ1U2|χ〉+ · · ·

]
. (30)

Post and prior T matrix integrals

The exact expression (29) is often called the post T matrix integral because the solution χ for the first
potential U1 is in the post or final channel. A mirror prior T matrix integral can also be derived where
the χ is in the prior or entrance channel.
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We may rewrite Eq. (30) as

T(1+2) = T(1) − 2µ
~2k

[
〈χ(−)|+ 〈χ(−)|U2Ĝ1 + · · ·

]
U2|χ〉 , (31)

and define the expression in the square brackets as 〈ψ(−)| where

ψ(−) = χ(−) + Ĝ−
1 U

∗
2χ

(−) + · · ·
= χ(−) + Ĝ−

1 U
∗
2ψ

(−) . (32)

The Green’s function Ĝ−
1 is the complex conjugate of Ĝ+

1 , and thus describes incoming boundary
conditions. The wave function ψ(−) is thus full solution satisfying [E−T −U1−U2]ψ(−) = 0 but with
incoming boundary conditions. This wave function appears now in the prior T matrix integral

T(1+2) = T(1) − 2µ
~2k

〈ψ(−)|U2|χ〉 . (33)

The wave functions on the kets of Eqs. (29) and (33) are often written with a (+) to remind that they
are calculated with normal outgoing boundary conditions:

T(1+2) = T(1) − 2µ
~2k

〈χ(−)|U2|ψ(+)〉 = T(1) − 2µ
~2k

〈ψ(−)|U2|χ(+)〉 . (34)

If furthermore we label the wave functions by the channels in which there is a boundary condition
with a plane wave, the post and prior T-matrix integrals for the reaction from entrance channel αi to
exit channel α are

T(1+2) = T(1) − 2µ
~2k

〈χ(−)|U2|ψ(+)
αi
〉 = T(1) − 2µ

~2k
〈ψ(−)|U2|χ(+)

αi
〉. (35)

Distorted wave Born approximation (DWBA)

If the series (30) is truncated after the first term, linear in U2, then

TDWBA = T(1) − 2µ
~2k

〈χ(−)|U2|χ〉 (36)

is called the Distorted Wave Born approximation (DWBA), because it is a matrix element using wave
functions χ(R) which include U1 as a distorting potential. It is a first order DWBA because U2

appears only linearly. It is particularly useful for exit channels where U1 might be say a central optical
potential that cannot by itself cause the transition. In this case T(1) = 0, and we have the convenient
DWBA expression for the T matrix from incoming channel αi to exit channel α:

TDWBA = − 2µ
~2k

〈χ(−)|U2|χαi〉 . (37)

Whether this DWBA is a good approximation depends on the size of U2, as we see in Fig. 2.

7




