IR PO YOINT NIV AT ~ ba SARS MWYTO
DRPUSRON OPTYCAY, MODERL PROGRAM DD
)
- 8 ad N N 3 '.'~ i
Pf}’be: (u P badaa,m.
i seonsin-Madison
1
k. O

i ek o A e A B 0 B

The program DDTP calc

I I
s scattering is des
ag g

P2
£
¥

the elastic scattering of deuterons
by nuclei, Th 1ioc~:é "D;\f et optical model potential which
inciudes central, L-5, Ty, Ty, and Tp woonents, ') The coupliag betwsen
partial waves wi‘i;h (Lf Fem z‘t (’)“‘L)ltc‘l angular IROM "La (c.aused by the 1. and
i ; - All

for

- g,;;
EQ

(‘1

5 potent
P%wgmmnts of the p fcm ial ﬁ},’ bb conplex,
the radial dependence of each compornient are

Some of the features of this voutine were derived fyom DB, o
routine by B.A. I\ob5(>11,‘} The predictor-corrector vouting }_C& which uses
Hamming's mwthod?) is based on & routing of ih:, sair2 name in the program
iibrary of L}n Madison Academic Computing Center.*)

2., Input Requirements

2.1,  Command Cards: Bach command card contains an 8-choracter
commnd and up 1o e option numbers in format {2A4,2X,515). Only the
{ivet 4 charscteys of each com \gm ar ‘, DECESSArY . The meanings of ihe
‘ontions depend on the command. Each con W\anf{ card may be ioho wed by other
‘ndsh depending on the conmanld Valid commands arve:

DATA - ‘Read reaction 1 nFomation and experd ~>‘:<3'n'i"al data,
Pk)"‘t‘r\"l‘IAL Read pafev*‘iw parameteys and C ]uﬂme he p'-terltizz'.v
CALCULATE Perform a one-shot calculation and print the results.
TETLE Rea d a new rum marber and title.

PLOT Make a printer T)luL of the results.

FOTPRINT l Print the potentials

DELPRINT Pyint the E> matrix, -

Wi PRI%I‘; ‘ Print the wave fumctions.

4 RINT Print the scattering smplitudes,

DBSOUT Write the calculate d observables on a specified device.
DELOUT . Write the S-matrix on a specified device.

ArtouT Write the scattering awplitudes on a specificd device.

EXIT © (or a blank card) Quit.

N
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DATA

: Table T is a summary of the input
NJumL,mﬁpw formats. ?JLBWJMQBW“
The formats for machine-readable output ave
DELOUT, Qud,fHPCUT commands, Fach of the ¢
1npuL and outout, will be described in more UFL._Z

subsactions,

RN '....'. £a eby ote ueds o)
ERERAR mkffr:s...m’s:m.f

LJ iy
and t assoc1ated
in the ioﬂow ng

Gramall

of2 ot
B AL HES

C:;cbk—ﬂ%«4#¥hJibig $§5c2
[ Terres 6078

2.2 DATA COMMAND:
This should be the first command.

data.

o (or omitted),

CCard 1 (15.18A4)
- NN =
TITLE =

TUN NUTDET.
72 characters.

Read veaction information

+ (AL, Ox, SLL)

and experimenta

QQtion 1 is the 1 ogical unit muwber from which the evPeflnehxal
. T cya ad

the date are read {fyom cards.

Fro) 2

24

Charge of target (Z).

ELAB =
NCOOR. =
0 ]

Lab energy of the
Coordinate system [both
Analyzing powsrs, z alon

‘1 = COutgoing polarizations,
NCROS = 'Type of cross section da
0 = Cross section in miliib

1 =
NDAT
(Limits: NDAT

Cross section is ratio

i

FA

50, NDAT+NANGL < 180)

Cavds 3 and 4 (NDAT sets) (ZFL0

Mass of target (in AV).
incoming deuteron (in !

1A -‘J,A\ .
options foWJow the Mad
u»i ‘}:111.

z along Keyt.
ata to be entered:
arns per steradiamn.
to Rutherford.

Number of angles for which data will be entered.

G6/8%,8F8. 4
ad

(Tf option 1 is nonzera, these are e

instead of cards.)

ANGLE = center-of-mass scatt
SIG = C.M, cross sectien (or
DSIG = uncelfﬁlnty in SIG.
Til = Vector a Lyz1 g power
DTil = Uncertainty in Til.
T20 = Tensor analyzing power

- D20 _ = Uncertainty in TZ20.
T21 = Temsor analyzing power
Dr21. = Uncertainty i T21.
T22 = Tensor a AVHQQJA@;YM&T

Utz = UUPOP1JLWLY"P 122
(If any wncertainty is < 0, thak dgtun is
in chi-squarsd caiculaulono.)

iT1: (or polarization itiy).
Tqo(or polarization tao).

21{oT polarization €:1).

1ot plotied, andmit“igniqnoreda~-~

’( Fﬁ\o@

_SOn. Convrqrvr

Ve

\.».‘



SUMMARY OF INPUT AND OUTPUT FORMATS.
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. DATA
Cnr@NE_(“Iln 1
7T = lirst textra' angle (in degrees).
DT = lncremunL between 'extra’ engTes (degrees].

it

NANGL Mumber of extra angles.

Card 6 (GF10.6,15)

TOL(1)= Step-size tolerance. The step size H i chose as
TOL(1) times tie smallest Ycritical dznfrdlu
These "critical dimensic 15” include the diffusenssses
of the potential terms, 1/internal wave number, and
0.5/external wave number. Default vajue = 0.2,

TOL{2)= Mstchlng vadius tolerance. The ma Lch*ng radius
RMICHE is chosen as the radius where all nuclear
potentials arve less than TOL(2) times the Coulomb
potential., Default value = 0.00L.

TOL(3)= Partial-wave tolervance. The maximm J-value is
' chosbn as that for which the nuclear amplitudes

y]

(S -1)/2i rﬂnaln less than TOL{3) for 2 consecutive
L!
artial waves. DGf&uLt value = (.001,

p

=K
e
1§

Step size (fermis). Overrides TOL(1) if nonzero.

RMICH1= First matching radius

ry1
i
“

Overy jd.s' 0L{2) if nonzero.

RMICH2= Second matching radius. If zevo, RMICHZ is chosen
as RMICHL + 16*H.

U IMAX = Maximum partial wave. Overrides TOL(3} if nonzero.

Note 1: The default values of the tolevances have been found to
be ad°0u1te {ervors of order 10~ 4 ot less) for several test cases. It is
the user's rc%pon:1bl]1ty to uete*mzae whether or not they are appropriate
for his problem.

Note 2: The impox “tance “of the step size H or its.tolerance

TOL{1Y" dbpendq on the integration method (see LALCULAZH commend),  For
the Cowell method (normally used when Ty, pﬁventl 1s are absent), the
local truncation error 1s proport10nul to H®, and the integratiom fine
is proportional to H™1; nexce, the choice of H mst be a careful compromise
between accuracy and cost. On the cther hand, the an;ung pjbq1b‘or~
corrector 8150111hm (nOTnaljy used when a T, potential is pressnt) uses -
a variable step size, w1ch automatic controi of the trunc a*lOu 2YTOY.
ih eyefore, in this a e, it is genevslly advantageous to se t B as small

poaajb (within array-size Timit $) to winimize Lun need for inter-

T
; lation between the stored values of the pufonu ials,

LR O N e I O b L )
ANERRRAAVARASEIARANNANANAAN
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POTENTTIAL

CNoOSe
s, and
i

' .Ln.ﬂ»u‘?éi Read the p:;ien‘éial parame
’.,'"‘1‘3._' calculate and st
calculate the Coulomb wave EUHCLlUH% and Coulomb ph
commznd must precede any CALCULATE conmands.

- If option 5 is positive, the Coulomb wave functioms and Caulowb
phase shifts arc printed.

Porential parameters are read.one Prerm'! per card. A "term!
- .t.

is defined as the real or imagisary part of a given type of potential,
such as centrsl or Ty, If move than one term is indicated for a glves
poten ﬁi?l type (such as REAL ER,, the resulting potentials are added. In
this way, potentials with complicated shapes can be built up from simpler
Siqpcsa CUlTCﬂL]y, the mumber or potential terms must be < 12, and the
total number of stored potentizl points (= no. ot LTINS % LMFCH?/%)

mu st be < 3600,

Important: The last term must be follo&ad.by a blank card, to
signal the end of the list. _ _ ‘

Potential Cards (one per term).
(Format Ad, IX, Ad, 1X, A  AZ, 4X, 3F10.4

MRI = Real/imaginary mnemonic (4 characters):

blanks = flag after the last term

'REAL' = real part
VIMAG' = imaginary part

MIYPE = Type mnemonic (4 characters):

'COULY = Coulomb (see note 1 below)
'CENT' = Central

LS ' = LS vector

'TL ' = T tensor

TR ' = T1 tensor

P Y = ?P tensor (see note 2 below)
YTPD o= ip derivative (see note 3 below)

MSHAPE = Shape mnemonic (0 characters. Last 2 ignored).

Blank = standard for type (in parentheses below)

TWOOSAX! = Woods-Saxon (REAL CENT, REAL TP) -

"WS-DER' = Woods-Saxon derivative (IMAG CENT, IMAG TP)

'”HOW\S' = Thomas {(REAL LS)

1TGAUSS! = Gawssian (IMAG LS

S NRH’ = Novmaiized Woods- csecond derivative (REAL TL)
-Saxon second derivative (IMAG TL)
(WAL TR) _

$)

Sax
TN2*RZ ' o= R? times Wbo axo
Oz FLDY

-

o

Folded Real T,

o
[ %4
1w



fD3-FLDF
FOOUL T

~3

POTENTIAL

Folded Im T (T

Coulowh (REAL CCUL)

THAL TR)

Lid a

TDERIV ' o= Derivative (w“ r) of the previcus temm
'TROERTV = Modified derivative of 13‘3 nrovicus term
"RDRDER? = Modified second derivative of the previous term
VIN-FORY = Formatted input
PIN-UNE' = Unformatted input

VIN = Depth parameter (MeV)

RIN = Radius parameter (fm). RIN will be wultiplied by the

: cube root of the mass.
AIN = Diffuseness parameter (fm). See note 4 below.

Potential Shapes:

In the formulas below, (r-R)/AIN, where

L/3

RIN = AMT

, and AMT is the t
is used for Xﬂ, the Compton wawler il of L1e pion.

BIget 1WAS 5 (DATA card 2). The value V2 fm
In general; the

shapes are defined in such a way that if VIN>0, the outermost extremum
is negative {attractive),
RDRDER, IN-FOR, and IN-UNF.)

(The obvious exceptions are COUL, DERIV, RDERTV,

WOOSAX:  Woods-Saxon < -1
V(x) = -VIN-(1+e™)
WS-DER: Woods-Saxon Derivafivc (powmlized to unity)
V(r) = 4-VIN- & (15’1
_ ~4<VIN- eX
(1+6™)”
FUOMAG « S
THOMAS: Thomas , VIN»\AHZ ; P .
V(r) = r*‘*?f I (I+e™)
. L -2°VIN et
N —
AINex a %_ex)z
GAUSS: Gaussian .
V({r) = ~‘,fIl\Iee>:p(--x2)
D2-NRM:  Woods-Saxon second derivative, normalized to unlty at the
’ outermost maximum, as in Raynal's code MAGALI.®
2
Vir) = -VINe6vE S (107t
N N Z AN J
dx
- AX { £ X.ﬁ’ 3
o= VIN-6vF SRl
, (14



D2¥RZ:

D2-FLD:

D3-FLD:

COUL:

for terms which are not CCUL type,

.8 -

POTENTIAL

5 - L . 2 - 4 . 1
Woods-Saxon second derivative, times ¥, as i Ivshad and
2 ’
24 4Ky ]
V(r) = -VINew =y (1+ec™)
. d-r .
e 2 X Ko
_ AVINex” e (e-1)
A
(Itll\) \l"‘e )
This po?en‘rlal which is similar to a Woods-Saxon second
derivative, was designed to app‘(ommatc the real part of
the T Dotentia predicted by.the, mlmm model. It was

proposed by Keatcn and Amskrmg

2 1< o

] d 1
= - We Ryt f\
V(r) VIN )‘Trf T [r &T(1+ ,]
_2wVIN N AN 1-e7,
- i X2 ( T 3
(AIN) (1+e™) 1+e”
This one, wlhch resembles a Wood., Saxcm third de: *watw ve,

was mopoged by Keaton and Armst ong to approximate the
imaginary T, folding-model poteqﬁ al.

V(x) = -VIN® x ‘r d i ( fiii-)]
, dr ‘r a: )
~8<VIN eX X, ?x 2x ‘
= [ (1-4e ) - (A-e™)]
RN (7,50 AN

This is the qhapm of the Coulomb field due to a unummly
charged sphere of radivs R, When the COUL shaps is used
the aeptﬁ’l\ is the

multiplier of the 1/r tail. TFor the COUL type term, the

\vaiue (ZnF /I >rs substituted for VIN.

IN
\ZLI.\R[ (R)]forr<R
V(r) =
ViN for v+ > R o 7
T . [ ]
Lo ,/
RO A
L

Robson, ©
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DERIV A.f?wu point numerical de vive formila® is used to
calculate the First &ﬁiﬁi (with respect to the
radivs v in fermis) of the Q‘PV'ﬂUS term, This is then
renoemalized )y‘Lhe ratio of VIN for this term to VIN
for the previous teim:

. VIN d
(v) = Ve (r)
Vi) = gine o [V (x)]
where (VINP and VP(r) refer to the previous term).
RDERIV: . Numerical derivative, as in DERIV, but altered:
V(Y) 8#'[“‘“ VP(r)].
(See note 5 below).
RORDER: An altered.aner1Cdl second dem1vatwve of the previous terin:
VIN d 1
V( ) TTRID T 5 [’"‘
VINP © dr ‘v
= X T

IN-FOR: The potential is read from ca rds, 3nterpolaLed between
points if necessary, and mujtlplxea by VIN.
(See noLe 5 below).

-

Specification card (format 15,5%,F10.6,A60) (see note 11):

NIN
HP

U

PP

the number of radii te be read in.

the step size (1n fm) between successive
values of the input po stential. If HP=0,
HP=H is assumed.

' < INFORM=the format of the input cards (up to 60 chs “’Ct
<235ﬁfg>x§§€ ‘Subsequent cards should ¢ ontain the potential values, in th
e fofmat indicated on ca1o.] A1l of the cards are read with

(¢U a single RE/

mzy be plac

IN-UNF: The potenti

may be tape

AD statement; therefore, any number of radii -
ed on each caxd.

al is read from a Jpcc1fled logical wmit. (which
or mass storage), using Foriran unformatted

"/5

READ statements. It is then 1nucrmc}chd uaLwnon points

Lf necessay:
One card is
device and

y, and multiplied by VIN. (See note 5 below).
required, to give the unit nusber of the input
other lﬂfo”J 10ﬂ.1ega1d11g the size and con-

tents of the inmput rscords.

ers) .
e



POTENTTAL

Specification card (forwat 7I5,F10.6):

Nid = the number of radii to be vead.
. TN = the Jogical unit ﬁgdefofth input
device (l’h’ﬂc ult = ))7
IRW = rewind fla ({ vind before reading if
. NONZETO) .
NRSK = the number of records to sikip before

p@adlnng (If negative, nmber of records
.E.(j k \_L\J Ju-\,e )
NSPR =  the numbel of steps per record {(default=1

NIPS = the number of terns per ste (de*aUL*wl
CIPOS =  the positicn of the de 1T36 term (de aUJuul)
Hp =  step size (in fermis) (default=H).
If NTPS > 1, all words of each record will be ignored,
except those in the positions IFOS,IPOSHNIPS, ...,

1POST(NéPR 1)#NTPS.  Each record must ZOUL& in NSPR*NTIPS -
words, '

hULea apbout the POTENTIAL rownaud,

Note 1. MIYPE = 'COUL': Only one Coulomb temm should be present,
and it swst be REAL. For the combinations 'REAL CCUL COUL® or 'REAL COUL
VIN is vreplaced by the Coulorb strength deteymined by the charge. I{ the

Coulomb term is omitted, it is supplied automatically, with RIN = 1.3 fm.
The limit of 12 terms includes the Coulowb teym, expiicit or implieu@ If
an input central potential ("IN-FOR' or "IN-UNF') contains a Cowlogh part,
use type. 'COULY {not type 'CENT') to prefcnt the zutomatic generaticn of
another Coulomb term.

Note 2, MIYPE = "TP': Chapter 3 should.be read and wmdar-
stood before using & T potential. Briefly, these are the conventions

If a T is present, thB order of thn terms is 1mportan Ordinarily, you
cﬁeuidfp}acp any Tﬂ potentials after all real central terms, 1n&3ud1ﬂo
the Coulomb zerm (Use an explicit REAL COUL COUL term). If this rule is
followed, ihe specified snapp and depth will correspond to the energy
“difference {(in meV) betneen the sep = #1 substates and the s»p =0
substate, as in rbfs *2) ' T

The T_ potential used by DDIP is actually the altcrna*'ve form
Sa2°R2 (n Up) p1o%odud by Satchler.') In all of the calculations I have done,
the difference between this form and the usual form 3 [U{T?lp + TPU(r)}
is insignificant. Chapter 3 has wore detaiis.

[

» Note 3. MIYPE = 'TPD': Potential type "TPD' is not legal for
input. A calculation using a T, potential requires a knowledge of the
first derivative of the potential. Therefore, each tinme a term with
MIYPE = '"TP' is specified, two terms are rihaliy genevated: The second 3
type 'TPD' and shape 'DERIV', The 1imit of 12 terms includes these ia«
ternzlly generated TPD terms. '



POTE "11}21_
\uﬂ H ’\ 1SN

Note 4. AIN ven if the diffuseness paremeter is not used in
Calculatiny the p@%entlal (as for shapes IN-FOR or IN-UNK), an.dwp«UXL~
sate value of AIN should be supplied to aid in the choice of ste
unless the step size 1s )peflfjeu eaplicitly. If AIN 1s not OSitive?
that term is ignored in choosing the step size. See onms*d
able TOL(L). :

.;x'\

Q

&

{3>F§§° Note 5. IN-FOR and IN-UNF: The additional cards nseded b
IN-FOR and IN-UNF should be placed after the blank card at iL~ end o
list of notcntxal terins. For example, 3iFf term 3 has shape V FOR, term 4 _ E?~
has a shape IN-UNF, and there are 6 terms in all, them the card descr1b1ng %\J
term O bhonxd be tollowed by a blank card, then the SDCCiflLB*lOH car
for term % then the poLcnilal deck for term 3, then the bpeClL]CQﬁiOH
avd for verm 4.
T'hgstbﬂAfo FZEQ”T?Efmﬁ“C»JQEL_Sg €2¥?§ﬂt“1 ‘&%j ATl sARYD

, The spacing (HP) betwser the input potential values for shapes
IN-FOR and IN-UNF does not have to be the same as the spacing (H) u%ad
for integration, If HP # H, six-point Lagrangian interpolatio used
to suwnlv ihe missing ”a]uesg A1l of the input potential vqtbcs are read
into *he upper part of the potential array bpzore the L’fGTPOl&fJOH is

-
t—n ‘<

Ao
the

done; these values are then replaced by the interpolated values. It is
generally a good idea to place your IN-FOR or IN-UW¥ terms before any
other terms, ospeglally if HP < H; that way, the part of the ﬁbepi'al

array 1esc1ved for the later tcrm% can be used as an input buifeN if
necessary.

RERAFAXRRARERRAFARRAANANLRL

2.4, CALCULATE Command: Perform a one- -shot calculation and
print the vesults., This command must be preceded by DATA and POTENTIAL.

Cpticn 1 is the logical unit for storage of the "raw" uﬂn01n~ -
alized wave Functions. This must be specified if the WFPRINT command is
to be used later.. The device may be tape or mass storage. The format
of thza cutput is described below, Zero suppyesses output.

O)fton 2 (if nonzero) overvides the normal choice of integr ration
method. = (owell methed, without off-diagonal Loup‘inv (normalLy used
in the ab scnbo of T, or T, potentials); 2 = Cuweli iethod, including
off- dlagond] co_plxﬂg (nornaliy ised when Tﬁ but not Ty, terms are
gleSCht), = Hamming pleoﬂciOr corrector method (normally required i£
T present)‘ Method 1 is used in SNOOPY, and method 2 is used in DD.

‘3,
T Method 1 or 2 is used with a T, potential, the Tp po*ﬂﬁtl&l is ignored.

N

aune]
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\ } "L}L[‘\i H

’1‘1 T:‘ )
iv posi is the "skip factor” for printing and/or
storage ofﬂihe wave functions. Wave functions are p“jvfcd or storved at
N Ll £

intervals of (option 2)*H mr@ means every step (i€ at all). Note:
1f Method 3 (Hdmﬂiﬂp pres (ovrekbor) is wsed, and Option 3 = 0, the
wave function will be Output at nonuniform lﬂtpr&lS (see ref. 4).

Option 4 (if positive) is 1Og10 PS), where EPS is the exror

cunc101 pavemeiev in subroutins DEPC (see ref. 4). Default = 35,
(Method 3 only).

Option 5 (if pasit:vp) causes the wave fumctions at the starting
and matching radis to be printed for diagnostic pUTpOSes. if option 5 is
negative (and method 3 is used), the Lnn07m@llzeg.Wdyt functions are
printed (see Option 3}.

1f Option 1 is positive, the wmnormalized weve functions are
r e
TR

Cwritten using FORTRAN unformatted RK.LU statements. The first rescord
for éach partial wave contains: ’

i

KJ
=L -J+ 2 if only one I. is present, or = 0 otherwise

+ 1 (or -1 after the last part;¢i wavv)

J5T= startinz radius/H

NWF= the number of wave functions in ecach record
(may be 1, 3, 4, or 5)

Iach data record (one per radius) contains:

R = yadius {(in {n) ,
CX(1) (I =1 to NWF) = wave functions (order described below)

The last vecord for each partial wave is a data -record in which R 1s
replaced by -R. The last partial wave is followed by a header record
with XJ = -1, followed by two file marks. The output device is then
rewownd. ‘ ' _ :
If NWF=3, the order of CX(I) is I=J, L=J-1, 1=J+1. If NWF=5, the
order is I=J, L=J- 1 #1, L=J+1 #1, L=J-1 #2, L=J+1 #2, NWPF=4 is like 5,

but 1=J is omitted. ' .

a%xrakn.x."ﬁk%wk%wk%kﬁﬁk*k

2,5, TITLE Command: Read a new vun mumber and title. The
xt card should contain the tun number and titie, in format (I5,A72);
these will replace the values on DATA card 1.

B R HEPAATH '?%%1?&%?1 2oy



Lot
POTPRINT
DELPRINT

2.6, PLOT Command: Make a printer plot of the results.

Options 1-5: Each option specifies the format for plotting one
cbservable, Ognion T is for the cross section, 2 is iTyy, 3 15 Tao,
4 is Tyy, and 5 is Tpp. If the option is zero, the corrvesponding plot

, the ¢
is omitted. If the option is 1, one line on the plot will correspond
to the difference between the last two angies at which.obswrvaolbs WEYe
caiculated (to the nearest degree). If Mextra engles'! were specified,
this will result in plotting onc extra g]e ner Tine. If the value of
any option is greater than 1, it Sp@tiflcs the number oF degrees pey
line in the plgbs Fxception: If all 5 optioms ave zevo, they are all
set to 1, T

The experimental data, the calculations at the experimental
angles, and the calcul: ations at the extra angles are pletted on the

same plot, using 3 different \ywbol%. The Y scales are set automati-
cally, depending on the range of the data and calculations to be nlotted.

HELRRARERL AN AERAXNAN LR NAAR

2.7. POTPRINT Command: Print the potentials.

tion 1 is the "skip factor", Potemtiais are printed at
1nte1vais of (option 1)*H.

Note: If "local momentum renormalization' is used, the radial
dependence of the T, potential is 1ot given directly by the fo mialas

given in sec. 2.3. Refer to sec. 3.2 for details.
3

HRRAXLXGRRRAR RAXREIKRAAREE

. 2.8, DELPRINT Command: Print the S matrix, in any one of a
number of foims.

Cption 1 specifies the form in which the § matrix is to be
printed. Possible values arve:

0 =M

., (internal for
ML ( ‘ nal form)



DELPRINT
- - i (o, o, ) 5
1= A'I’JT, = Zi.f‘v“?{w e LU 61” fas in Robson's DD7)]
~1(wy o )
" J LY UL LT e
=gy 20 USe fas in SNOOPY]
J -1 ((L\L‘ +(!J» ) T -
3 =8 = 2ie n + &, [N lclc,ar S ma’fuv
L'L LiL l}'L
1
7 J

LY.
W(LL'1T 1@\»@‘17,11

-~
e
il

p= ) y (23+1) [3(211+1)] 2(-1)

' e 12.
[Johnson ‘'spin transfer" form )j

where 1, and L' aie the incominq nd outgoing orbital angular momenta ye-
Sy 'v“‘uuly', J is the total aug~ ai momentum, wy 1s me relative Coulomb
phase shift (wy = 0), and K is the "spin Llaﬂufﬂ MK =0, 1, or 23,

Two other C.olum_ are printed {for forms 0-3) as a check on the
accuracy of the calculation. If the petentials are all real, the S matrix
must be unitary (sst = 1); i.e.

J+l

. J J o E A
>' ) f)]-_l' IJ" (SI.J.J") = 0]’..!il L ‘
JEENES 1

The colum labelled "ABS ROW SUM' contains the diagonal elements of S5,
and the column labelled Y'CROSS SUM' contains the off-diagonal elements.
1f you are in doubt ab out the accuracy of a calculation, Tun it once

wi Lhum any imaginary potentials. For such a calcul ation the diagonal
elements of b’%* should ail be 1. 0, and the off-diagonal elements should be
zero. 1f necessa ry, readjust the tolerances to improve unitarity. If
absorptive potentials are present the diagonal elements of sst sheuld be
< 1.0.

The DELPRINT output provides another accuracy check whenever
a Ty or Tp potential is presznt: The § matyix should alwayq be symietric, 1.e.

o L)

o )
L ! L LL !

even when absorptive potentials are p

7

Similar relationships apply

ot}
(¢
%7
0
BN
ad
leds
.
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A1
H

»

DELPRINT
WEPRINT
AMPRINT

to forms 0, 1, 2, and 3. For form 4, this relationship takes the form

U ’

]

an11)? 41(},‘? CRSERVIES]

The Johnson "spin transfer' form (forn 4 is useful for sep-
arating the effects of the various potentials. John 50“1”') showed that
first erder perturbation theory, M]( depends only on potentials of
order K; i.e., K =0 = centyal, 1 = :iioS, and 2 = tensor.

=t
(]
oy

Ax,ﬁﬂhk WEANKED ak%ﬁ%iﬂkk*

<y
!

2.9, WFPRINT Command: The wave functions are read <from their
storage device, renormalized, and printed. This command must be preceded
hy a CALCULATE command in which the storage device is specified as Option 1.

Option 1 is the ”‘%l\lp factor™ S. If s > 1, then s - 1 records
e sanpe’J for éach record printed. The radial interval between the
reco -ds written is controlled by CALCULATE Option 3; xherefme the
printing interval is the product of these two 'skip factors', times the
basic interval H. : : :

Option 2 is the maximum J for which the wave functions are to
be printed.

v The renormalized wave functions are linear combinations of the
two independent solutions of the coupled system of differential equations.
The coefficients of these two solutions, which are printed at the beginning
of each partial wave, are calculated when the wave functions are matched

the external Coulomb waves (see the Theory Chapter).

ARARARENALBRRARAMALRAARAARR

' ‘.,lO AMPPRINT Command: Print the scattering amplitudes (A through E).

PUIGRORE

They are defined in the Theory Section, and in yef. Z.

=3

L ala ots odeatech
AT NI

EhR SRR R AR
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2.‘11.}' OBSOUT Conmand: Wi te the calculeted observables on a
specified oulput device.

Option 1 is the unit mumber of the ocutput device {default = 1 =
card punch). :
ifies the format (dofau?.t = 1), IfQ0ption Z =1,
the £ s the nurber of angles, the number '5', the Tun num-
ber, . in format (L 5,12,15,A70). (The nmumber “3* is to dis-

P
1 this from DELOUT and AMPCUT output). BEach s DSGQUG‘ card Ccoit-

tinguis!
tains s,he angle, and the calculated o (or 0/05»\)3 iTi1. Tog, Tois cmd 'l‘zzy
in formst (¥ s5.4-,133_f5,6,4»]"*13.6}. eI Ly xtra' angles ave writte

If Cption 2 = 2, the same format is used, but 1 "he alcula’rmn;;
at all angles {(including the an Jes o: the input dc,ta are writtes
[

HARRERRARLETHRARINXARLRNAR

2.12. DELOUT Command: Write the S matrix on a specified device,
in machine-readable form.

Option 1 is the logical m:u“ number of the cufput device
(default = s card punch).

Option 2 specifies the output formst (default = 13, At this
writing, un]y one format is available. The first card contains the
maximm J7 the form (option 3), the run number and the title (format
L),IZ,IS,A/C). Suosequent cards contain the S-matrix values (:rormm, 8F10.7).
For forms 0-3, each La;d orresponds to one value of J, starting with
J ==~0, in the order (L',1) = (J-1,J-1),(J,J), (J+1,J+1),(J+1,J- ~1). For

m 4, each card has one _; value, starting wrth L = O, in th°_ order

wry's (o,L),(l,L),(z,m,(z,L-z-zL

Option % is the S-matrix form (same as DELPRINT optlon 1.

REREAHAARAAFARIARRLARAALRS

wn

};_", AMPOUT Commend: Write the scattering amplitudes on a
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ARDOUY
BEY
I
n :
Option 1 is the unit nuwber of the output device (default :

it
}...-l
i

card punch).

Option 2 specifies the format (d\,mwll_ = 1). If Option 2 = 1,
""""""""""""""""" ins the number of angles, the number '6', the run
 pumber, and the title, in format (I5,12,1I5,A70). (The m xmc,r 6! is
 distinguish this from OBSOUT and AMPOUT output.) . The scattering amplitudes
occupy 4 cards per engle, in the order ©,A,8,C,D.E, in format
{ F].Saf!34,,.*.”.0/61"..15.6 . ()nly' the "extra" ”*zg)l S are written.

T:E Option 2 = 2, the same format is used, but the smplitudes at
all anples (including the angles of the input data 1) are written,

H: O'J*mon 2 = %, the SCJttCr"iﬂg nphmues are transformed into
center-of-mass helicity cocrdinates and wr 1tu:h in a format which is

readable by Hd Stephenson's routine HAUSER, The first card vommm the
number of angles and the normah"”wop fe(ﬁ'f) 5,&3'5%33, in format (I3,¥10.6).
The scattering amplitudes occupy 4 cards per angle, in the order

8,(}"“. ,_,mw-l 0,-13,m'=1,0,-1), where m is the incoming spin projection

along 'ho mconum HE: smntum direction and m' is'the outgolng s spin pro'cdmn
along the center-of “m3ss outgoing momentum direction. The fomat is
(F7_.2,S(/ 6E13.6E2)). Only the “extra' angles are writter

‘ If Option 2 = 4, the format is the same as 3, but all of the
angles ave written. ’

RERAARANRRRAARARARARRARARA

2,14, EXIT Command: Quit. A blank card acco;rﬁplishes the
‘same thing. '

52
i
2
b
>
*
=
=
p?
*
‘X‘

RRBRRRIALLAXRAR

3. The ’Ip Potenti 1 - Conventions

: The presence of the momentim operator in the T, tensor spin-
orbit potential inmtroduces several cony pnwt ons into any calculation
which includes a ";, potential. Most of these wmplu:,anom - such as
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P
ce of #m anpropriate algovithm for the nmmerical solution of
rential equations - are handled automatically by the program;
y, the user need not even be awarc of them. Howsver, two of

the probiems introduced by the T, potentinl requived the adoption of
samewhat arbitrary conventions, Bf which the user must be aware. These
conventions involve the method of attaching a radial dependence to the
Ty operator and. the use of o “local momentum'' renormalization for the
Ty, potential. In each case, the convention which is ordinarily used in
DRI is the one which T have found to be most convenient snd efficient,
but methods ave provided for the use of alternative conventions if the
user prefers them.

the choti

et o

L

4

rod ~ _ e - 1 ) s ¥ ) : Y % -
3.1, Cowmutation: 'Z‘(Uip + rpu_\, VS. T"U’p : 'The 'Ip operator

does not cowmite with a function of the radius; i.e. U(r)Tp # T U ,
‘Satchler!) has shown that an "acceptable T, potential (i.e., Be which
produces a symretric s watrix) can be constiucted in eithsy of two ways:
The symmetric combination Lo Tp + TPU(.?)) can be used, or a slightly

«

¢
ey

different operator can be formed by sandwiching the radial function
between the two womentum operators. I will refer to this second form
as T The relationship between the two forms is

ol
j d [1 d \U'

iy {171 g ‘ " = T .--'- .1,'. g NV e T {2
7 (_d(i)'lp . TpU(r)) Lup " 77 @ FaF UCx)j T, {3-1)

where the derivatives on the right operafe only on U(y). The difference
between the twe forms is a T, potentia

54
1 which lonks like the second
derivative of U(x). In all of the calculations I have done so far, the

effects of this extra Ty potential ave negligible in comparison to the
effects of the T, potential. For reasons of efficiency and convenience,

DDTP uses the TPT - form, bsg;ause second derivatives of U{r) are not
required. To Use the form ,5_ U{r) 'I‘p + ‘l‘pU (), simply insert a card

-

defining the extra Ty potential immediately after the one defining th
[ . . Lok ‘ e - e
Fp potential. This T, term should have shape = RDERIV and depth = - =

i

L.

times the depth of the T, term. (The correct shape is RDERIV, and
not RDRDER, because the Tirst derivative of the T. term is autowatically

. ~ : A oy M L AP X ~ ol " PO Da11%
inserted after the T,). The theoretical prealct:i.gns of the T, potentiall®ott)

are not sufficiently detailed to include the effects of the curvature of
the nuclear density; therefore, they do not indicate 2 preference for
either form.

o ofe ot 2o ot o s als oSaofle afn e elo oty Do ife o aZe oy ot ofs ot
PP S R R D b R T R S Rk

%2, Ioecdl Morentum Normalization: The T, operator, as defined

e s oA A et o £, A e b, Wt el i

"
1?

.



by Satchler!), has the form

LR CR U S T - G

1t has dimensions of momentum squared, and its expectation values depend
on both the divection and the magnitude of the momentim. loanides and
Jolmson'?) and Austern'!) expressed thelr predicted Tp pofentials in
terms of the energy difference between a deuteron with sep = *1-and one
with sep = 0 (wheve § = p/|p]); i.e. their predictions depend only on

~ bty
A om

the direction of p, and Xot on its magnitude. Unfortunately, we camnot
in general simply divide the T, operator by p?, because the momentum
operator in coordinate space ;8 4 differential operator; hence, its in-
verse is an integral operator, which is nonlocal, ilowever, we can TEROVE
the dependence on p? in an approximate way by defining a '‘local momentum'’
pg, (¥} whose magnitude is given by :

pl0) = p I - Re V@) (3-3)

where p, is the asymptotic momentum, Fey 1S the center-of-mass ene
the incedent deuteron, and Re Ve(r) is the real part of the centra
tial. Tn the nuclear interior, V. (r) is large and negative, 3
there can be much larger than pp”. My experience has shown t i
is a good approximation to the operator p”, at least at energies well
above the Coulomh barrier'®).

In DDTP, the radial dependence of the Tp potential is given by:

1

U(T) = T?(T)PL (1) = ‘"‘TP(T)pA [1 - Re VC(Y)/EQ“&J (3-4)

where U(r) is combined with the T, operator as described in sect. 3.1,
The function pr(r] is calculated directly from the input parameters,

R

o S s . . . P
55 described in sect. 2.3. The depth of VTP(T) js expressed in MeV, like
the other potentials. To the extent that the local momentum approximation
is correct,'VTP(r) represents the energy difference between the substates

~

with gep = z1 and the substate with

¥ >
4

= (. Thus, for example, Vop(7)

-

}

Se
can be compared directly to fig. 1 of Youi

vides snd Johnson'®). That figure
indicates an attractive T potential [V <
- ~— F :

0] which is approximately

1 MeV in depth.
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st the convention used in eq. (3-4)
] 'Lo the TT potential, as defined by
< Wiz A

1
does not vepre cem an plm"uu,i.u
Sa.tr;ixl«eafl), nstead, it 18 m 2y of inter m‘:unv the pre-
dictions of vefs “‘s ) whicl epend urhcul) on p?, in terms
of a local '[‘p potential, whow expectation vaiues do depend on. P2,

. The h,L tion V. (1) used by DDTP in the renormalization in
eq. (3-4) is the sum of all of real central terms (including Coulomb)
which appear before the T. term. Thus, if the local momentum renor-
malization is 10 be used,’ the Coulowh term must be inciuded explicitly,
before the first T, umm along with the other REAL CENT terms. If you
prefer not to use e Phe local momentum “ero“.uh'/,a »:3 oni, simply place the
cards defining your T, terms buore the first BE \I, CENT or REAL COUL
term, and multiply the potential depth by p, . Tbc iocal momentum
renormalization should definitel y not be us*}ﬂ for incident energiss
below the (‘oulcrnb barrier, because eq. (3-4) hc'.S a singularity where
Re V (”) = B oM

Ti T potential which is stored by the PO uNTIAL command ayd
oy ~ -~ =3
printed by the BOTPRINT command is actually V v}l - Re ‘\T)/ C‘\i‘ T
which does not include the factor P "2, ’Ihls fact 1s uece:;sarv for
P s :

unde rsaanmng, your POTPRINT cutput.



4. Deuteron Optical Model I‘mr»i ism

Most of Tho basic formalism for the deutercn optical model may
be foursl in FULL,'\'M *y, sec. 4.2. Rfﬁfnmﬁ; paris of that trestment are
repeated hers, with scme changes in notation and & few corrections, to
help the DOTP user to interpret an d inderstand the various input and
o u,put options in the program. ‘

4.1, Potentials and Schroedinger Foaustion: The elastic scat-
tering of deuterons by a “xucic Gs 1s assuned o be described Ly & local

potential of the fomm

V) = V() Vg (0)hes + Vg (T Vg (T,

4
(4-1)
U 3T+ “I 1
[ I*p(l U P( }
The tensor spin-orbit operators are defined by*)
2 1. 2,2
. = ° ool e - ],
Ty, = (Les)™ + lles) - gL
2 o,
(s’ - % - (4-2)
e feemys L 2.2
ip S
where L, s, 1, and p are the orbital angular mo luml, deuteron spin,
pomhon and momentim operators 1espectLveiy, and r = v‘/;*[c The five
functions V VIS’ \Tl’ V}Q, and U, pp &Te €O onplex fumctions of radius. In
gerieral, v f (v) contains both nuclear and Coulomb components. The function -
UTP(r) is d}.scud d further in sec. 3.
' The general solution of the St hmﬁdmg 7 equation for this inter-
action when the incoming spin projection is ¢ may be written as a partial
wave expansion:
: -1 w1 M
R T ] A7
‘I)O y AJ]M} b uJIYI(*) SILYE (0,9) (4-3)

JLLTMy O LLE



where the dependence on spin and angle is contained in the functions
M - . sl ot i
s o - Fe - . F N RTAS P . “
Y = 7 KMILIS Atay - Yy, (8,0) %] (4-4)
‘,.'! o2

JL'S  Ato!

In the expressions-gbove, J, L’, and S{=1) are the total sngular womertion,
orbital . anguiar nomentum, and deuteron spin, and M-, P aud of are their
remfﬁc’rivﬁ m“Ojec ions on the 7z axis. 'lw ir yital angnlar wo-

1

i
entum L and the coefficients ‘X‘TI MG by the bounicaT Ty Dt
LY

c‘ickon% which will be discussed below.
If the expansion (/!n; }ods substituted into the ‘3 roedinget
equation, and if the resuvlt is multipiied on the left by 13"“, G,0)

i
Lt
pun
oA

integrated cwe»r evigle and spin vari iables, a set of cotiple sguations for

the radial fimctions Uy () is ohtoined:

E ALV ;}

FA A
dp £

d” ~1

UG ® Byl

EX Y r { ”'MJ‘L”) v
Lt :

} .
where p = kr, and k = (2 lr@,/n )Z is the asyipt otic wave mmlbe’m The

potential matrix elements (JL'[V]JL'') will be discussed in detail in a

later subsection. Yot each value of J (eyrem ~O}, there are three
equations of the form (4-5), corresponding to L' = J, Jti. Because of

parity conservation, only two of thess equations (£ or LV = J+l) are
coupled together by the Tr and T, potentials.
1

4.2, The Transition Matrix: Tn general, a system of three
second-order equations like (4-5) has six i 'nﬁf;px,,ndLﬂ.L solutions. Three
of these ave eliminated by the requirement that Py st be regular at

the origin; i.e, Uy ,L(O) = 0, The other three oiui ions are determined
by the condition that in the iiwit of large v, the function Uy, (¥} must

contain Coulomb-distorted plane waves with wit amplitude if LY = L,
and only outgoing waves if L' # L. Specifically, a "matching radius” T,

is chosen such that all of the terms in the potentizl (eg 4-1} are
negligibly small for r > Mn‘ except the Coulomb term.. At 1 = T the

wave function Ugpeg (r) is rzquired to sa"isfy the "rm‘r( hi g equation"
4 4

o

—iwL‘ 7 : 1w
. 3 N4
Uy, () = My LL"” ) 3 B (kg dd o+ 8y

o

where ¥ (p) and G} (p) are the vegular and irregular Coulcob wave functions

R TARTACY

e 'R (k)  (4-5)

15)

(4-5



respectively, and w, is the velative Coulomb phase shift given by

1, »
we = o, - g = Yy arctan (n/j)’ ' . (4T

it

Where n Ze"/hv and ¢_ = arg I' (1 + in) are the usual Couloawb parameters.

s a S B

<1 -
i 101 )..«. *14{,« vOTH

tinuous at v = v,

must be satisfied by the first derivatives of u, ¥, aod G. These natching
equations provide enmrgrn information to uniquely specify the coudary
condition for u 0 () end to determine the "transition matrix"’ clements

JL L
Mﬁ,’l The matrix clement M 1, is prevortional to the coeffl

wave function and its fir
e

st derivative must be con-
fore, another matching equati >

outgoing wave with orbital angular mowentum L', given a i t-amplitnde
Coutomb-distorted incident plane W’l\'(“ This tfansrtlm matrix is printed
by the DELPRINT command with option 1=0 (see sect. Z. 8 J e

4.5, The bc(.:cerlnz, AipL itudes; Consider first the case of
pure Coulomb Scatiering. i this case, ba iy, = 0y and the e\pdmzc)n {4-3)
reduces to R _ .
' o) o . S
c _ . .o i ”1 B N }\‘ . N (()-i .
) Apos © 7 Fp o) (M) LS A Y] (8,4) X, . (4-8)
JIMAX o LY ! |

We already know what a Coulomb w.ve looks iikel()):

-1 ¢ L -1 v AR ol
=gkt Jile M oThE a0 v (a0 v M, @) X | (4-9)
4 L L ].( K v :
where 0, and ¢, describe the direction of the incident beam. Cm‘r@af:i.ng
(4-8) anid (4-97, we see that the coefficient Aﬂ Mg st have the value

Asymptotically, the Loulorw wave (4 9) nas the rorm |

i [k=vr+ n log(kr~1<~r) »00]

c R
I e N (T L
_i[kr-n log 2kr + o ] o
- f (6)‘3‘ { ﬂ ¢ 4] } ‘:\3 (4"}“!}



where

N 7 o~ ‘7 - .l" - .‘\’ I";" °
£ (O\ o - n_ C‘;)%t?k, ]) ujﬁ 168 ::1,1(_(\; .a) . ) (@

1s the Coulonb scattering 3muj rude. The foxm (4-11) was msen LH, Jae
i cle aration between & g Cowlomb-distorted Y
jine) 2ng & spherical, outg cing scattered wave

e ,mem‘i el a%"'icw;rﬂ.t“::elir Ly WaVE
the Coulonb wave function, plus SUNe additicnal

T T ¢ IS 5 g roie
k-‘g \')Q = T é‘ [ldwo.xas%% gl Cxa;]

where £, (6,4) is the anplitude f’ux scartering an incident wave with spin
wave with spin pmjecti.@n gt and divection

((‘ $) in a pait al-wave representation ey

o }'3:;

7 ‘e

*d
o
¢
A4
=

eyting the quifi’lCIE\'L‘Lb U‘,um. mnd the 85yuE
Wave ;_bmcticns 5.-~6} nto the expansion (@»’é), and uJ gacting ¥
part (4-2). Maling use o of the asymptotic behav sor of Foand G77)

Cav L A
i{p~n log 2p.- e oL]

a

- N . ).' . :J
.;N\L*bx" ') (qu‘:}{)‘{i‘ (8,001 ¢ -

" Now we will cmﬁode a \..OOfdlnc‘iuC svsf em: The z axis is alon 5 the
incoming beam direction k, , and they axis is slong k. * 1, e where B
= oemet VY b T“. ek ,J,'@,

Tpee e

is the direction of the Jetecte pa‘g‘tlc,m. This coordinate
in agreement with the Madison conventiont®). Then 8, = ¢ =

j -
<
4]

~
i

[t
s

and we need 10 evaluate the scattering ampl itudes onl
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BER OIS S NN LGP

. . z - -, (“"O‘g F 'AK'T
x 1 (Jo|L 100y (JolL' 1o-oto) ¥ €0,0) My

If we require pax ity conservation and veci
time reversal symmetry), the scattering smplitudes rs&i:is:iv

£ qe) = 1% £, (8) ‘ R (5 &)
y g'U ' C

~gl g

so that the matrix £ may be written in the fom

: {A_ B C\ S ,
£, = \13 B TD\ : ' : : - (4-18)
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where the order of o or o' is 1, 0, -1. Jxll)’ four of the
independent; it can be shown that they satisfy the rela tion

~
Lo
R
)

Nt

C = (A-E) - V2 (B+D) cot 6.

Explicit for;m-]as fo*" the scatte.ing amplitudes are given in the Appendix.
The smplitudes A-E ave printed by the AMPRINT cormmand, and written in
mauun:weaddble fom by the AMPCUT command wi*'ch option 2 = 1 or 2.

If option 2 = 3 or 4 for the Al MPCUT command,. the amy are
transfors ned into center-of-mass he mcwy coordinates before th e written.
This is accomplished by rotating the coordinate system for the fina}.-—s’tate
spins by Oc 14 about the y axis: :

siitudes
they ar

F ., (6) =) d

c'ag

w}wcre F (6) denote the helicity scattsring m*p’ itudes, and the quantities
(6) are y-axis rotation matrices for spin-1 particles, as defined ia
18) |

o' !
ref.

.4 the Observabies: The cross section aad the anglyzing powers
vi'- '~1—\~\ o e e e 2 £ T S .

are given by



(4-21)
Tr (£, £
"1”.‘ Ay = m.__w_ff —
“4 Tr(ff)

where "che matrix £ is given by (4-16). 'The temsor operstors Ty, are dafinsd
G

i oin the usual spin space is glven in tewmns
g .

7y
in ref.” ), Their representati
of Clebschi-Gordon coszfficient

| . 2 - « e
(m'i'ckqlm7 = (2k+)) s ws kn ay S . (4223

where s = 1 for deuterons. Explicit fomulsg for the cross sects
analyzing powers (4-21) in tevms ¢f the amplit 3 (4-18)
in the Appendix.

L e , 14 . .

_ fccording to the Madison coavention™ ), the polarization of the
cutgoing partvc}m shoild be referred to a coordinete system in vhich z 18
along k, st If k¥ . is in the cpmel of-mass system, then the polarizations

= out ! .
of the sca ‘L G r’:l particles are given by :

o o o L
.t kq = (- r_lk . - S (é

where the pri‘ne indicates the "outgoing" coordinate system,

Hooton and Jnhrsm ) ~howed that a pOOlepc‘tQ g “stﬁm in whic
&

2o 1y anst - - r Y<in o
the ¢z axis is algng 1—‘—:‘_11 }—(out may be especially useful for

effects of the tensor potentials. The tensor analyzing powers L, q (or

=
r—#‘f
'f’
'm
g
4
pwd

polarizations E'?q) veferred to this coordinate system ave printed uvnder the

heading “"Johnson Coordinates' whenever ''extra. angles™ are.requeswd (HANGL>0) «
They are given by: : : o

!

: 2
T 2)
T, = ( fe 2

.

. (. Cl,'r—“f. V o a . o
£y = (08 Ty N

Explicit formulas are given in the Appendix. - -
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4.5, Potential Ivti,trt'z,x Biements: The potential watrix elements

<LV Vg E eq. (4-5) are defined as:

o M , A 1?&
- N — Ioh) n 5 - & . [t
{JL iV‘J}J/ B J dQ [}/L-}-LYS(HJ V(_\_) !,/JL%(\J) (L%— ZJJ\
(,"’j ' {/
) /I\"i ;’"
where f_,;f o s glven in (4-4) and V(r) is given in (4-1). The symbol |
imp] lies integration over both spin and angle vaviebles, The matrix
elements are mdem ndent of M because of T()(a\,i,ﬂf)éﬁ invariance.
The derivatior u‘ ements (using (4-25) and
eqs. (1-5) of ref. 1) 1 b tedicus -- 30 tedious,

l
-nins at least one eryor.

3 Iﬁuts on and R.C. Jolmson
znd are given in Table ti.

in fact, that bl
T ve-derived L}m T and
re-derived them independe

o
S
[O]
5
S
3
[y
ety
-

TABLE 1T

POTENTTAL MATRIX I U\f EN ’5

J-:}:JJ: j J:L . J.:“ }‘.l"l

(IL|LS] LY L - 1 e

71-1) -w(ZL 1) (2143 :{w)mu)

b L . ¥ "10431)
QLT[ IL7 3 ﬁ; Ty % " R

gl 1 2 ; LA 2
\\J}JtI{)}JL> H(ZE"‘“’I‘) V

LiT |IL)

L}\‘H o -
M
r
)

(J\{ Taed
3
4+ i
(.“‘

i ! T T T - J Jril
<J J«llTr;J J+1>= J u+-1}'1‘ri,u J-1 = [.-L.E__.Q—]

» a2 g2 e
e oalee 1T T FJ{J+1) (2J+3) d J(J+2
- i ‘ A = l L j rrm By et v e 4 ._.M._.,;’

<J tj ].la.pla] J'1> (?J‘"J) {_ 2 { r 5’)‘ Z 3

(23-1) d_ . (1) (J51)
. L),

G IR Iy = gmy B TR w

P




The matrix elemen

‘ ts any 1\_0 gl
dependence, nor do they lnclu C side
of eq. {4-5). These factors When

the cosplete rvadial dependsnce !
discussed in Sec. 3), the resulix g mawm

42 ; R
1 ) Al T w7 A 4 1 Il L‘:dj.
T \JL“ MJL} r o= - {JLT JL) [ 0%+ J’é»r e = UT - “(“":Z““)“ Ul
1

e

pUp
< 1/2 Z . 4
(3419 . J L ) 1Y (04 o
= !g-;}z.%.zfi .‘::?:%-T-A..._ l[] (},_2 (IJ‘ s L‘{‘_;é‘.}_l- “j) iT ) (_E;:,:};}__ U! . * (’J } ﬁ_};m E—) 'U'l (Q - 2.6 }
e dr P o
T T, |3 31 o
\ p_)p ’
1172 2 PR ) - ' -
rl] l}‘{_:‘ui i . d- . Z-J":A.;. PR (‘1\ l’ ) J J'{'L,\
= LL,.??{}%?M (u Sy - .(.,;.,f,.,w_) ) e ]‘;. U .,,,,_(;,ff.()_ U]
D dr ‘ T

The “r@’u_pmm“cy“ condition (1 e. thc vequirensnt that the S
matrix bs symmetric) is equivalent to the regquirement that the Wronski:
between any two solution vectors u and & of (4--5 ) must disappear; 1.e.

W=

RS
~3
AN

-,

(ueditt - Geu'')dr =J (u i -0V L) dr = 0 " , (4~

od to a matrix notation for eq. {(4-5), and Prmes dencte
differentiation with respect to v. When the potential matrix ¥ contains
derivative operators, the usuel implicaticn that V rust be symfietyic dees
not hold. It can be shown by direct substitution™that . the ’1 roza"lhal
matrix defined by (4-26) satisfies the reciprocity condition’ 4-273.

where 1 have chang

5, Numerical Methods

The different ial equation 4-5 written in matrix no cation
H : H
takes the gOI&G}”&.}. form :

[1- V(0] y @) - ey )+ L - Yy = 0. (5-1)

~ L P



where y 1S tnFx co; f:zon ector and V_, VL“ Aty '\’.{, sve the coefficients of
1, d/dr, and ¢ /1*;“ respect ively, in the potential matrix. The matrices
\71 and V., are hagozx_a] 1f a T potential is prasent; otheywise, they are zero,
~ o (d . i
The matyrix ’v”o is diagonal 1f neither a Tr nor & T potentd a1l 13 present.
S : . e

]

v’i

e N

ion c»€ thres independent vecior
tions Yy, Y‘ﬂ (vhere L' = J, Jtl

solution
functions

is the orbz.'t:al a_nguj_a:r momentum and I denotes three independent solt itions).
‘Because of parity conservation, the system can be de Lompo»e,d into a single
vncoupled equation for LY = J, plus 2 2-by-7 system for L' = Jtl, so only
five functions are really necessary. However, for notaticn 31 conveniencs,

the system will be t.redted as a full 3-by-3 sy% em in the discussion mlms
The method used by DDTP solve ('a 1) c‘mpc,ndd on whether or not
2 Tp potential is present. In the absenc:e of a” pf\tmtlali the first-

O

derivative term disappears, enabling us to uze 8 1(13‘,3*@ ly fast, cfficient
algorithm known as the Cowell n wethod??). If a ’I potential is p'resm’x
crith

?
2 somewhat slower pre dictor- LOI‘YGC&.OF algo n Bue to Huming®) is used.

5.1, Starting Values: At small radii, the regul ar solutions of
: e A “e
(5-1) are given approxumately bY : o

%

1(1"} % Oy T th(kT) . » ‘ o ) o - ‘. (5“2)

where o ., IS an arbitrary normalization, j;. is @ spherical Bessel fumction
-~ J T p o] -

and k is & complex Jocal wave number glven by
3 W N1/2 C ‘ .
=% (1 - V. (0)/Ba) " : o 57
TR A | S G

where k AT P A/ﬁ is the asywptotic wave mumber. The First temm in a series
approxima‘_cion“) for jL is sufficiently accurate except for L' = 0, where

two terms are used.

For low partial waves, integra
partial waves, the starting radius is

ation starts at g = 2h. TFor higher
chosen wheve jy,(kr) = 1078,

] bitraz*y except for the requir ement

¢
QJ

The nommalizations a. ar
i

, Y
that the three solutions must D€ linearly mdspcn ent. A unit matrix
satisfies that criterion; i.e. oy 7 1 for (L',1) = {J,1), (J-1,2), and

{(J+1 ,3) and Gpeyp = 0 otherwise.
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bsence of a T potential,

(5-4)
The Cow its varisats are based on tha foliowis ng relation-
-ship be cmd'a_ts second deriv iﬁi“\f@ at chzcc, vqamts‘f:si
pOLﬂfi

) . 2 .
) /12Ty (o) = (2 + ShY V(r)/61y(r)
, 2 - { v -
- EAvEmy/iz] voen - 8y 0 @) /260

where the last *i“c*rm is ths truncation error., Once y{r-h) snd v{(r) are known,
y(r+h) can be calculated by a maty ix dnversion.

Tnstead of solving (5-5) directly, LTAP uses a "subtracted
algorithm which reduces the “roundoff error a}*d increases the speed o
calculation. Define the quantities

t
1
3,
o
-
foy
pa— )
fd
p—

11
J—
b
f
—
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~
!_.l
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Srmnd
~

D ! .
-1 T -n mn-d

i
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where h is the step size. Then (5-3) can be solved in 4:he following steps:

(]
i
=
+
jop
<7
<

=+l ~Y T
At 7 By 7 Doy (5-7)

Invl T [ -h .~13+1/ 12} n+le

Roundoff errors are minimized by strictly avol 11*;; situations in which two
wmbers of approximately equal size ave subtracted. :



5.3, The Hamning Predictor-Correct
potential 1s present, Fhe second-oraer syste ('S L]
first-order system with twice as meny elements:

1=
VannY
)
Y
-
1

2t (x) = V(r)zlr).

The Hamming pradictor-corrector method®) was chosen to 'rolve (5-8) because
it is stable, accurate, and mlahveiy et jc ent, because it includes a
nechanism to contyol roundoff ervor, and b( V_,.o.s,wm, ( called
DEPC) using this method was avamb e in tf m library of th
Madison Academic Computing Center"). The clas ical fourth-ordey Runge-
Kutta method®?®) is used to cal ’“Uld"’(’: 7 and z' at the Ffirst four points.
Yor subsequent points, the following steps are use ed

uy o
joid
o

Predictor: ") =g .+ (4h/3) (2z' - 2' 4+ 2 5~
: dnvl - -l / ) ( Rk I 0 M 2) (
. . ' ~ 11’7 o
ed predictor: P = ~7~f Z., "~ B
y}Qd;LJ_ predictor: po.q = By (% - By
' (5-9b)

p! = V.
Lol ntl EnJrl

-

Corrector: g =7 O ;, Zo 9] (Sh/ 8) (p'ay * ] z' 1) o (§-9c]
R nf- g I - .’_ - ~e .-‘ 9 . | o ‘V o
Modified corrector: f’%‘ﬁ‘lA Z 1 T?'i 41 Eq%-) . y o (5-94)

The truncation errors in (5-%a) and. (5-9¢) are

i1

b, = aa/asm’ yO - " (5-10a)

b, = -(o71200° y ) (5-10b)

vespectively. However, the "modifying’ steps (5-2%,d) make this effectively



Do

£i 14,h order method.

After each integration step, the estimated magmn: itude of the
local, trimcation erior
G '
) |~ o
A . ~110)
Cper T OTET Easl }:n”! (5-11)

.1} exceeds a

is calculated. Whenever the expression c 4wma*::(z 1

VL
specified tolersnce, the step ﬂze iz reduced D}’ a factor of two. Con-
versely, whenever e e is sufficiently small, the step size is doubled.
In DDTP, the CO]_G]QI ce is given by 10'*? where I = opti ion 4 on the
CALCULATE card. The default value of I=b has been fourd to be suffici
for several test cases. .

In the future, if speed is critical (e.g. if & search is added),
it would probably pay to replace this predictor-corrector met hod by a
one-step wei,hod based on an appio mmate matrix inversion.

5.4 The Matching: At the matching vadii, the wave functicns
‘must Sa Ey eq. (4-8Y, vhich tskes the .’:orm

v - Juxi . :

N ) = g ke )+ iR ()]
LNy () JI'L”) "LI LCL( P AF, Gop)
T : - ,

(5-12)
iw
4+ G4y € L (kr_J.
L LY m

Equaticns of the form (&-1
radii r n (or, equivalently, ti
mist satisfy (5-12) at a single radivs). This system can then T\}a solved
for the normalizations NLI and the transition matrix elements BL'L'

&
P

Z) must be saz sfied at each of two matching
he £ ions and their first derivati

The normalizations ?E% and the normalized wave fmctions
Uiy, (r) are printed by the WY RT‘\”"‘ command, and the transition matrix
elements MJ 319 printed by DELPRINT, with option 1 = 0 or 1. The "
Coulomb wave fmchons F,, and G , and the Coulonb. matrix elements €
are printed if Option 5 on the PbTEN*Y‘l . card is positive. Refer to
the CALCULATE command for instructions +or printing the unnormalize
wave Functions Yy -



APPENDIX: FORMULAS

A.1. Scattering Amplitudes: 'The scattering amplittdes (@gua~
~tion 4-16) are given by:

S 1 1
B . 1 v g 7 L1 7l
A(D) = £1(0) = £.(0) 2‘12% CIE-DL My, - L2) D1 M 1,
R A RSO DR LR O
1 1
: o ,_j-;“ I Ii' "“1“ _2~ L"'J‘. - _I.""‘Z ’2 IJ+1
BOY = £(0) = - L AT ML g ()™ M e
RSN S T
- M My P (6)
1 1
_ 1 v VT opel 17 L4
C@®) = £ 100 = 75 % g Mo [‘Cﬂi'zj‘(Ln 17 Mo
1 ﬁL+1 2 LJ" 1 IJ . IJ" 1 1 7.,
iy ML et Mo oM RO
1 1
‘ N = _ 1 vor L-'l.z \L“]_ = L'!'Z 2 T-%}_
D) = £, (8) o (g M g - e My o
L2y A0l 2Ll g L el Lol o1
G ML - et Mo - B M g 0
| . 1
71 7 141

il

B() = £0(0) = (e) Ez (LE-DLIT My Lo LA

(L +1) 14 1.y \1 }P ®) | . / (A-1)

4

L

where PL(6) is an associated lLegendre functick™-). The index of the sums 1is

actually the outgoing orbital angular mowentum L', but the primes were
. omitted to aveid clutter.



A.2. Observables:

ive @

(eq. 4-21) For & coovdinate system in wh

the C“‘“‘(‘SS

chon asT analyzing powers
along 1\ rmc}, v is

along- “1“1 x P@} . @re given by:
&84 " S

. R B A
36iT,., = V6 Im [B (A-C) + BB}

301, = vZ (|A] 2 + D% - |B1S o (4-2)

"
5]

+ ¢
30T, = - /6 Re [B*(A-C) + E'D]

b|

j'

36T, = /% [2Re(A"C)

The @nalyzing powers in the Jam son. coordinate system
(eq. 4-24) ave given by

»?E
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DO bt
'1\101;
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3
DS
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‘1 1 3 v 1 54
T,y =7 V7 (L-cos®)T 7 sindTy, + g (cos0 + VY
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