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2 Compound Nucleus Reactions

2.1 Introduction

Two nuclei may approach each other and fuse together. The first factor governing this process is clearly
the penetration of any Coulomb or centrifugal barrier present at middle distances. If the scattering
wave comes in from large relative distances, then it will be attenuated by the time it has tunnel
through any Coulomb barrier, and we will calculate a penetrability factor to describe this reduction.

The second governing factor is the mechanism for trapping the particles permanently, once they have
come inside the Coulomb barrier. One way is for a γ-ray to be emitted, and the particles lose that
energy and fall down into a bound state of relative motion. This is a direct capture process, to be
discussed further in the next section. Another direct mechanism is for one of the nuclei to be pushed
up to an excited state, and energy absorbed this way that makes escape less likely.

Another way is for the particles to be captured by some of the long-living resonances of the compound
nucleus that is formed of both the nuclei together. This will happen especially with heavier nuclei,
where the is a high level density of these resonances: many per MeV. Compound nucleus resonances are
usually narrow (that is, long-lived), so they capture flux from the direct reaction channels and release
it later into other channels. Bohr’s independence hypothesis is that the later release is independent
of the details of the initial scattering state. These other channels may be neutron or γ emission, but
these are called statistical or evaporation rather than direct processes. The direct processes are most
likely with light nuclei, where the level density of resonances is rather low. The compound resonance
in heavy nuclei can be simulated by an absorptive imaginary ‘fusion part’ to the optical potential, a
part that is inside the Coulomb barrier.

2.2 Barrier Penetration

To calculate the penetrability factors for traversing a Coulomb barrier, we need to know the shape
of the barrier, which is composed of a Coulomb repulsion at medium and large distances along with
a nuclear attraction at short distances. We consider two cases in detail. In case (A) we neglect the
nuclear potentials outside some radius Rm, and calculate just the penetrability factor for the Coulomb
and centrifugal barriers. In case (B) we assume that the sum of all the potentials is like an upside
down parabola around its maximum.

Once we have the penetrability factors PL(E) for each partial wave L, then a cross section will depend
on them like

σX(E) =
π

k2

∑
L

(2L+1)PL(E)XL (38)

where XL is a branching ratio to observing product X once the barrier has been passed.

(A) Penetrability factor for the Coulomb and centrifugal barriers: In this case, we only
need to solve the Schrödinger equation with Coulomb and centrifugal potentials. Fortunately, the
solutions in this case are well known as the Coulomb functions FL(η, kr) and GL(η, kr), and there
are standard methods to calculate these. In terms of these functions, we normally define a Coulomb
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penetrability factor

PL(Rm) =
kRm

FL(η, kRm)2 +GL(η, kRm)2
, (39)

where k is the asmptotic wave number, and the Sommerfeld parameter is η = Z1Z2e2µ/(~2k) for
charges Z1 and Z2.

At low energies, the wave number k is small, and the denominator is dominated by GL becoming very
large as

FL(η, ρ) ∼ CL(η)ρL+1 , GL(η, ρ) ∼
[
(2L+1)CL(η) ρL

]−1
(40)

where ρ = kRm,

C0(η) =

√
2πη

e2πη − 1
and CL(η) =

√
L2 + η2

L(2L+1)
CL−1(η) . (41)

This means that the s-wave (L=0) Coulomb penetrability factor tends to

P0(Rm) → kRm
2πη

e2πη − 1
∼ kRm2πη e−2πη (42)

as η gets large when k is small. This e−2πη behaviour is the reason for the definition of the astrophysical
S-factor S(E) according to

σ(E) =
e−2πη

E
S(E) . (43)

The 1/E factor here comes from the 1/k2 factor for the flux in an incoming plane wave.

(B) Penetrability factor for inverted parabolic barriers: Parabolic barriers are defined by
their radial position RB, their height EB and their curvature from their second derivative V

′′
(RB).

The first derivative V ′(RB) = 0.

A normal harmonic oscillator potential is also parabolic, and from V ′′(RB) > 0 we find the oscillator
energy ~ω = ~

√
V ′′(RB)/µ.

For our inverted barrier we define a similar ‘characteristic quantum energy’ ~ω = ~
√
−V ′′(RB)/µ.

This is used in the Hill-Wheeler equation (Phys. Rev. 89 (1953) 1102) for the penetrability:

P (E) =
1

1 + e2π(EB−E)/~ω
(44)

Note that just at the energy of the barrier top, with E = EB, the penetrability is P (EB) = 0.5.

This parabolic form for the barrier is most useful in heavy ion reactions, where there are barriers in
many partial waves. If the barrier in each partial wave is at EL with energy ~ωL, then the total fusion
cross section is

σF (E) =
π

k2

∑
L

2L+1
1 + e2π(EL−E)/~ωL

. (45)
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since we are assume complete fusion once the barrier is passed (XL = 1).

Wong (Phys. Rev. Lett. 31 (1973) 766) observed in practical cases that the ωL tended to be constant,
and that the radii of the barriers where also nearly constant. In that case the various partial wave
barriers EL may be simply given as

EL = E0 +
L(L+1)~2

2µR0
(46)

in terms of the s-wave barrier E0 at radius R0. If the sum in Eq. (45) is replaced by an integral, this
integral may be done analytically to give

σF (E) =
R2

0~ω0

2E
ln{1 + exp[2π(E − E0)/~ω0]} (47)

For relatively large values of E this gives

σF (E) = πR2
0(1− E0/E) (48)

and for relatively small values of E � E0 we have

σF (E) =
R2

0~ω0

2E
exp[2π(E − E0)/~ω0] . (49)
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2.3 Compound Nucleus Decay

2.4 Multi-level Breit-Wigner Formula

The multi-level Breit-Wigner formula gives the total cross section as an incoherent sum of contributions
from all the contributing resonances, each peaking near its position Ep with full width at half maximum
of Γp. The compound-nucleus part of the angle-integrated cross section to channel α′ from α is

σα′α(Jπ
tot;E) =

π

k2
gJtot

∑
p

ΓαpΓα′p

(E − Ep)2 + Γ2
p/4

, (50)

for resonance level p with spin and parity Jπ
tot, and total width of Γp =

∑
α Γαp. The spin-weighting

factor is gJtot = (2Jtot+1)/((2Ipi+1)(2Iti+1)) for initial spins Ipi and Iti .

This expression will be most accurate if all the widths were much smaller than the mean spacing D
between the levels, that is for mean widths 〈Γ〉 � D. This is the case for non-overlapping and well
separated resonances.

2.4.1 Hauser-Feshbach theory

If we add the cross sections of the multi-level Breit-Wigner formula (50) over all final states, the total
should equal the summed reaction cross section σR for the loss of flux from the entrance channel. This
should also match the total absorption cross section σA given by a one-channel optical potential for
elastic scattering in channel α. Conversely, if we already know the optical potential and especially
its imaginary component, we may use this knowledge to normalise the total widths for the decay of
compound nuclear states. This is the basis for the very successful Hauser Feshbach approximation.
for calculating the production and all the decay channels of compound nuclear states. We now derive
the Hauser-Feshbach formula in the case of well separated resonances, using the above multi-level
Breit-Wigner expression (50).

To find the cross sections averaged over many resonances, let us average over an interval I that contains
many resonances: I � D where D is the mean level spacing for CN resonances of given total spin and
parity Jπ

tot. We define an energy average cross section for a sum of narrow peaks σp(E) as appear in
Eq. (50) by

〈σ(E)〉 =
1
I

∫ E+I/2

E−I/2

∑
p

σp(E)dE

=
1
I

∑
p, Ep∈[E±I/2]

∫ ∞

0
σp(E)dE

=
1
I

I

D

∫ ∞

0
σp(E)dE =

1
D

∫ ∞

0
σp(E)dE (51)

since there are I/D peaks within the averaging interval that are similar on average.

The integral over a single resonance of a Breit-Wigner resonance peak in Eq. (50) gives∫ ∞

0
dE

ΓαpΓα′p

(E − Ep)2 + Γ2
p/4

=
2πΓαpΓα′p

Γp
(52)
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so the energy average cross section is

〈σα′α(Jπ
tot;E)〉 =

π

k2
gJtot

〈
ΓαpΓα′p

Γp

〉
2π
D

. (53)

2.5 Width fluctuation corrections

Unfortunately the average ratio 〈ΓαpΓα′p/Γp〉 is not simply given in terms of the average values of the
numerator factors and the denominator. Because of possible correlations in the numerator averaging,
we define a width fluctuation factor Wαα′ by〈

ΓαpΓα′p

Γp

〉
= Wαα′

〈Γα〉〈Γα′〉
〈Γ〉

, (54)

so the energy average cross section can be written

〈σα′α(Jπ
tot;E)〉 =

π

k2
i

gJtotWαα′
2π
D

〈Γα〉〈Γα′〉
〈Γ〉

, (55)

where the average sum 〈Γ〉 =
∑

α〈Γα〉.

To estimate the width fluctuation corrections Wαα′ in our Γ � D limit, we focus on the numer-
ators of Eq. (54). Factorising out the penetrability factors, the Wαα′ must satisfy 〈γ2

pαγ
2
pα′〉 =

Wαα′〈γ2
pα〉〈γ2

pα′〉. For inelastic reactions α 6= α′, so the γ2
pα and γ2

pα′ should be statistically inde-
pendent, giving 〈γ2

pαγ
2
pα′〉 ∼ 〈γ2

pα〉〈γ2
pα′〉 and Wαα′ ≈ 1. For elastic channels with α = α′, however,

we have 〈γ4
pα〉 = Wαα〈γ2

pα〉2, so, defining x = γpα/〈γ2
pα〉1/2, the elastic Wαα is the fourth moment

〈x4〉. If the γpα follow the Porter-Thomas distribution, then this is the fourth moment of a normal
distribution, namely Wαα = 3. To conserve the total cross section, however, this enhancement of the
elastic channel should be compensated by a proportional reduction of all the other channels. This will
only be significant if there are not too many of those.

For incoming channel α, the total reaction cross section is the sum of all these terms over the outgoing
channels α′, and since again

∑
α′〈Γα′〉 = 〈Γ〉 we have

〈σR
α (Jπ

tot;E)〉 =
∑
α′

〈σα′α(Jπ
tot;E)〉

=
π

k2
gJtot

2π〈Γα〉
D

(56)

where we have set Wαα′ ≈ 1 since we are summing over the non-elastic channels.

2.6 Transmission coefficients

We now establish the absolute scale of the 〈Γα〉 by connection with the reaction cross sections predicted
by the optical model. The optical model gives a total reaction cross section of

σR
α (Jπ

tot;E) =
π

k2
gJtot(1− |SJtotπ,opt

αα |2) , (57)
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Figure 3: Transmission coefficients for neutrons incident on 90Zr in various partial waves L, using the
global optical potential of Koning and Delaroche.

where Sopt
αα is the elastic optical S-matrix element, and comparison of these two expressions gives

1− |Sopt
αα |2 =

2π〈Γα〉
D

. (58)

We now define the so-called transmission coefficients1:

Tα = 1− |Sopt
αα |2 , (59)

which measure the ‘coupling’ described by the imaginary potentials between the external scattering
and the internal compound-nucleus production. Fig. 3 shows these for neutrons on 90Zr in various
partial waves.

In terms of the transmission coefficients, Eq. (55) becomes

〈σα′α(Jπ
tot;E)〉 =

π

k2
gJtotWαα′

TαTα′∑
α′′ Tα′′

. (60)

We see in this expression what are called the Hauser-Feshbach branching ratios:

Bα′ =
Tα′∑
α′′ Tα′′

. (61)

These Hauser-Feshbach formulae have simple physical interpretations. The branching ratio for the
decay Bα′ of a given compound nuclear state to final channel α′ is proportional to the transmission

1They should be distinguished from e.g. the previous barrier tunnelling coefficients P (E), because these Tα = 0 for
all real optical potentials, and Tα = 1 for strongly absorbed partial waves.
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coefficient Tα′ , normalised in the denominator by the summed coefficient so the total decay probability
is unity. The production of the CN state is assumed to be a time-reversal of the decay mechanism,
and hence is proportional to the same Tα.

The Hauser-Feshbach formula to calculate all the decay chains that occur after compound nucleus
production, if we know independently the average level spacings D.

2.7 Weisskopf-Ewing approximation

The cross section summed over all total spins and parities is

〈σα′α(E)〉 =
π

k2

∑
Jπ
tot

gJtotWαα′
TαTα′∑
α′′ Tα′′

. (62)

This expression does not factorise into a product of production and decay probabilities, because Jtot

and parity π are conserved quantum numbers that are not affected by averaging. It only factorises
if Wαα ≈ 1 and the Jπ

tot sum can be ignored. This latter occurs for example if only one incoming
partial wave α is significant (e.g. 1/2+ for thermal neutrons on a light spin-zero target), or if all the
Tα have the same Jπ

tot dependence. The earlier Weisskopf-Ewing theory can be obtained as a limit
of the Hauser-Feshbach theory by assuming a fixed distribution of spins. This enables a complete
factorisation as

〈σα′α(E)〉 = σR
α (E)

Tα′∑
α′′ Tα′′

≡ σR
α (E)Bα′ . (63)

This theory simply states that the total reaction cross σR
α (E) of Eq. (57) decays according to branching

ratios Bα′ obtained by normalising the Tα′ to unit probability.
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