Nuclear Cross Sections Analysis and R-matrix tools
Mini-school: Thursday May 9th - Friday May 10th 2013

Thursday May 9th 2013 - Room 30BB03

09.00 - 09.10 Arrival and Welcome: Dr Chris Jeynes (University of Surrey)
09.10 - 10.20 What is the R-matrix? Prof. Jeff Tostevin (University of Surrey)

10.20 - 11.00 Coffee break

11.00 - 12.00 Leverhulme Lecture:

Part I: Nuclear data for lon Beam Analysis (IBA)
Part Il Evaluation of charged particles low energy reaction
cross-sections

Prof. Alexander Gurbich (Surrey/Obninsk)
12.00 - 13.00 Astrophysics needs and tools: Overview of AZURE
Dr Ed Simpson (University of Surrey)

13.00-14.00 Lunch/discussions
14.00 - 18.00 Hands-on session Computer Laboratory (10BC03)

http://www.nucleartheory.net/NPG/Minischool R-Matrix/
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Low energy collisions and low level densities
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R-matrix — and approach of this Minischool

In general, the R-matrix method is a formal and quantum
mechanical approach to solve the Schrodinger equation for
reactions. Problem is, for real nuclear systems, we do not
usually know the potentials V(r) accurately enough to write
down the correct starting Hamiltonian, H=T+V, to be solved.

However, the structure of the approach, and the form of its
solutions, for any assumed V(r), lend themselves to a more
phenomenological (parameter fitting) way. Merit is that the
fitting parameters (strengths, resonance positions and
widths) have a direct visual connection with experimental
data sets and a well-defined mathematical relationship to
physical states of the nuclei involved. So, detailed fitting

IS often able to describe measured data with high precision.

The code AZURE can perform this fitting task intelligently




Basic assumptions behind R-matrix-like methods
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External - phase shifts and the collision matrix U

External solutions (r>a 2uF
= Eem >0, k:\/“h;m

> L(L+1) 2u 5

(7 = S V8 Justlr) =

and beyond the range of the nuclear forces
d* L(L+1) 29k Uz AZqe?
- _ 2k — —

(drz 2 , T ) ur(k,r) =0, n -

Fr(n,kr), Gr(n,kr) regular and irregular Coulomb functions

ur(k,r) = eiéL[COS(SLFL(n,kT)—|—SiI1(5LGL(7’],kT)]
= (¢/2)[H[ (n, kr) — UL H} (n, kr)]

HE(m, kr) = Gr(n, kr) £iFp(n, kr) — Ap exp(Likr)
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Phase shifts — a reminder

Eenu2od ou enumod aanoenie  [enu2iod aarsindar



Phase shift and partial wave collision matrix U

ur (k,r) = oL [cosdr, Fr.(n, kr) 4+ sindp Gr(n, kr)]

N— 7
~

If V(r) is real, the phase shifts 0z, are real, and [...] also

ur(k,r) = (i/2)[Hy (n,kr) — Up Hf (n, kr)]

Ingoing outgoing
waves waves
Ur|? survival probability in the scattering

UL _ 62@‘6L

(1 —|U|*) absorption probability in the scattering

Given the phase shifts or partial wave U-matrix elements
we can compute all scattering observables at this energy
— Cross section fitting means fitting these complex U




Resonance forms of the phase shift /U-matrix (i) 10

In the vicinity of an isolated (separated) resonance (with L)
5L (Ecm) — 57“68(Ecm) + 5bg (Ecm)

with rapidly varying Ores(Ecm) over a small range of E_,

1'/2
Ores(Fem) = arctan ( /

Er o Ecm

and a slowly varying background phase Jpq(Eem )

4 57"68 (Ecm)
¥ — 1{/

w2l /T (width) = i/
i

T/4 b
/ /i B
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Resonance forms of the phase shift /U-matrix (ii) B

If Ores(£em) was the only phase present, 5, = 0
I'/2
By — Eem
(L'/2)°
(Eem — Er)? + (I'/2)?

tan 5?"68 (Ecm) —

and sin? Ores(Fem) =

The (elastic channel) cross section resulting from this partial
wave resonance is thus of Breit-Wigner form

Ores(Fom) = 1—7;(2[, + 1) 8in” 6pes (Fem)
_Arm | ('/2)°
= gz (LA 1)(Ecm — E,.)2 + (I'/2)2



Resonance forms of the phase shift /U-matrix (iii)
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From: Thompson and Nunes, Nuclear Reactions for Astrophysics,
Cambridge University Press, 2009



proton elastic scattering — resonance behaviour

13

The appearance of the
resonance depends on the
proton scattering angle,
showing the interference
between the localised
resonance scattering and
(background) potential
scattering amplitudes.

From:

Bertulani and Danielewicz,
Introduction to Nuclear
Reactions, IOP Graduate
Student Series, 2004
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Resonance forms of the phase shift /U-matrix (iv)

Additionally, Y2
if tan 67788 (Ecm) — E’r - Ecm
UL(Eom) = €% ¥,

Eem — Ey +il'/2

So, cross section fitting means fitting these complex U as
functions of the centre-of-mass energy: the Ey., I', 04

Resonances in the physical system are, mathematically,
poles of the complex collision matrix U, (Ecn,) in the

complex energy plane, at E.,, = E, —i'/2
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Formulation using the R-matrix — one channel case
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Internal region and boundary conditions: ¥in (7") *

Hppr(r) = [T+ V(r)[o(r) = Ecmtbr(r)
Yr(r=0)=0, ¥r(r =a)="7 for matching

Easily shown: if we require solutions that, at 7 = a

satisfy
(?"X,/X)T,:a = b real, dimensionless constant

complete set,

then problem is Hermitian on |0, @] real eigenvalues

Al

T+ V()] (r) = epx? (r) \Orthﬁnormm
‘ V) ‘ /o Xo (P)XE (P)dr = 6y
> r

internal



Hermitian condition — for convenience

(XalOlxs) = (x5|0"|xa)"

but our operators O and states y are real, so in

T+ V(r)xa(r) = EcmXa(r), 1 <a

being a Hermitian problem requires that:

a a
/d’rxaxg:/ dr xg Xa
0 0

Integrating by parts, twice, this requires

[Xa X — Xaxs]o =0 and,asthe xa(0) =0, that

at =0, | Xo/Xa = X3/X3
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Expand the internal solution using a complete set

Yr(r=0)=0

Can drop the L’s in the equations

Manipulation of this integral, using
YL HLxp — xpHrYL

Xp(r)Yr(r) = > — Eom
_ hz Xp(a’) /
Cp = 3 =2 a0} (@) — by (a)]




R-matrix definition — completing the expansion

i) =2 Ol 1<, Gy = [ (P (r)dr
14 0

B B Xp(a) /
Cp = 5 22— lai (@) — b (o)

then, for matching the internal and external solutions at r=a

ona) = 3 {5 22l (o) - bon() 1@

p

Yr(a) = Rp(Eem) [awlL (a) — bYr(a))

- %
Fem) = - £
RL( ) Z 200 e — Py Z gy bopy

p p
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Terminology 0

2
Y there are poles, and R> «
Ri(Eem) = Z - 2—] whenever E_, coincides with
p P “""an energy eigenvalue ¢,
2
N2 = n XP(a)]? are called the reduced widths
P 2ua — and have units of energy

Yp is the reduced width amplitude

Note that the structure of these equations does not depend
on any particular choice of the potential V' (r) , although
the different numbers, reduced widths, eigen-energies, ¢,
appearing in the R-matrix will depend on the choice of b, a,
and the potential. If the sum over all p is performed, the
results should not depend on these choices.




Boundary conditions — finite sets of levels/channels 3

bcc’ > ¢ bcc’ — bc(scc’

>
N » C
0 a

Choice of boundary condition b, for each channel
can be made such that, even for a finite number of
levels N(J™) and channels N(c), cross sections are
independent of choice — done behind the scenes
(Barker) and one does not usually need to specify b

>

F.C. Barker, Aust. J. Phys. 25 341-348 (1972)



Hard-core phase shift, penetrability and shifts

From the internal region, at r=a must have

vr(a) = R

(Eem) [aw'z,(a) —byr(a)

and externally, that connects to the observables, at r=a

vr(a) = (i/2)[H} (n,ka) — ULH] (1, ka)
= (i/2)[H, —ULH/]

() = (i/2)[H; — ULH; ]

UL(Ecm) -~ {HE} X 1_RL[0’(HE /HE)—b]

H L RielEl b
exp|2i0r (Fem )]
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The hard-core phase shift

The first term on the product form for U

i _1—RL[CL(HE,/H£)_[)]_
UL(Bem) = | 75| X 1— Rela(H[ /H[) —b]

Ll

results from what is called the Hard-sphere phase shift, and
IS seen to be the value U, if the external wave function were
to vanish at r=0, i.e. if

wra) = (i/2)[H, —ULH]=0
then U = HE/HZ = eXp(2i5fS) therefore
Ur(Em) = exp|2i0r,(Eem)] = exp(2i[627° 4+ 65])

and
exp(2i07) =

1 — Rpla(H, /Hy) =0
1 Rela(H/ /H}) b




Penetrability and shift functions =

Remaining in the R-matrix phase shift expression
| — Rpla(H, /Hp) = D]
1 Rpla(Hy /H) —b]
are the ratios aHE /HY = a(Gy +iF})/(GL £iFy)
Multiplying out, and noting that ;G — G Fr, = k

aHT JHE = S, +iP;

where the shift (S) and penetrability (P) are calculated
from the F and G for any L and centre-of-mass energy:

exp(2i67Y) =

F2+G2 MU FRiGe

SL:CL
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Connection to ‘formal’ resonance parameters (i)

It follows that ,
Up(Eum) = 2% | L= RLIST — 1P
1 — RL[S% -+ ZPL]

Consider the contribution of a single R-matrix pole, p, i.e.
substituting Ry, = . /(e — Ecm) and rearranging

: _Ecm_( R 280)_7’7 PL
U Ecm _ 2’&555 p <«
L( ) € Ecm ( 280) ZPL

and has the earlier-discussed resonance form

U (Eopy) = 200 Zom = L = 11/
Eep — Eyp +11'/2
and that defines formal resonance positions and widths

,S? =8 —b

B

Hoo _’YPSL, I‘:’Yp L




Connections to ‘observed’ parameters (i) *

Whereas the resonance positions and widths in earlier

UL (Bpy) = 21000 Eem = Br = i1/2
E.,, — B, 4111 / 2
were constants, the formal R-matrix quantities

E, = Ep — WIQ)S%(ECWL); I'p = 27§PL(Ecm)
deduced from

Ur (Ecm) — 627;555

Eem — (ep — %%S%) — i75PL_
Eem — (ep —75S1) + i7gPL_

remain E_, dependent near the resonance position. They
need to be replaced by constants, ‘observed’ parameters, in
comparisons with and when fitting data.

Can include dominant energy dependence of S, by Taylor
expansion near the resonance position — e.g. iteratively




Connection to ‘observed’ parameters (ii) !

Based on the empirical resonance energy E,,?bsand, with
B, =¢p — 7;8%(Ecm) —&p T ’7;2; SL(Eem) — b]

we require

B = e, — 2[SL(E®) = b)

And, expanding the shift term, to leading order (Thomas)

dsS
SL(Eem) = Sp(E) + [Eem — E™] —
chzbs

gives, for E., — E, = E., — ) — ’)/IZ)S%(Ecm):

Eem — Ep = [Eem — E2%) [1+ 28] (E%)]




Connection to ‘observed’ parameters (iii)

On substituting in

—289) —iv2pPr,

UL(EC )_ 62@5HS

UL(Ecm) _ 627}(553

sin® 675 (Eem) =

(Ecm

— ’7/12)50) + z*prL

— E%) — T /2

_ (Ecm _ Eobs) + iFOLbS/Q_

( ob5/2)

(Eem — EQP®)% + (9 /2)?

with constant energy shifts and widths

)7

obs
.

= e r)/p _bL(ET
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Summary comments

Have tried to summarise both the basis and structure of the
R-matrix formulas and the formal and computational links
from R-matrix = predicted observables (cross sections),

(7;277 ep) = Rr(Eem) = Ur(Eem) — cross sections

Have also discussed the reverse process and the data -
deduced R-matrix parameters linkage, i.e.

dath a0 B B TV

When combined and used as a phenomenology, this R-
matrix machinery can provide accurate parameterisations
of data and the means to inter(extra)polate cross sections
(with due caution) between (+beyond) the available data.



Coffee - and then some data

 analysis and use of the tools
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