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Radiative capture reactions:

A1 + A2 → A + γ

The most important stellar capture reactions:

(N,Z) + p → (N,Z+1) + γ

(N,Z) + n → (N+1,Z) + γ

(N,Z) + α → (N+2,Z+2) + γ

Examples:

Stationary hydrogen burning: 

p(p,e+ν)d(p,γ)3He(3He,2p)4He(3He,γ)7Be(p,γ)8B(β+)24He

Explosive hydrogen burning:
11C(p,γ)12N; 17F(p,γ)18Ne; 18F(p,γ)19Ne; 20Na(p,γ)21Mg; 21Na(p,γ)22Mg 

CNO cycle:
12C(p,γ)13N (β+)13C(p,γ)14N(p,γ)15O(β+)15N(p,α)12C

Helium burning:
12C(α,γ)16O(α,γ)20Ne(α,γ)24Mg

Neutron capture reactions:
12C(n,γ)13C; 14C(n,γ)15C; 20Ne(n,γ)21Ne; 22Ne(n,γ)23Ne



A1 + A2 → A + γ

Initial state A1 + A2 : is a continuum state with
Kinetic energy:  Ei

Momentum:  ki

Angular momentum    J1 and J2

Projection of angular momentum ν1 and ν2

Wave function of A1 + A2                Ψν1ν2

Final state A + γ : A is bound ( a discrete state) and the photon is in 
the continuum

Binding energy of A1 + A2:  Ef

Momentum of nucleus A:  kf

Angular momentum and parity of nucleus A    Jf πf

Wave function of A ΨJf Mfπf

Energy conservation : Ei = Ef + Eγ ;          Eγ = ħkγ c
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The starting point to calculate transition per unit time from initial state |i〉 to 

final state |f 〉 is the Fermi's golden rule.  

It assumes that the transition occur due to a perturbation and

is given, to first order in the perturbation, by

where ρ is the density of final states (number of states per unit of energy) 

and  〈i| H′| f 〉 is the matrix element of the perturbation H' between the final 

and initial states.

Fermi's golden rule is valid when the initial state has not been significantly 

depleted by scattering into the final states.
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Cross sections for capture reactions
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H′ is the interaction between γ and nucleus A and contains products of nuclear

and electromagnetic currents.

H′ can be expanded into electric              and magnetic  

multipole operators.
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τi3 is the isospin projection;  µN=eħ/2mNc is the Bohr magneton,

gp and gn are gyromagnetic factors of proton and neutron respectively.

Yλµ is the spherical function.



Transition from one scheme to another:

where W is the Racah coefficient.

Selection rules for matrix elements

| Ji – Jf | ≤ λ ≤ Ji + Jf

πiπf = (-)σ+λ

For T3=0  ∆T = ±1, which means that E1 transitions are forbidden 
in N=Z nuclei if isospin impurities are absent
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Reaction             J1 J2 li Ji σλ Jf

d(p,γ)3He           1+ ½+        0      ½+ M1,E2     ½+            suppressed?

3/2+     M1,E2                 suppressed?

1      ½− E1

7Be(p,γ)8B         3/2− ½+ 0      1− E1        2+

2− E1

d(4He,γ)6Li         1+ 0+ 0     1+ M1        1+ suppressed?

1     0− E1         suppressed?

1     1− E1         suppressed?

1     2− E1         suppressed?

2     1+ E2    

2     2+ E2

2     3+ E2



Theoretical methods and models to calculate 

radiative capture

• R-matrix

• Potential model

• Microscopic models

• Ab-initio calculations
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Potential model

The interaction between nucleons from A1 and A2 is replaced by 

potential V(r) so that

H=H1+H2+Trel+V(r)
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Entrance channel wave function:

Exit channel wave function:



If                and               are orthogonal then the contribution from 

internal electromagnetic operators is absent.

Magnetic transition M1 contains integral

which is zero if initial and final wave funuctions are orthogonal

In the electromagnetic multipole operators can be rewritten as a sum 
of internal and relative terms as well:

This equation is exact for λ ≤ 2. For higher order terms, crossed terms 
may contribute.

For electric transitions:
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Choice of the A1+A2 potential

Phenomenological potential  

V(r) = Vc(r) +Vcoul(r) + Vso(r)

Central 

Woods-Saxon potential Vc(r) = V0 / (1+exp((r − R)/a))

R = r0 A2
1/3       or R = r0 (A1

1/3 +A2
1/3)

r0 is the radius  and   a is the diffusseness

Spin-orbit  potential

Coulomb potential: 

uniformly charged sphere
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Folding potential for a + A

Densities ρa and ρA can be derived from

• measured charge distributions (for stable nuclei)

• model calculations (e.g. Hartree-Fock)

λ can be obtained from 

• fitting to bound states energies

• fitting to thermal total cross sections (for neutrons)

• fitting to resonance energies

r1

r2R

s



DDM3Y (density dependent) NN effective potential
A.M.Kobos, B.A.Brown, R.Lindsay, G.R.Satchler,  Nucl.Phys. A425, 205 (1984) 

veff (E,ρa,ρA, s)= vM3Y(E,s)  f (E,ρa+ρA)

vM3Y(E,s) = 7999 exp(−4s)/4s − 2134 exp(− 2.5s)/2.5s+J00(E)δ(s)

Exchange part

J00(E) = − 276 (1 − 0.005E/Aa) (MeV⋅ fm3)

Density dependent part:

f (E,ρ) = C(E)(1+α(E)e−β(E)ρ)

Coefficients C(E),α(E) and β(E) are determined by fitting volume integral of 

veff (E,ρa,ρA, s) to the strength of the real part of a G-matrix effective 

interaction obtained from Bruekner-Hartree-Fock calculations for nuclear 

matter of various densities and at various energies.



Two-body wave functions and their asymptotics
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In intital (scattering state)  Ei > 0.

At r → ∞ V(r) → Vcoul(r)

where ki = (2µEi)
1/2

F is the regular and G is irregular at the origin Coulomb wave functions

δ is the phase shift.

The normalization of this wave function is determined by orthogonality
of the continuum wave function and is related to the defition of the 
cross section.
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Scattering wave functions at Ei = 20 keV
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Final (bound) states
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In the final bound state  Ef < 0.

At r → ∞ V(r) → Vcoul(r)

where kf = (2µEf)
1/2 , η = Z1Z2e

2/(ħ2v) is the Sommerfeld parameter,

W is the Whittaker function
b is the (single-particle) asymptotic normalization coefficient (ANC)

ϕ is normalized to unity.

In fact, the normalization of ϕ should be the same as the normalization 
of the projection of the wave function of A into product of the wave 
functions of A1 and A2
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IOverlap integral

is the projection of the wave function of the final state of nucleus A into the 
product of the wave functions of A1 and A2.

The norm of this overlap is called spectroscopic factor

When calculating the radiative capture the final two-body wave function 

is replaced by 

The asymptotic part is therefore

where C is the ANC
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Integrand                                  for the E1 capture amplitude at E=20 keV
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Integrand                                  for the E1 capture 

amplitude for other energies
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For many capture reactions the most important contributions to the 

reaction amplitude come from large distances between A1 and A2.

Therefore, to predict the capture cross sections we need only the 

wave functions in asymptotic region. More precisely, we need

• ANCs (for final bound states)

• Phase shifts (for initial scattering states)

ANCs can be determined from

• Peripheral transfer reactions 

– (d,t) and (d,3He), 

– reactions with heavy ions, where absorption is large, 

– some (d,p) reactions

• Coulomb breakup
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Contribution to the A(d,p)B reaction amplitude

Cut off in the distance 
between n and A

Cut off in the distance 
between d and A

14C+d, 

Ed=14 MeV

16O+d, 

Ed=15 MeV

41Ca+d, 

Ed=11 MeV

D.Y.Pang, F.M.Nunes, A.M.Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007)

14C+d, 

Ed=14 MeV

16O+d, 

Ed=15 MeV

41Ca+d, 

Ed=11 MeV



Peripherality test

L.Trache et al, Phys.Rev. C 67, 062801 (2003)

For peripheral reactions the 
ANC does not depend on the 
choice of the geometry of the 
potential well used to calculate 
the single-particle wave 
function but the spectroscopic 
factor does. 

Example:

8Li → 7Li + n  from 12C(8Li,7Li)13C

S

C2 = Sb2



ANC method:

Direct peripheral transfer reactions A(a,b)B allow to determine ANCs and then to 

use then to calculate non-resonant  radiative capture cross sections.

First suggestion was  to use reaction 7Be(3He,d)8B to obtain 7Be(p,γ)8B 

(A.M. Mukhamedzhanov, R.E. Tribble and N.K. Timofeyuk, Phys. Rev. C51, 3472 (1995))

Now  several reactions have been determined with the ANC method,

for example:  7Be(p,γ)8B   from   9Be(7Be,8B)10B   and   14N(7Be,8B)13C

11C(p,γ)12N   from   14N(11C,12N)13C

14N(p,γ)15O   from 14N(3He,d)15O    etc.

ANC method is also applicable to determine peripheral neutron capture 

reactions of astrophysical interest, for example, 12C(n,γ)13C(1/2+)

(N.Imai, N.Aoi, S.Kubono, D.Beaumel et al, Nucl.Phys. A688, 281c (2001)) 



Coulomb breakup

208Pb

N

x

N

x

x

N

Cross sections for Coulomb breakup at some kinematical conditions

depend mostly on the asymptotic part of the x-N wave function. Therefore,

ANCs can be determined from such reactions.



Energy dependence of capture cross sections.

Charged particles

Energy dependence is mainly determined by the entrance channel wave

function Fl(kr,η). At small stellar energies

where I is the modified Bessel function. 

Since η∼1/E1/2, the main dependence on energy is concentrated in the

exp(-πη) factor so that

σ(E)=exp(-2πη)S(E)/E,

where S(E) is the astrophysical factor.

( ) 2 1( , ) exp ( )l lF kr kr I krη π πη +→ −



Energy dependence of S(E) 14N(p,γ)15O(6.793  MeV)

Resonant 
capture

Non-resonant 

capture

Non-resonant 
capture

Non-resonant capture near E = 0 can be expanded onto Taylor series
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Analytical expressions for S(0), S′(0) and S ″(0) are given in

D.Baye, Phys. Rev. C 61, 025801 (2000) and

A.M. Mukhamedzhanov and F.Nunes, Nucl. Phys. A 708, 437 (2002)

Energy dependence of S(E)



7Be(p,γ)8B

C.Angulo et al, Nucl. Phys. A 719, 310c (2003)

where        is the sum of ANCs with channel spins I = 1 and I = 2, 

a0 is the scattering length

a0 is found from R-matrix analysis of

p+7Be elastic scattering

a0(I = 1) = 25 ± 9 fm

a0(I = 2) = -7 ± 3 fm
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Neutron capture

For η = 0 Fl(x) = x jl(x)

Therefore at E → 0

σnγ ~ k2l/v

σnγ increases for l = 0 and decreases for l > 0 when E → 0

It is possible to introduce a neutron analog of the astrophysical S-factor 

(D. Baye, Phys. Rev. C 70, 015801 (2004) )
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What to do about resonance capture?

• Calculate cross sections in the potential model if the resonance

width is reproduced

• R-matrix analysis

• Calculate cross section at ER and assume that around this 

resonance the energy dependence is of Breit-Wigner type. At E=ER                     

the amplitude has physical meaning of probability of the 

electromagnetic decay from initial to final state.

• Try to separate internal and external contributions and to fix them 

using some physical assumptions. 

– P. Descouvemont, Theoretical models for nuclear astrophysics (2004)

– X. Tang et al, Phys. Rev. C 67, 015804 (2003) 

• Use predictions from microscopic models



The Breit-Wigner formula for an isolated single-level resonance

(C.Rolfs and W.S. Rodney, Cauldrons in the Cosmos, University of Chicago Press (1988)

Reaction rate is then

Q is the Q-value for the (p,γ) reaction

EG is the Gamow energy



The case when resonant and non-resonant capture do not interfere

• There is no interference between different li in the 

integrated cross sections.

• If there is no resonance in the li=lmin partial wave but 

there is a resonance at li= lR≠ lmin then
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Microscopic models

Resonating Group Method (RGM), Generator coordinate method (GCM), 

Microscopic cluster model (MCM)
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A is the antisymmetrization operator, it permutes nucleons between A1

and A2

The internal wave functions for A1 and A2 are made from single-particle 

wave functions of the oscillator shell model and               is found by 

solving the Schrödinger equation with proper boundary conditions.

Effective NN interactions Vij(|ri-rj|) is used.
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Calculations of 7Be(p,γ)8B within Microscopic Cluster model

Energy dependence from theoretical calculations are used to extrapolate 

the experimental cross sections to stellar energies ( E < 30 keV)



Continuum Shell Model

Nucleons move in a mean field and interact with each other 

via residual interactions

Nuclear wave function is made of single-particle wave 

functions, nucleons can occupy not only bound states but 

also continuum states
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17F(p,γ)18Ne           (important for nucleosynthesis in novae)

Jπ(17F) =  5/2+

I = 2+ and 3+

π(Jf) = 1

Allowed transitions:

M1  from li =0

E1  from li = 1



Calculations of 17F(p,γ)18Ne within Continuum Shell Model

R.Chatterjee, J.Okolowicz, M.Ploszajczak Nucl.Phys. A764, 528 (2006) 

M1 transition dominates, which cannot occur in potential model



Ab-initio calculations of radiative capture

d(p,γ)3He (M.Viviani et al, PRC 61, 064001 (2000))

Jπ(d) =  1+

I = 1/2+ and 3/2+

Jπ (3He) =  1/2+

π(Jf) = 1

Allowed transitions:

M1  from li =0

E1  from li = 1





Astrophysical S-factor at E=0 

Capture from

S-wave   0.110  eV b

P-wave   0.109  eV b

Total       0.219  eV b

LUNA data

S(0) = 0.216 ± 0.010 eV b



d(4He,γ)6Li        K.M. Nollett et al, PRC 63, 024003 (2001)

Variational Monte-Carlo calculations for 6Li and 4He but potential model wave 

function for d-4He scattering
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In potential model cross 

sections for E1 equal to zero 

because Z1A2-Z2A1=0 



3He(4He,γ)7Be  and 3H(4He,γ)7Li
K.M. Nollett, PRC 63, 054002 (2001)

Variational Monte-Carlo calculations for 7Li, 7Be, 3H, 3He and 4He 

but potential model for 3He-4He and 3H-4He scattering wave function


