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Goals of Nuclear Astrophysics

« To understand what is the energy source of the
stars at all stages of their evolution

« To explain the observed relative abundances of
the elements through the nuclear transmutations
in different stellar conditions

Aims of IBA

» To determine composition and structure of thin
films or surface layers of samples through the
spectroscopy of the products of the interaction of
accelerated charged particles with nucleli
contained in the sample.




Similarities

*Low energy charged particle cross-sections
play a key role.

 Calculated (evaluated) cross-sections
rather than measured ones are commonly
used.

* The same physical models are employed in
the calculations.



Distinctions

Nuclear Astrophysics

IBA

Cross-sections are needed for a
vast variety of stable and unstable
nuclei

Cross-sections for a limited number
of mainly light and medium weight
nuclei are of interest

Cross-sections are needed for
separate isotopes

Cross-sections are needed mostly
averaged over isotopes

Total cross-sections are needed

Differential cross-sections are
needed

Moderate requirements for the
precision

The required precision is ~1%.

The problem is explored by nuclear
physicists

The problem is being solved by IBA
(material science) community

Basic (fundamental) science

Applied (technological) science




Alpha-process in stars

A so called alpha-process is responsible for
the synthesis of alpha cluster nuclei in the

chain:
24Mg = #Si = 32§ = SAr = 40Ca

It takes place in stars during carbon and
oxygen burning at temperature in the
interval of (0.5-3.0) x 10° K (43-260 keV).



Alpha elastic scattering in IBA

There are a number of benefits in use of elastic
backscattering (EBS) technique at energies for
which the cross-section is non-Rutherford.

First of all at higher energies light ion elastic
scattering cross section for light elements rapidly
increases whereas it still follows close to 1/E?
energy dependence for heavy nuclei. Thus high
sensitivity for determination of light contaminants
In heavy matrix is achieved. Besides, a depth of
sample examination is enhanced.



Alpha elastic scattering in IBA

Spectra of alphas
backscattered from a thick
silicon sample

Evaluated 28Si(a,a)28Si cross-section
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Cross-section calculations for
alpha-process

The cross section for this process is usually
calculated by means of the statistical model. The
transmission coefficients which are central
guantities in such calculations are determined in
frameworks of the optical model. It is usual in
nuclear astrophysics to consider processes that
incorporate a wide variety of nuclei both stable and
unstable and so the main efforts so far were
concentrated on the development of a global
optical potential using microscopic approach.



Microscopic global optical potential

NUCLEAR
PHYSICS A

ELSEVIER Nuclear Physics A 707 (2002) 253-276
www.elsevier comylocate npe

Improved global o-optical model potentials
at low energies

P. Demetriou®*, C. Grama®, S. Goriely®

The nuclei under consideration are stable and a lot of
experimental information is available in the literature for the
interaction of alphas with these nuclei. Consequently a

phenomenological optical potential can be obtained in this
case.



Alpha optical potential for #4Mg
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Available experimental data and results of the optical
model calculations for 2*Mg(a,0)?*Mg at the scattering
angle close to 165".

The optimal potential parameters obtained for 2*Mg(a.,a,) 2*Mg scattering at the energy below 8.0 MeV
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Alpha optical potential for 28S;
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Available experimental data and results of the optical
model calculations for 28Si(,0.,)?8Si excitation
function at the scattering angle close to 170°.

The optimal potential parameters obtained for 28Si(a.,.,) 28Si scattering at low energy

Vizo Viet | Viez | Viss | Vies | Viss Wp 'r ag 'n ap Fe
MeV | MeV | MeV | MeV | MeV | Mev MeV fm fm fm fm fm
155.7 | 159.0 | 1579 | 156.5 | 155.1 | 156.8 | 1.79+0.57E 1.40 [ 0914 | 1.40 0.62 1.40




Alpha optical potential for 28Si
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The best fit to the angular distribution for 28Si(o,0,)?8Si
at 18 MeV.



Alpha optical potential for 32S
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The best fit to the angular distribution for 32S(a,0,)*2S at
7.7 MeV.

The optimal potential parameters obtained for 32S(a, o) 32S scattering at the energy of 7.7 MeV

Vizo Vi Viz Vizs Vi Viss Wp" e’ ap 'n ay re
MeV MeV MeV MeV MeV MeV MeV fm fm fm fm fm
125.9 139.9 148.6 136.1 132.3 133.5 7.0 1.4 0.77 1.4 |1 0.485 | 1.40




Alpha optical potential for 3°Ar
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The best fit to the angular distribution for
3®Ar(a,0)%6Ar at 18 MeV.

The optimal potential parameters obtained for 3°Ar(a, o) 38Ar scattering at the energy of 18 MeV

Vizo Vi Vo, Vizs Vi Vis | Wp g ap 'n ap Ie
MeV MeV MeV MeV MeV MeV MeV fm fm fm fm fm
135.6 125.4 131.0 141.9 1455 | 143.7 | 14.0 | 1.281 [ 0.749 | 1.625 [ 0485 | 1.30




Alpha optical potential for 4°Ar
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The effect of quasimolecular resonances on
the excitation function for 4°Ca(a,a,,)*°Ca at
the scattering angle of 167°.
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Statistical model

The statistical model predicts reaction cross sections averaged over many resonances in the
intermediate nuclei. The mean angle-integrated cross section for formation of the final state (E', I',

P’) by means of the (a,a") reaction is given as

r (UJm E.I'P)
Gala.{E.I.P;E;I.P)=Lz,ncra(a.l.P; UIm =7 @)

where (U,J,n) are the quantum numbers of the compound states through which the reactions
proceed; Gy(e.1,P; U,J,n) is the reaction cross section for formation of the compound nucleus with
quantum numbers (U,J,%); and TI'y(U,J,x; E'I',P') is the decay width of the compound nucleus
into the state (E'\I'\P') of the residual nucleus by emission of the particle a". The quantity
I'(U.J,m) is the toral decay width of the compound nucleus state (U,J,x) and is the sum of all

possible decay widths,

rutm=» Y T (ULgE.I"PY) , 3)
a" E"I"pr @



Transmission coefficients

The reaction cross section for formation of the compound nucleus can be expressed in terms
of optical model transmission coefficients, Tg(€), as follows:

kz (2I+1)(2i+1)

o, (e.1P; UJ,x) = [T, @), (4)

S=| 14| 2=]|J-§|

where k 1s the wave number of relative motion, § indicates channel spin, and the function f(2,1) is

unity if parity is conserved and zero otherwise, as provided by Eq. (1). Through use of the
reciprocity theorem (detailed balance) of nuclear reactions, the decay widths can be related to the

transmission coefficients:

i+’ J+8

L (ULmEIP) = f(2.7) T:(U-E'-Ba.) (5)

1
2ip(UJm) o (T e Tos)

where p(U,J,n) is the nuclear level density of the intermediate nucleus having the quantum
numbers (U,J,x). To obtain Eq. (5), the assumption is made that the optical model transmission
coefficients, determined from analysis of experimental data on the ground states of nuclei, also
describe the inverse reactions on excited states of the residual nuclei.



Statistical model calculations with
global potential

Atomic Data and Nuclear Data Tables 75, 1-351 (2000) ST
do1:10.1006/adnd 20000834, available online at hitp:/"www.idealibrary.com on IDE Fl. '~\ J,-'

ASTROPHYSICAL REACTION RATES FROM STATISTICAL MODEL CALCULATIONS

THOMAS RAUSCHER and FRIEDRICH-KARL THIELEMANN

Departement fiir Physik und Astronomie, Universitit Basel, Klingelbergsirasse 82
CH-4056 Basel, Switzerland



Comparison of statistical calculations with
transmission coefficients obtained using
different optical potentials

15
14 |
13 b
12 F

= N W s OO N
T T T T T 7T T

o
T

0 1 2 3 4 5 6 7 8
Energy, MeV

The ratio of the cross sections for the 28Si(a.,7)32S
reaction calculated with transmission coefficients
obtained with the optical potential of the present work
and with the global potential.



Elastic scattering of alphas from
carbon

IBA

The fact that the
12C(a,,a)1?C cross-
section is up to 100 times
larger than Rutherford
above 2 MeV is used for
analytical purposes. The
intense resonance at
4.26 MeV is used as a
powerful tool for carbon
profiling in various
substrates.

Nuclear Astrophysics

An improvement in the
elastic scattering data
helps to determine the
contribution of the
subthreshold states,
6.92(2*) and 7.12(1°)
MeV and restricts
resonance parameters
above the threshold.
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Beam interactions
with Materials & Atoms
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Carbon analysis using energetic 1on beams

W. Jiang *, V. Shutthanandan, S. Thevuthasan, D.E. McCready, W.J. Weber
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Fig. 2. Energy spectrum of 4260 MeV He™ backscattering

from a thin carbon film (5.8 pg'om?®) on a silicate glass substrate

at an angle of 1507, Also included are the elemental and entire

specira from SIMNEA simulations,
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The problem of 12C/°0 ratio in
nucleosynthesis

E E, Jr The ratio depends on the rate of the 3o — 12C
T and 12C(a.,y)'60 reactions.
7162 | 7117 1- The cross-section for 3o — 12C is known with
12C+0c/ 6917 2* accuracy ~15%
45 / For the 2C(a.,y)'80 reaction extrapolation is
245 made from ~1.4 MeV (the lowest energy at

which the measurements were performed) to
~0.3 MeV, the cross-section decreasing from
~10-10 to 10-17 barn.

The main contribution to the cross-section at
astrophysical energies comes from E1 and
160 E2 amplitudes produced by subthreshold
levels.




PHYSICAL REVIEW C 79, 055803 (2004)

Measurement of elastic >C + « scattering: Details of the experiment, analysis, and
discussion of phase shifts

P. Tischhauser,” A. Couture,! R. Detwiler,} J. Gorres, C. Ugalde.! E. Stech, and M. Wiescher
University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556, USA

M. Heill and E. Kiippeler
Forschungszentrum Karlsewhe, Institut filr Kernphysik, Postfach 3640, D-76021 Karlsruhe, Germarey
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FIG. 6. Relative differential cross-section excitation curves for 2Cie, «)'*C for eight selected detector angles 8 = 24°, 387, 54°, 79°, 1007,
120°, 140°, and 160°.



PHYSICAL REVIEW C 85, 045804 (2012)

g s L x s
Measurement of elastic *C + « scattering: Above the proton separation energy

R. J. deBoer,” A. Couture,! R. Detwiler.} J. Gorres, P. Tischhauser.! E. Uberseder, C. Ugalde,! E. Stech, and M. Wiescher

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

R. E. Azuma
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA, and
Department of Physics, University of Toronte, Toronte, Ontario M35 1A7, Canada
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FIG. 6. (Color online) Fits to the “Cler, oo)'>C yield data of this
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(e), and 165.9° (f). The R-matrix fit was performed simullaneously
with previous data from the literature.
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FIG. 5. (Color online) Fits to the »Cle. ap)'>C yield data of this
work at g, = 95.8% (), 99.0° (b, 100.8° (c), 103.9° (d), 105.8° (e),
L1057 (), 115.8° (g), and 120,87 (h). The R-matrix fit was performed

simultaneously with previous data from the literature.
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Evaluation of the cross-section for elastic scattering of *He from
carbon

A F. Gurbich *

Institute of Physics and Power Engineering, Bondarenko Square | 249020 Obninsk, Russian Federation
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Beam Interactions
with Materials & Atoms

MNuclear Instruments and Methods in Physics Rescarch B 190 (2002) 100-106 -
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Helium elastic scattering from carbon for 30° to 150° in
the energy region from 2 to 4.8 MeV

I. Bogdanovié¢ Radovié **, M. Jaksi¢ *, O. Benka °, A.F. Gurbich ©

* Ruder Bogkové Instieie, PO, Box 1016, 10000 Zagreh, Croatia
" Institut fiir Experimentalphysik, Johannes Kepler-Universitat Linz, 4040 Linz, Austria
© Institute of Physics and Power Engineering, 24 W20 Obninsk, Russia
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Evaluated '*C(*He,*He)'?C cross-section and its uncertainty
E.V. Gai, AF. Gurbich*
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CRP on PIGE

‘ﬁi@% IAEA INDC(NDS)-0625

International Atomic Energy Agency Distr. IBA

INDC International Nuclear Data Committee

Summary Report

2™ Research Coordination Meeting
Development of a Reference Database for
Particle-Induced Gamma ray Emission (PIGE)
Spectroscopy



Cross-section measurements for PIGE
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Table 4.1. Completed Measurements

— Energy Ancle Initial
Isotope | Reaction | ! _I? range [Gg] State.] Type of Data Comments easured by:
(keV] | vev] Jn
T - . _ ! 1al+ atled+spar:
Li | @py) | 478 | 24 130 1/2- T;‘E‘:Z‘;ﬂt Ejitl:fd *PAEE Ipedro de Jesus
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"N ey | 2313 4-7 55 0+ [Differential D;E:iﬂlﬂpﬂme Raisanen
. . ailed-+spars .
W | @dpy) | 1885 | 0.6-2 55 52+ Differential  [DoAUedTsparse
points
MW @dpy | 2297 | 0622 55 72+ [Differential  [PeAUedTsparse .o
points

W ey | 8310 | 0622 55 1/2+ IDifferential D;ﬁ:iﬂlﬂpﬂme Kiss
19 . - 2 . Differemial— Detailed
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19 . - - 2 - o, [Differential~  [Detailed
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Oxygen analysis using gammas from direct non-resonant radiative capture
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Electron screening effects in IBA
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Electron screening effects in nuclear
astrophysics
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The cross-sections measured in a
laboratory should be corrected to

the stellar conditions where nuclei
are bare.

Jexp(E)
oy (E) |

f(E)=



CONCLUSIONS
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\{\ Y International Atomic Energy Agency — Distr. G+L

INDC International Nuclear Data Committee

Summary Report of the Technical Meeting on
Long-term Needs for Nuclear Data Development
|IAEA Headquarters, Vienna, Austria
2 — 4 November 2011

There is a significant overlap between astrophysics and other
nuclear physics applications. Important experimental and
theoretical efforts are made by the astrophysics community that
can be of interest and of direct relevance to nuclear applications
and vice-versa the progress made in the various applications
can be of direct relevance for nuclear astrophysics. On this
basis, it is recommended to the |IAEA:

to continuously identify overlap of interest between astrophysics
and other nuclear applications and possible cross-fertilization
between the various communities...



