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A MODEL FOR THE OPTICAL POTENTIAL OF COMPOSITE PARTICLES

by

P. W. Keaton, Jr. , E!. Aufdembrink, and L. R. Veeser

ABSTRACT

A model for optical potentials of composite particles is

studied. Individual nucleon optical potentials are averaged over

the internal motion of deuterons and tritons (or 3He) with real-

istic wave functions. Analytic expressions are developed

factors predicted. Results of some specific calculations

the model are presented.
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I. INTRODUCTION

A model of optical potentials for

Watanabel and later generalized to %e

deuterons was first suggested by

2
and tritons by Abul-Magd and E1-Nadi.

This model hasst~~atedthe interest of many (see Refs. 3-9) in search of

meaningful parameters in an optical model potential for composite particles.

One assumes optical potentials for each of the nucleons in a composite par-

ticle and averages over the internal motion. After folding a Woods-Saxon

potential with an appropriate wave function, one obtains a new shape for

the opticsl potential. The nuclear radius, diffuseness, and well

usually be adjusted to approximate the new shape by a Woods-Saxon

II. THE MODEL FOR A TRITON (OR %e)

depth can

form.

We assume that the total potential between the triton and target nucleus

is the sum of the local, two-body potentials between each of the interacting

particles. In this context, the

title, but the triton is treated

cleons). The Hsmiltonian csn be

target nucleus is treated as a single par-

as the bound state of three particles (nu-

written as

3 &
4

H = T+~Tk+21vij,
k=l i=l

(1)

j =1
i+j

where the indices 1, 2, and 3 refer to the nucleons in the triton, and 4 refers

to the target nucleus. The two-body potentials between particles i and j are

written as V:~ and the internal kinetic energies of the nucleons within the
J-d

triton are written as Tk. The kinetic energy of the

dinates of the triton is labeled T.

The Hamiltonian for the triton alone is

9 3

center-of-mass coor-

R

-,

(2)

i+j
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which defines the internal wave function, X, of the triton. Thus,

Ht x(;,:) = c X(;,;) , (3)

where E is the binding energy of the triton (see Fig. 1). The wave function

for the total Hsmiltonian is defined by

H Y(~,;,;) = E Y(fi,;,;). (4)

Clearly, when A is large the triton is not under the influence of the force

of the nucleus and Y is separable. One may write

Y(ii,;,;)= @(ii)x(;,%) + T(ii,;,:) , (5)

where F is zero for large ~ and represents the variation of Y from the simple

product Ox when the triton is in the proximity of the potential due to the

target nucleus. It is therefore referred to as the “distortion term.” Sub-

stituting Eq. (5) into Eq. (4), multiplying by x+(~,;) and integrating over

~+ and d?, one obtains

(6)

where E = E-E and U(3) has been identified as (see Fig. 1)
o

JrU(fi) = d @+ X+(;,: )[V14G1- 4: )+V24(?2-Z4)+V34(X3-:4) 1 X(L3 . (7)

To the extent

approximation

are made with

culate U(F):

that the distortion term is small, U(A) is the first-order

to the triton-nucleus potential. Henceforth, calculations

T(fi,;,~)= O. Two triton wave functions will be used to cal-

A. The Gaussian Triton Wave Function10

x(~s~)= B e-y~2 ,

where B =
[)

26Y 3/2 snd Y
IT = 0.16 fro-2

C2= ]rl-r212+ lrl-r3/2+

(8)

and

2 2 +3r2
‘2-r3 =2p2.

3
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ORIGIN

Fig. 1. Particles 1, 2,

(or %e). Particle

for the calculation

smd 3 are assumed to be bound nucleons of a triton

4 is the scattering nucleus. Relevant coordinates

are indicated.
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B. The Irving-Gunn Triton Wave Functionll (see Appendix A)

<c

x(:>;) =A<
P’

(9)

~2
where A = (+)% .— ~d12 ~

=3/2 = 0.768 fh-l and & is the same as for Eq. (8).

In either case . . .
J x depends explicitly on spatial coordinates through ~, l.e.,

x is spatially symmetric about the exchange of nucleons. An important result

of this fact is the simplification of the calculation of U(R) in Eq. (7).

The integral is not changed if the triton coordinated system is reoriented

each time so that’the nucleon which is being folded lies along the vector ~.

This ~lOWS Eq. (7) to be written

JJU(F) = m+ d X%V)[V14G) + V24G) + V34(:)I X(;,3 , (lo)

where ~ = 3+$;.

The potential U(i) can be calculatedly using a typical nucleon optical

13
potential,

v(:) = -V. f(s) - iwo g(s) + ~~ Vso (*-&) : ● ~ ,

where

s_r A1/3

f(s) = (1 + ex)-l ; X= 0
a ;
o

(11)

(12)

g(s) = -4a&f(s) . (13)

The calculation of the central term is straightforward and the spin-orbit

term is only slightly more complicated. Substituting Eq. (11) into Eq. (10),

the spin-orbit part of U(fi)becomes

(14)

Neglecting any d state, the spin of the triton is the sum of the spins of

5



the three nucleons. In particular, of course, the two neutrons are antialigned

and the triton has spin 1/2. -This can be represented also by Pauli spin

matrices, and Eq. (14) becomes

J

++
Sxv

U:O(R) = A: V50 a“ d; d&@~)”:x , (15)

where thesubstitution ~=~~x?~has been made. Since~=fi+~~,

;?R+$+5=– , and because wave functions which depend only on the magnitude
P

+
of p are considered, i.e.,

A6P X(p,r) =P ~ ,

the term

vanishes

The same

Eq. (15)

because the nonzero portion of the integral is oriented along ~.

reasoning shows that the only contribution to the ~ x ~R term in

is from that portion of ~ which lies along ~. Therefore, Eq. (15)

can be written

U:O(R) = A:>
D

2;~R +,x
(16)ddlx12 (**) (1+3R2)U Y

where z = $ Ax;R. Lastly, it can be seen that Eq. (16) is of the Thomas

form, since

42 $ fi.;)l/*,s=(R2+—p+
9

~+2R=:

1 af(s) = I af(s) as af 3 R*
—— .—= —.

ET R as aR as s 9

andEq. (16) can rewritten (taking USo(fi)~O~= U~o(R))

Ss
UsO(R) = ~;>” ~~ ddx~f(s)x. (17)

. I

b
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Therefore, U can be written

.

.

U(F) = -U. l?(R)-
2vsoldF+ +

iYo G(R) + A —
IT3Z=U” L’

where

U. = [v:+ 2~]

Y. = [w: + 2W;] ,

(18)

(19)

(20)

(21)

(22)

where, for simplicity, it has been assumed the neutrons and protons have

the ssme well shapes but not necessarily the ssme well depths.

Specific cdctiations of U(i) are discussed in Sec. IV. However, many

of the important effects of this model can be extracted from Eq. (18) if

the triton wave function is replaced by a delta function. For Eqs. (19-22)

we make the simplifying assumption that lX(p,r)12= 5(P) d(r) and

T.#=v:=v Then Eq. (18) becomeso o“

u(i) = -3V0 f(R) - 3W0 g(R) + A2?r

Equation (23) is a standard-shaped nucleon

‘SO 1 df(R) : . ~———
3RdR

. (23)

optical potential as in Eq. (11),

except that it is three times deeper and the spin-orbit effect is one-third

as deep. An important consequence of this result is the prediction that

triton polarization should be small in the elastic scattering process. This

is easily seen from the Born approximationwhich predicts that the magnitude

of polarization scales as the ratio of the spin-orbit temn to the well depth

(see Appendix B). Therefore,

1



where Pt, the triton polarization, is estimated to be 1/9 of PN, the’nucleon

polarization. At present, attempts to messure polarization of tritons elas-

tically scattered from intermediate weight nuclei have indicated small

values.14’15

One last point shouldbe mentioned. The nucleon optical

are inserted into the integrals of Eq. (18) to calculate U(i)

potentials which

are known to

be energy-dependent. Each nucleon of a triton at energy E shares one-third

of that bombarding energy. However, each nucleon also possesses an internal

kinetic energy within the triton itself. It is shown in Appendix A, Eq.

(A-9), that this value

model parameters which

evaluated at

(20.6 +

is 20.6 MeV/nucleon. Therefore,.the nucleon optical

are to be

$) MeV ,

where E is the triton bombarding

inserted into Eq. (18) perhaps should be

energy. However, an elementary calculation

indicates that a nucleon traverses the triton several times during the time

a 20-MeV triton traverses, say a nickel nucleus. This, coupled with the

fact that the triton is certsinly distorted during this interval of time,

makes a clear recommendation difficult. An empirical approach to the solu-

tion is in progress.

III. A MODEL FOR DEUTERON OPTICAL POTENTIALS

The general methods used in Sec. II for a spin-1/2 composite particle

can slso be applied to a spin-one composite particle. However, if the spin-1

composite particle contains a significant smount of !?= 2 orbital angular

momentum (as, of course, does the deuteron), the calculation is considerably

more tedious. The first exact calculation for such a case was published by

Rsynal.
4

A similar calculation appesrs in Appendix C. An outline of the

results of the calculation is now presented.

.

.

.

.
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The Hsmiltonian for a deuteron is written as Hd = T + V where T
pn pn pn

is the kinetic energy of the relative motion of the proton and neutron, and

v is the potential between them.
pn

This Hamiltonian defines the deuteron

wave function Xd, where

(24)HdXd=cd Xd$

and s
d
is the binding energy of the deuteron.

The interaction of the deuteron with a “core” can be described by a

total Hamiltonian, H, where

H Y=E Y ,

and we seek the total wave function Y. The total Hsmiltonian can be written

H +H
= ‘dc d’

deuteron with

H
dc

where the Hsmiltonian Hdc describes the interaction of the

the core, i.e.,

=Tdc+Udc=Tdc+V +Vnc. (25)pc

T
dc

is the relative kinetic energy between the center of mass of the deuteron

and the core, and V and Vnc describe the individual potentials between thepc

nucleons in the deuteron and the core. It is our purpose to find an optical

potential

Q
dc

which

That is,

for the deuteron which will allow us to calculate the wave function

describes the elastic interaction of the deuteron with the core.

H
dc ‘dc = ‘dc ‘dc “

We will neglect the distortion term Td(fi,~)as was done in Sec. II.

In this approximationwe can combine Eqs. (24), (25), and (26) to write

(dropping subscripts)

Y(fi,a = ‘3(K)X(3

(26)

[Hal(g)+Tdc(fi) +Vpc(~p) + Vnc(~n)]@@ = (cd+Edc) @)X(~) . (27)



Multiplying Eq. (27) from the left by x+(~) and integrating over d?, we have

[@) +u(fi)] @(fi)= Edc o(~) , (28)

where a potential for the center

as

of mass of the deuteron hss been identified

We

it

U(fi) =
[

J(;) [Vpc(:p) + Vnc(:n)l x(;) d ● (29)

now substitute a specific value for Vpc

is not necessary, it will be convenient

neutron potentials are identical (see Fig.

Vpc(a = Vnc(a = Vc(s) +VJs)

and Vnc to calculate U(K). Although

to assume that the proton and

2). Therefore,

+
a“z, (30)

where Vc(s) is a central term (in general complex) and Vso(s) is a functional

coefficient of ~ ● ~, the spin-orbit term. ~(~) is the angular moment~

operator which is replaced by ~ ~x~s in the calculations. Using Eq. (30)

in Eq. (29), the calculation of U(X) = Ul(fi)+ U2(fi)becomes

U1(K) =
J
&x+(;) [2VC(S)I x(z)

and

s

$s
u2(a) = & x+(:) [VSO(S)”(:1+:2)”3x @ x(:) ,

( 31)

(32)

where ~ = fi+~and~=~,?R+~
s r“

The deuteron wave function will be taken as a Hulthen wave function.
16

where

We can alwsys

msy slwsys be

Eq. (33) into

1

[

u(r) + w(r)
x(;) =— —

1
—s12(e,+) ,

A7rrJlJ

’12 = 3(:1”:) (:2”1) - :1”:2 .

( 33)

replace Z~=~2 by 1 in this calculation because the deuteron

found in a triplet state y:, and~1*~2 y? = y:. Substituting

Eq. (31), we see that U1(~) can be written as the sum of a

.

.

10
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.

DEUTERON

.

ORIGIN

Fig.

NUCLEUS

2. T& deuteron contains a proton (p) and neutron (n).
‘I’henucleus

(core) is representedby c. Relevant coordinates for the calculation

we indicated.
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central term and a tensor term,

in

be

I@ = UIC(R) + UIT(R) ● [(&fi)2 -$ ,

where

(34)

2 J’dhc(s) {[+42+[*12}‘lC(R) ‘r
(35)

‘lT(R) ‘~ Jd~Vc(s) p2(e)
{

u(r)w(r) _ ~w(r)12

r2JZ 2r }
(36)

[(i3”ii)2- :] = * [3(:#)(:2.i) - 1] = * s12(i) ,

written as the sum

term. That is,

U2(R) = U2C(R) +

where

(37’)

and P2(e) is the Legendre polynomial for L = 2.

calculation of U2(~) in Eq. (32), we see that it can

of a central term, a spin-orbit term, and a tensor

U2SO(R) ~“i + U2T(R) [(S*fi)2-$1 ,

[:12 + 2 “ ($)[:12
}

( 38)

(39)

.s.(s)

J {[ 1
++

U2so(R) =* d; p U2 -W-W2 (l+%) +~[uw+w~]sin2f3

}

(40)
r c 2R 6

s [ 1

U2T(R) .% &v (5) sin2ecose lZ2@!ZQ +?&&
so r

rfi r &2

J [1
+% ho(s)+ u-- .

rfi G
(hi)

Section will consider specific calculations ofU(K). However> just

as in the case of the triton, scme general observations can be made at

point. Satchler has shown17 that a consequence of parity conservation

time reversal invariance is that U(R) can, in principle, contain three

this

and

irre-

.

.

.
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ducible tensor terms. They are

.

.

(Fojy -$ pp (42)

If the present model is valid, only the term [(#*~)2 - ~1 appears in the

tensor optical potential for deuterons.

It is interesting to note that if one sets w = O in the Hulthen wave

function, then all terms of [(#ofi)2-~1 which appear in U(R) vanish. That

is, the existence of a tensor potential in this model is the consequence

of the D state of the deuteron.

Taking U(r) as a delta function ~(r), and setting w(r) = O, the deuteron

potential reduces to

U(?i)= 2VC(R) + Vso(R) ~=i

or

u(i) = 2VC(R) + *vSo(R) (:1+:2) “ z .

(43)

(44)

Equation (b4) is written in a form which emphasizes that just as the triton

spin-orbit potential is one-third the nucleon

deuteron spin-orbit potential is one-half the

This point is less obvious in Eq. (43), where

spin-orbit potential, so the

nucleon spin-orbit potential.

3 = + (:,+:9).
c-l-c

It should also be mentioned that there is no a priori reason to exclude

the Cotiomb term from Vc when cslc~ating U(R). A study of this problem

revesled that the effect on the central part is negligible, in the sense

that the new “shape” for the Coulomb potential is of the ssme form but with

the Coulomb radius, rc, changed by less than 1%. Optical model fits are

very insensitive to such a change in r . One point we have not investigated
c

13



is that the Coulomb potential contributes to the tensor part of the deuteron

potential.as csm be seen in Eq. (36).
.

Again, just as in the case of the triton, one may include the internal

kinetic energy of the nucleons. This is calculated in Appendix D [Eq. (D-29

to be 25.6 MeV. Therefore, the nucleon optical potential parameters which

are to be used in Eq. (29)perhaps should

where E is the deuteron bombarding energy

of Sec. II).

Iv.

in a

EMPIRICAL FITS TO THE TRITON OPTICAL

be evaluated at (25.6 + ~) MeV,

(see, however, the last paragraph

POTENTIAL

The formulas for U(i) in Eqs. (18) through (22) have been calculated

computer program for both the Gaussian triton wave function [Eq. (8)1

1 .

.

and the Irving-Gunn triton wave function (Eq. (9) ad Appendix A)o The re-

sults of some preliminary studies will be presented.

It was found that when a Woods-Saxon shaped potential is used to cal-

culate U(R), the result appears close to

a new choice of diffuseness, radius, and

empirically a new Woods-Saxon shape that

a Woods-Saxon shape. That is, with

sometimes well depth, one can find

is close to that calculated for

U(A) . optical model computer programs usually are written with these

(including derivatives of Woods-Saxon, etc.) as options. This avoids

a table lookup form factor.

We have devised a computer progrsm (RHOS-T) which calculates the

shapes

having

integrals

and determines “best values” for a modified Woods-Ssxon shape. The triton

optical potential that is calculatedly RHOS-T is [Eq. (18)1
.

v
U(3) =

1(3F+
-Uo F(R) -iYoG(R)+A~~ ‘~~u”t,

.
(45)

where

F(R) =JJ@+& X+(p,r) [f(s)] X(P,r) ,

14
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.

or

(46)

1 424where p=cos O,s= R2+— P +—
9

~ Rpp, and

s-r p/3

f(xo) = 1 0

(l+exo) ; ‘o = a. “

Adjustments were then made to find r; and a: such that

F(R) = :(x,) ; R-r’A1/3
o

F(0) x’ =
o 0 a’ “

o

Likewise, for the imsginary part,

0
G(R) = d; d; Xt(p,r) [g(s)] X(p,r) ,

or

‘(R)=8F77‘J‘(s)‘J‘x(pyr)]2: h >
0 --1 0

where g(s) might be a volume term,

s-r.A1/3
g(xi) =f(xi); x==

i a. Y
1

or a surface term,

-L

g(x,) = *f(xi) .
i

For the surface term,

G(R)

G(r~A1/3, =

a. and r.
1 1

64X;) ,

were determined such

R-r’A1/3
iwhere x! =

1 a!
1

The resulting modified parameters are indicated

18 rparameters were taken as o = 1.25 F, a = 0.65 F,
o

(47)

(48)

(49)

(50)

(51)

that

. (52)

in Fig. 3. The nucleon

r. = 1.25 F, and ai = 0.47 F.
1

15
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.

.,

3. Woods-Saxon parameters for triton (or ~e) optical potential form

factors plotted as a function of atomic number. The calculationswere

made with the following nucleon parameters: r = 1.25 a, a. = 0.65 m,
o

r. = 1.25 fm, ai = 0.~7 fm.
1

.
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A Gaussian wave function [Eq. (8)1 was used. A plot of the effects on U(fi)

as a function of atomic number, i.e., nuclear “size,“ is indicated by showing

modified parameters. F(0) did not vary by more than 1% from 1 in the range

from A= 27 to A= 120. G[(r~/a~)A1’3] was also essentially constant, not

varying from the vslue 0.77 by more than 1% over the ssme range.

We have used the geometry in Fig. 3 and obtained reasonable fits to

triton elastic scattering data for nuclei in the region of A = 60 by allowing

U. and Y. to V&t”y. However, we have not attempted a systematic study pending

our polarization measurements of tritons elastically scattered from nuclei

in that mass region. We anticipate that triton polarization measurements,

15
which are in progress, will expedite such a study.

v. EMPIRICAL FITS TO THE DEUTERON OPTICAL POTENTIAL

We have also devised a computer program (RHOS-D)

optical potential U(H) of Eq. (29). To date, we have

to calculate the deuteron

calculated only the

zeroth-order terms as indicated in Appendix C (Sec. VIII, part C). Keeping

only the large terms,

‘o)(R) +U~~)(R) ~oi+ U:)(R) [(~ofi)2-;l ,U(R) = Uc

s
U(o)(R) =& d+ v(s) (:)2
c c

where

(53)

Assuming that the proton and neutron optical potential

same (which in practice is not true) we take as the nucleon

shapes are the

optical potential.

.

.

.

.



“

.

V (s) = -V. f(s) - iWa g(s) - x: Vso h(s) ~ . ~ , (54)

where f(s) is

The term h(s)

given in Eq. (47) and g(s) is given in Eqs. (50) and (51).

is defined as

1 df(s)
h(s) =~~.

Substituting Eq. (54) into Eq. (53),

u(R) = -[u. F(R) + iyo G(R)]

-[A: Us. H(R)1 2$OZ

-[ASUT M(R) + i~~ YT N(R)] ,

where the central part is

m 1

JJ
F(R) =* dr dp f(s) u2(r)

o -1

w 1

S$
G(R) =; dr dp g(s) u2(r)

o -1

J 2
s = R2+~ + RrU ; v = COS8 ,

and

uo=~+v:

Y. = W:+w:.

The spin-orbit term contains

u = Vso , Asso = 2.0 fm2 .

(55)

(56)

(57)

(58)

19



The tensor terms are written

w 1

SS
M(R) = J dr dw f(s) u(r) w(r) P2(P)

fi
o -1

m 1

JsN(R) = 4 dr dp g(s) u(r) w(r) P2(P)
fio_l

P2(lJ)= (:112 - 1)

uT=f+~

YT. wp+wn (59)o o“

Each of the form factors F, G, H, M, and N has been calculated for vari-

ous values of atomic number, A, with RHOS-D and a characteristic shape has

been determined. By trial and error, we were able to find form factors that

approximate the integrals in Eq. (56) (see, however, Ref. 19). These form

factors are defined below:

The

The

fd(R) =

gal(R)~

hd(R) =

red(R)~

rid(R)~

constants Fo,

specific form

F. f(R) = F(R) ; f(R) is Woods-Saxon shaped ;

Go g(R) = G(R)

H fd(R)od—— (~RdRo
) =H(R)

h (R)
-R*MO & (~ ) =M(R)

o

RoN&[~~(>)] ‘N(R) .
0

(60)

Go, Ho, Mo, and No must be adjusted to fit each integral.

factors that have been calculated are listed below.

.

.
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.

.

F
fd(x) = 0

(l+ex)

‘d
4Goex

gal(x)= -4a~ Go & (~) =
o (l+ex)2

H H
hd(x) = - #&(:)== ‘xRa’

o 0 (l+ex)2

I

.

*

‘d
M.

( )(

x a
red(x)= -RMo ~ (~) = — l-ex

o (a~)2 (l~ex)2 :- ~+ex

R-R‘

)& ( l-4ex+e2x)-( l-e2x) , (61)
i

where x = Q for the real potential terms (fd, hd, and md) and x
a’
o

for the imaginary potential terms (gd and nd). Often one can find

s~
a!
1

a single

set of R’, a;, R!, and a!
o 1 that will fit all five form factors of Eq. (61).

1

Figure 4 presents the results of a calculation of the form factors for

deuterons elastically scattered from 60Ni, with nucleon parameters from Ref.

20. It should be noticed that this model predicts a real and imaginary tensor

term of about equal size. It would seem unlikely that either can be ignored.

A rigorous test of this model for deuterons will be a systematic study

of vector and tensor polarized deuterons elastically scattered from intermediate-

weight nuclei at about 15-MeV bombarding energy. A high-intensity polarized

ion source has been developed for the Los Alamos tandem accelerator, and

such a study is being planned.

VI. CONCLUSIONS

The theoretical basis for a study of composite particle optical potentials

has been reviewed and extended. A consequence of summing nucleon optical
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4. Dimensionless form factors for the deuteron optical potential of
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—

. The nucleon parameters used in calculating (a) and (d) are r. =

1.17 fb and a. = 0.75 fm. The nucleon parsneters used in calculating

(c) are r = 1.01 fm and a. = 0.75 fm. The nucleon parameters used ino

.

.

.

.

calculating (b) and (e) are r. = 1.32 fm and ai = 0.56 fm. It has

been assumed that A: ‘-2
= 2.00 fill.

22



.

.

.

0.02C

0.015

O.olc

O.ooz

o

-0.005

I I I I I I I

—A~2H (R)

●

● @hd(R)

rot 8
/0-”

/ \
●

./” \
2

\
●

\
●

\
●

\
1 1 1 1 1 . \.
I 1 I I I I I -%

o 2 4 6

R (fm)—

(c)

0.97fm

0.97fm

0.90

I I I I 1 I I I I I

●

R(fm)---

(d)

Fig. 4 (cont.)

23



0.06

0.04

0.02

0

-0.02

-0.04

-0.06

0/ c Oo87fm

No aO.oqe

●

m 1 1 , I 1
I I 1

2

R (fm)——

(e)

potentials is that the spin-orbit well depth is decreased by the number of

nucleons in the composite particle. The model therefore predicts small polar-

ization values for elastically scattered mass-3 nuclei. The validity of this

model has not been confirmed or denied by existing experiments.

And, finally, we have suggested specific form factors for the tensor

portion of the deuteron optical potential.
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APPENDIX A: IRVING-GUNN WAVE FUNCTION

I. COORDINATE SYSTEM

.

.

The coordinate system is defined in Fig. 1. We define in addition,

+ -+ +
-$=r’12 = ‘1 2

+ +
+ -i!

’32 = ‘3 2
=;+$

+ +
+

=; -$= p-~.
’31 3 1 2

It follows that ~2 ~ 1~1212 + 1~3212+ 1~3112 = 2p2+~r2. It will be neces-

saqy to discuss the center-of-mass coordinates to some degree.

;(2) 1; 1;
=-— _—

cm 32

The expectation value of the momentum squared (or kinetic energy) of any one

of the nucleons must be the same as any other. Therefore, for our purposes

+(3) ,2
we need calculate only (Vnm ) .

Therefore,

(l@)2=&$=9~~P2&,
cm I P2 ap (A-1)

where the last equation holds for the function which depends on only the

msgnitude of ~.
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,:. ., . .

II. NORMALIZATION

The Irving-Gunn wave function for mass-3 nuclei may be written
.

(A-2)

(2P2 + # r’)l”o d = 1, wherewhere & = We require that the integral

COCO

JJ
Q.(bT)’ X’p’r’dpdr.

00

Let x = Gap andy= mar, then

e-wdl=$$igx’qy’w
(X’+y’) “

o 0

Let x = RcOS6 and y = RsinEl,and integrate over the first quadrant of the

element RdRdEl= tidy. The integral is separable and we find

The first integral has the value IT/16 and the second integral is one of the

integrals

m

sRN e-R dR =N!.

o

Setting~ = 1 we find

.

.

31/4~2

‘=T3/’fi “ (A-3)

26
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III. MEAN SQUARE RADIUS

.

.

The mean square radius of a nucleon (measured, of course, from the center

of mass of the triton) can be obtained by choosing particle 3. In that case,

2<R<=
rms <\r~) 12> = # <g2>

2 41<R>=—. —
9

<R2CC)S20>.
rms

2a2

The integral obviously separates again, and since

T/2

J
T/2

4cos Elsin20df3 = $ scos2Elsin213df3,

0 0

2 4 l<R2>=b I. 51<R>=—. — —o—
rms 9 4ci2 9 4a2

“~”

Therefore,

2
<R > ==. ~ ,

rms 9 a2

In particular,

2<R>=
rms 3.77 fm2 for a = 0.7’68 fhl-l .

IV. THE AVERAGE KINETIC ENERGY

The average kinetic energy of a nucleon within the triton can be cal-

culated by choosing particle 3 again, and finding

2
2

T3 ‘<~>= -~<(&))2> ,
.3

,

from Eq. (A-l),

Using Eq. (A-2)

a
*X(p,r) =—I ap

&=_p
ao

(: + %j-)X(p,r) .
E

(A-4)
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Next,

Therefore,

Rcos0
with the substitutions C = R/a and p = — Eq. (A-5) becomes

r’a2

2

[

2
u -3(*+2) +*

R2 1(1+:+=)X(p,r) .
R2

The integrals again separate, and performing the integration over 8, Eq.

(A-6) gives

2<13<V2> = a
P T-x- eR2’

32.<v2>=-—a.
P 4

(A-5)

(A-6)

(A-7)

Substituting Eq. (A-7) into Eq. (A-4), we find

-2
If T3 is expressed in MeV and a is expressed in fm = (10-15 meter)-2, then

where T
3
is expressed in electron volts and e is the electron charge in coulombs.

.

.
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.

I-1’—=
2Me

20.7 MeV - fln2.

Therefore,

T3 = (20.7) ● ~u2 MeV .

For a = 0.768 fro-2,

T3 = 20.6 MeV (average kinetic energy per nucleon).

(A-8)
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APPENDIX B : POLARIZATION FROM ELASTIC

IN THE BORN APPROXIMATION

SCATTERING

For reference, we calculate here the

from first using Born approximationswith

totsl Hsmiltonian as H = Ho + Hl where

Hl = V(r) + iW(r) + Vso(r)

V(r) = - V. f(r)

W(r) = -W. g(r)

In the first

V~o(r)
1 df(r)

=A:V50 “---

where U(r) =

polarization which one obtains

optical potentials. Consider the

;.Z

(B-1)

Born approximation,the scattering amplitude F(0) can be written

(B-2)

4H7(r), v is~ reduced mass. The initial momentum is ~: and
h’ ‘

the final momentum

the center-of-mass

J.

is Z and~=ti-~f.
f

The angle between ~i and ~f is e,

scattering angle. Define the Fourier transforms

Y(K) JJJ.L e-ii”; f(r) &

211f12

4(K) =L
JJJ

-iZ*Y
e g(r) & .

211f12

Substituting Eq. (B-3) into Eq. (B-2)

(B-3)

PA$TO Ju
-it ●7 iti●I

F(13)= -Vo#(K) - iWo#(K) +— e f (~= +rti)u=~e &. (B-4)
2ti2

I

me integral in Eq. (B-it)canbe rewritten
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Ju
.++

=:” e‘=K”rtf(r) x ~i d?

where the last step included an integration by parts. Therefore, the integral

in Eq. (B-j) becomes

(B-5)

and for elastic scattering,

ili “it=ili”zf= k: sinO ~ ,

where 6 is a unit vector perpendicular to the reaction plane. Equation (B-4)

can now be written

=a(0)+b(6);*~,

where

a(e) = -Vo@(K) - iWo#(K)

so [x: k: sineY(K)] .b(e) = -iV

In terms of a and b, FFt can be written

FF+ = [la12 + lb12] 1+ [ah* + a*b] u
Y

= [la12 + \b12] 1 + 2[Re(a*b)] Uy .

The cross section is (cf. Ref. 21)

Io=~Tr (FF+) = [la12 + lb12] ,

and the polarization, P , is
Y

(B-6)
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1P = ~ Tr (FFtUy) = 2Re(a*b) .
QY

(B-7)

Since b is pure imaginary, it may be noted in passing that the first Born

approximation predicts a zero polarization for a real potential. Substituting

Eq. (B-6) into Eq. (B-7), we find

2[iWo#(K) (-i)A~Vsok~sinr3~(K)]
P
Y= [@2+w:A21 + V~o[A~ sine~12

or

2WoVso@(K)3(K)( A~)sin(3
P
y = [V~.$2+W~#2]+V~o[A~k~sine.jf]2

For the usual”optical potentials, V. >> W. > Vso. Therefore, we msy write

Wovso
I?y.———

V2 “
o

Of special interest in this report is the fact that, for composite particles,

the ratio (Wo/Vo) is independent of the number of nucleons in the composite

particle, and therefore

v
PY=A.

V.

.

.

.

.
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APPENDIX C: THE DEUTERON OFTICAL POTENTIAL

I. Consider the deuteron as a proton and a neutron bombarding a core, and

assume that the total potential can be written as the sum of individual (two-

body) potentials (see Sec. III of the report).

A.

‘d = ‘pn + ‘pn

H
dc

=Tdc+U

= ‘dc + ‘pc + ‘nc

H’= Hdc + Hd

HY = EY

‘dxd = ‘dxd

Hdc@dc = Edc@dc

E
‘Edc+cd ’

B. The coordinate system is shown in Fig. 2 where

++
r=r -;

pn

+ +
-:

‘P=rP c

+ +
s = r -:.
n n P

c. Neglecting the distortion term,

Y(li,3 = Q(F)x(;)

(subscripts are dropped). Then,

(Hd + Tdc + Vpc + Vnc)Y = (Ed + Edc)Y .
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Multiplying this equation fran the left by Xt and integrating over ~,

“( ) + (X, [Vpc+Vn=]X)] o(i) = (Ed+Edc)(d O(i) .[(x>Hdx) +Tdc,x>x ,

II II II

‘d
1

Therefore,

1

(Tdc + U(i)) Q(R) = Edc @(R) ,

where we have identified

U(K) =
J

[XG),[VPCGP) +V#n)l x(:)] ~ ,

as the deuteron potential in HdcQ(K) = Ed=@).

D. The

tial for

(this is

problem is to calculate U(fi). To do do, we assume an optical poten-

the nucleons, which does not distinguish between protons and neutrons

simpler, but not necessary).

VPCG) = Vnc(a = Vc(s) + VNo(s) : ● i .

Notice that if we reverse the directions of ~, ~_ + ~., etc., we need only
P

cslculate the effect of x one one of the nucleons.

For convenience,we tske 5 = 1. We must evaluate

.

.

11

We will need

$r

UJF) =
J

& [X,2VC(S) x(;)]

and

u2(i) =$
s

C& [X,VSO(S)G1 +32) *:xF#.

.

.



.

.

II. HULTHEN WAVE FUNCTION

A. The Hulthen wave function is of the form

[

u(r)x(;) = A _ + w(r)

1
—s12(e, f$) ,

Gr r~

where

s
12 = 3(:1 “ ;)(:2 “ ;) -

Since the deuteron is alwsys in a triplet

by 1.

B. Find (S12)2

s

[
12”s12= 3

+ +

al a2 “

configuration,we

(:1”3 (:2.;)

1[

(:1”; )(:2.;)

r2 ‘1 3 r2 ‘1 1
1 1

(:1”; )(:2”;)
=lo- 6

r2

s
12 “ ’12 = 8- 2 [3(310i0(32~i)- I] = 8 - 2s12

(S12)2 = 8- 2S12 .

c. ~pand S12(~) for triplet states:

+
replace ZI ● u

2

1

= 3[(o~sin@cos$ + u~sinf3sin@+ u~cosf3)(u~sinf3cos~+ a~sinesin$ + 0~cos8)] - 1
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s
12

= 3[(u~ u~sin2f3cos2$+ a; cs~sin213sin2$+ u: ci~cos2(3)

+ (ax Uy + a; a;) sin2ecos$sin@
12

+ (ox az + Uz
12

~ a;) sinecosecos$

+ ((P Csz+ CJZ
12

~ o:) sinf3cosesin$]- 1 .

21T

D. Important special case:
J

s
12 ‘4 (s?2 = 8- 2s12) “

o

For this case, all $ terms will integrate to zero except

2n 2’ir 2?I

J
cos2$d$ =

J
sin2$d@ = ~2n) and

J
do =21T.

o 0 0

The only surviving terms are

but

~aYY=; .; Zz

ox la2 1 2 -“lu2=~ -ox”

Therefore,

[

S12(;)
—d@=

2r
3[51 - cs~a;) sin2(3+ u~u~cos2f3] - 1

32 z
z sin (3+ u=— ~ u; (3cos2e - ~ sin213)- 1

= 3 a; a: (~ c0s2e - ~) - (~ c0s2e - *) ●

If the z axis is oriented along ~, u’ = ~ and since

(~ c0s2e -~) = p2(e) ,

the Legendre polynomial Pg(e) for $ = 2, we find

.

,



.

.

or

III.

A.

B.

1

G sS12(~) d$ = [3(:10 fi)(@ - I] P2((3)

EVALUATION OF U@

Since U1 contains only Vc(s), the potential is

I@) =—
(L) J&u(r) Vc(s) u(r) ~

1?

+ h“J w(r)
&u(r) Vc(s) — S12(;) Q

n r2

The first ingegral stands. The second becomes

4

{s

~+ U(r)
—vC(s)

}
*P2(e) s12(i) .

(4Jr)JT3 r

The third term becomes

1~+w(r)6 —v(s)*[l-&#)l ,r c

which clearly gives a

c. We conclude that

central term and a tensor term.

U1 contains a central part, UIC(fi)and a tensor part,

J

d; u(r)Ulcm =* yvcw -y Ju(r) + 2 &w(r) w(r)
(41T) —Ve(s) —

r r

ulT(fi)=6
1

~+ u(r)
—vC(s) 1
r ~P2(e) -—

2(4T) J
dw+vc(s) w*P2(e) .
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lx. THE APPROACH TO U2(R)

B. The plan:

1. Show that any contribution from ~ x ~R comes from a component of

+
r along R. Thus we will have

2. Calculate the contributions from R x $r which will consist of central

terms and tensor terms.

3-
1+

Write ~ r X qr = 1, an operator on S12 which can be written as

and ~ is an Hermitian operator for x (or S12). We will find

3.t=J(j+l)-~(~2+1)-s(s+l).

v.

A.

CONSIDER THE 8R TERM

L c

1

[ 1[

w(r) s +
— u(r) +—

‘(r) Scrl u(r) +—
47rr2 a 12 a 121

1

[

U2: + u(r)w(r) +
(U1S12

W2=

1
+ S12:J + ~ S12:1S12 “

4m2 1 n

Note that

.

.

.

.
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.

.

+

+

+

B. KjThen, since u: a! + al 01 = O,

2°3
0; S1’ + s12 a; = —

{

x X2

r’ ‘2
+G;v+u ; ‘z}

- ‘u; ,

or

(u; S12 + s12 0:)$ = ~ (:2”;)
~’

- 20; i .“

Adding the three components,

;s+s~=6f(;2= ;)-2;1.
1 12 12 1

c. S12G1 + :2)s12

Since (~1+12)S12 + S~2(~1+~2) = 6~[(:l+:2)oil - ‘(:1+32) ,

multiply from the left by S12,

S12(;1+:2)S12 = 6 S12 ;[(:1+:2)o;I - 2S12(:1+:2) - S:2(:1+:2) ,

since



NOTE: (:1 ● ;)2 ~ 1. Then

or

It

D.

J.

S12(:1+:2)S12 =

S1J:1+:2)S12=

may be helpful to

s :s
12 1 12

Again, x(~l + :2)x

1x(m1+:2))@) ‘—

{

u%l+:2) +~ [(:,+:2)s,2+ S,2(:,+:2)I
4mr2 a

Then

X(3(:1+:2)X(:)=-& {p-:-q (:,~2)

[ 1 }
.3kMd+: [(:+:).;];.

/5 12

Also note that

.

.

.

,



E. We have now

.

.

{s1
T

}

dv~o(s) [x(a(:l+:2)@l “ (k+;) X3R .1

1. Using the expansion of x(~l + Z2)X from D, we first consider the

coefficient of (~1 + :2):

The only $ terms

a cos El t term:

r

come in through ~ snd they integrate to zero. This gives

2. Next we notice that the ~o~ x ‘3Rterm vanishes.

3. We have left

(:J“~)~ = (o~sinecos$ + u~sinf3sin@+ u~cose)(sinecos$~ + sinesin$j + cOs&) .

Integrating over $,

The last is zero because ~ ● & x 8R = O. Thus, the relevant term becomes
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-o

and the desired integral is

F. Does the spin-orbit term of deuteron have the Thomas form? Consider

only the U2 term for the spin-orbit term.

fj(R) =
J
U* f(s) &

[1

++
r“R

1=—
R J

S(*ys R+s7G

so that the largest contribution (from Uz) is of the Thomas form. However,

in general it is not.

G. Conclusion for the ~ (R + ~) X ~ 3R term:

or, if we write 3 = ~ (~1+~2), this is the “~-fi’term in the Potenti~o

.

.

.

.
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✎

VI. THE~xfirTm

Next we consider

}+J~v..’s’ {x’~)(~l+~p) “ R ‘3r ‘(;) ●

A. Calculate tr x(?):

1. In spherical coordinates,

A
+ ;
ra c8a43

$r=~~+y~+ rsine a$ ‘

where
A.

r =sinecos$i+ sine sin $~+coset

.
‘e =cosf3cos @l+cos Osin $~-sinei

A

‘@=-
sin$l+cos+~

2. ?r S12 (e,@)

w(r)+— +r s12
(4?T)%6
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’12 + 1Or, since (~1*~)(~2*$)= ~ ,

used relations:B. Often

1. +ie ik~
‘j ‘k = ajk ‘k

of 1, 2, 3
ejk$

= 1, ijk + permutation

= O, not permutation

= -1, jk$lodd permutation

i.e., if J =k,

‘m ‘1

if j 1, k=2,=

(JO =ia
XY z

if j 2, k=l,=

a o =-i o .
yx z

Therefore,

Do +aa=O
XY yx

a a -a a =i2u t
XY yx z

,ec.

.

.

-1

“1
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✎

Since (Z10~2) = 1 for triplet states,

3. In a

+

‘1 •~X~2= i(~~-

+
a2

.~x~l=-i(a~-

triple scalar product,

a:)

+ ●

the dot and cross can be interchanged.

+
0“

or

a a
XY

00

oa
XY

au
XY

a
x aY

00

c1
z

1

0
z

a
z

a
z

1

,aa + a a = -2i a
XY yx z

= -a a + a a = -2i a
XY yx z

or



c. “Standard Forms”

= -4i

= -2i

= -2i

[30;0: - 1]

S,a (ii) .

2. (31+:2) ●i

21T
1
%

s
s“
12 r

o

~ sin28cos9=—

= -(si) .2
‘=n ‘Cose ’12

3. (:1+:2 )

+;X:
22

1



SUMMARY:

STANDARD FORM I

(:1+:2) ● i

STANDARD FORM II

2’IT
1

‘x
J

[(zlo~)~2 + (z20~)zl]d4 = -2i S12 (a)

o

2?T

XL
27 J ’12

(;); d$ = -3i sin29cos0 S12 (i)

-o

STANDARD FORM III

D. Definition of Terms

Also

We wish to evaluate:
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d(r) =:[u- ;1

e(r) = - L
r&

6W
f(r) =—

r~

and

$r x(;) = a(r); + b(r)S12 ~ + c(r)[(;l*;)Z2 + (Z2”;)Z11 ,

where

a(r) ‘[* (:)-+ ;
r2&Y

b(r) = J [~ (K) - %~drrr2

3Wc(r) = — .
r2fi

E. Evaluations of the H x ~r terms:

1. The d-a term = O,(l?xli=o)o

2. The d-b term = —
4Ris=V~o(s) d(r) b(r) (;1+;2) 9 ~ x S12 ~ .

Using Standard Form II this gives

-e{sdhlo(s) “

}

(d*b) sin20cos8 S12(fi).

Using Standard Form I this gives

-i% {s& Vso(s)
}

● (de) S12(fi).

s4“ ‘e ‘-a ‘em = z% & [ 1Vso(s)(ea) {;I+Z2) ● ~ x S12 ; .

.

.
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Again, Standard Form II gives

.

.

.

,

-E {Jdho(s) “

}

(es) sin2(3cos(3S12(fi).

5. The e-b term =
& J

&Vso(s)(eb) [(;k+;2) ● ~ x S~2 ;], but

S2
12 = 8- 2s12, the term with 8 vanishes, leaving

6.

but

6R
G

{s
CJvso(s) “

}

(e*b) sin20cos0 S12(fi).

The e-c term = & J’dbo(s) “

[

(f=) (:1+:2)“ixs12[ :#:2+(:2.;):J
1

[3G1”NG20;) - 11[(:1”;):2 + (:2”;):11

= 3(:2”;):2 + 3(;1.;):1 - (:10;):2 - (:2.;);1 ,

Then the integral becomes

& J {’:[dv~o(s)(eoc) (;1+CJ2)kx 3[(;20;)~2+(;l*;);1] 1/-[(:l”a:2+(:2”iwJ .

Using Standard Forms I and III, the brackets give

16R
F J

&Vso(s) ● (e-c)

7. The f-a term = O because ; x f = O.

8. The f-b term = O because ~ x ; = O.

9. The f-c term

(a central term) .

‘z%J [ 1d Vso(s)(f=c) ;“ix[(:k*a+(:2.;) l[(i@:2+(;2.i):J .

,

The brackets give
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+

a2 +

The “l” in the

Thus, the term

= [(:1”a(:2”i) + 11 (:1+:2) .

brackets contributes zero, so we

becomes

SJ:1+:2) +-(:1+:2)s12

Then we have left

Therefore,

-&

’12 + +
--+1+CJ2) .

J.

can subtract -

(because other

the f-c term becomes

J [ ’12
LATJs)(f”c) ; “ i x (:1+:2) y

J

which gives

F. Summary of i x

}

Vso(s)(f*c) sin20cosEl S12(ii).

$r terms:

3R “ S12(R)

s [
h+ Vso(s)sin20cose - d-b -

f“c
411 e“a + 2e”b - —

3 1
2R S12(R)

+
J

16R
4?T di!Vso(s)(d”c) +~ J t& Vso(s) “ (e”c) .

But the brackets become

terms are zero).
.

.

.
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Therefore, the I x ~r term is

J

sin20cos13
E

C& Vso(s)
rfl

(Wu’ -
2UW

uw’)+--
r2

-% J rwfi ‘uC#Vso(s) y - :] s12(ii)

6R

J

W2
-G & Vso(s) ~ .

r

VII. THE2~x3 =% TERM
i r

&
2 J

d Vso(s) X(3) (:1+:2) “ z x(l)

I x(:) = I ●-[:+$s12]
=O+JJ%12 ,

(bIT)%r~

where ~ is now a vector, (% = 2), and can be moved

back into the integral as a number, we note that

*:1+:2) = ~ ; J. Z+3.

4 “2

}

— ~ s12(ia
fir

anywhere. Putting it
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Therefore,

J(j+l) - !?,(!2+1)- S(S+1) = ~ . ~ ,
2

where j = 1, R = 2, S = 1., Therefore,

6
x“5=-~ =-3.

Then the ~ term becomes

3_—
J

Ciho(s) x(;) +s12
(41T)% rfl

..,-

,

.

.

J W2._& Alo(s} P-%12 +—
r2 fi

(8 - 2S12)1 ,
8r2

which yields a central part

J

W2
-h ti+vso(s) ~ ,

r

and a tensor part

VIII. suMMARY

The problem is to calculate

U(fi)=
s
d; @[2VC(S)+VSo (S)G1+:2)”(R + :) (~ +~ vR+Fr)] x(;)

= U@ + U2(R) ,

where Ul contains VC and U2 contains V
so ●

A.
‘1

= Ulc + UIT [(3”?02 - ;1

.

%++%.) [(+42+F&f]
6@

‘lT = (hn) s [
&VC(s) ~P2(e) u(r) -Q

r 6 1

.



.

4

.

.

B. 3.t + U2T [(3.i)2 - “;1
‘2 = ‘2C + ‘2s0

1. Central:

2. Spin-Orbit:

3. Tensor:

c. Regrouping

-18R
x 41T J r% ‘u

dv50(s) y ‘1 .
-z

,3R+3W) ~[u+

}

#sin2EI “
2R2

+&-4w2

r2 4?Z2 1

the potential into zeroth-order and first-order terms, we write
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(0)(R) . .%
‘T J

d Vc(s) ~P (e)
~2 2

‘I)(R) = ~
J

W2
‘T

d~VC(s) P2(e) —-~
r2 J

AJs) ~ [u -
%

:1
r

J
+ & d VJs)

[

sin20cos0 (wu’-uw’) +*_4w2
r

r~ r2 1/Zr2 “
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APPENDIX D: DEUTERON WAVE FUNCTION

I. COUPLING OF ANGULAR MOMENTUM

.

.

The deuteron is a composite particle with even parity and total spin

I = 1. It consists of two spin-1/2 constituents, ~1= 1/2 :1 and~2 = 1/2:2.

Coupling orbital angular momentum (id) and spin (~d = al + 32), we find

Td=td+Fd.

Since Sd = O cannot couple to L = 2 to give a spin I = 1, the spins are
d

always parallel. 1/2 =
.Writing ‘1/2 ~ = (:)

?“the spin wave function yl as

‘I .Y1 I &j%m2
j 1/2 1/2 ‘?;2

‘j=l+m2

Since I = 1, only, for deuterons,

-1/2 =
‘d ‘1/2 f3=(~), we can

#2
1/2 “

form

(D-1)

II. S AND D STATES

We couple the y; with the two possible angular momentum states which

are allowed by parity, nsmely R = O, 2.

A. Coupling of y: and y:

We define the angular momentum portion of the wave function as $1 ~.‘I Then
..

(D-2)
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m
where Y L are the spherical hamnonics.t

mg
B. Coupling of y; and Y2

That is,

mI 1“ ~W1.mY;!L m

1,2 =
Y1 “

~=m+ml 121

4’;,2=EH- F% Y:+ J%:Y;’

r4;,2 = & Y;l Y; -~&;+JZy: Y;’

4’i:2=Eyi2y:- by~’’:+ky:y~’ -

c. Vector Version of the Deuteron

Wave function Y(;). We define the S and D wave vectors as @g, where

$0=

H
Y:oo

Ln= o Y: o

00 Y:

\r6 -2
E ‘2

;

;

$2=

\
‘+
-1
1,2

.

(D-4)
.

.
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The radial part of I is, of course, c~c~ated

We write here the total deuteron wave function

in the standard form

from the Schr5dinger equation.

(the Hulthen wave function)

(D-5)

where S,q is here a matrix operator. The solution to the Schrddinger equation
&

can be written as the sum of all,= O solution and I = 2 solution.

where a and b are to be determined. Since $0 = &=~and$2=~*~,

(D-6)

(D-7)

ComParing Eqs. (D-5) and (D-7) and using definition (D-4) we set a= 1 and

we have to show that b~ = S,9.

III.

&’

EVALUATION OF S,9 (A SpIN MATRIX OPERATOR)
A

We have already stated that

3(:1”:)(:2”:)
s
12 = 2

-;”;
12’

(D-8)

where it is written with wavy lines to emphasize that the U’S are taken here

‘as matrix operators.

self of the statement

by calculating

Before proceeding, the reader may easily convince him-

++
‘hat ‘1”02

may be replaced by 1 for triplet states

Substituting y; from Eq. (D-1) and recalling that ai = (~)i and ~i = (~)i,

one demonstrates that

++
al”a2 y? = y; “ (D-9)
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A. A Generator of S12
—

One can easily demonstrate that

1[
‘ ‘1

max -r2ti ~ ~
s12 = 2 (:1”W:2” F) - :1”:2 = a

r2 r2 ‘la* ‘
ctsi3

(D-10)

where x are components of the vector
a

+
a.

J
This can be proved by explicitly

Writing Tae for the quantity enclosed

3xaxB-r26
T= B
a$ r2a’

it follows that T are linear combinations
a$

’11 =
6
r r
*( Y;+ Y;*) - *Y:

’22 = r
-6 ~

r
(Y; +Y;*) - *Y:

F
* 41T

’33 =
y (Y;)

’12 r
= -3i*(Y~ -Y~2)

’23 F
= -3i ~ (Y; - Y~l)

’13 = r
3% (Y; +Y;l) .

+
r, and u

7
are components of the matrices

expanding both sides of Eq. (D-1O).

in brackets in Eq. (D-1O),

(D-n)

‘L
of the spherical harmonics Y2“

(D-12)

‘L
For reference we write here the spherical harmonics Y2 .

.

.Y;* = JIQ_ . (x * iy)2
32Ir

r2 “
(D-13)



B. Expansion of S ‘!l
&

into Y
2

Expanding Eq. (D-1O) directly, we have

Substituting

S12 y; = E T a~m
@3 ‘1U2 Y1— CY,$

(D-1) into Eq. (D-lb), one can show that

-!1
’12 yl

y~ + @ (T13+T23) y: + (T11-T22+2iT12) y-l= T33 ~
1

or using Eq. (D-12),

r—

Similarly,

Recalling

in matrix form as

(D-14)

>

(D-15)

(D-16)

(D-17)

(D-15), (D-16), and (D-17) can be written

J-&Y;

J4 ~o
-=2

r
3 -1

-EY2

Y1
2 (D-18)



Comparing Eq. (D-5) andEq. (D-7) by substituting Eq. (D-4) for~and Eq.

(D-18) fOr S12we see that
~

s
12

= a. & B.

This accomplishes the goal of finding an explicit operator form for the deu-

teron wave function I(Y).

IV.
‘pMslON ‘F ~( ‘)

For completenesswe show the relationship between S~(;) and

[(3.$)2 -~] = [(?o~)2 -~] where ~=~(~1+~2) .

Therefore,

[(3”;)2 - $ S* [3(:10;)(:2.;)-11 . (D-19)

v. NORMALIZATION

The wave function in Eq. (D-5) is required tobe orthonormal; therefore,

Substituting the Hulthen wave function for ~, we

m

I = J [U2+W2] dr ,

0

have the integral, I, where

sinOdrded$ (D-20)

(D-21)
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where Eq. (D-21) follows directly from Eq. (D-20) by recalling that S~2 =
—

8 - 2s12,
— 21’1

and
‘n

J p2(e) sinf3de❑ O ,

0

where P2(e) is the Legendre polynomial, P
~’

for L = 2.

The values of u(r) ud w(r) which are to be used are16

u(r) =Ncosd [l-e -f3x1e-x

-yx] e-x . A(X) ,w(r) =Nsin6 [l-e

where

A(x) =1+3 -+3-
x

and

x= cm . (D-22,

We will calculate ‘2
J

u dr to demonstrate that this is normalized so
o

as to make up 96% of the ground state of the deuteron.

(D-23

The values which properly normalize Eq. (D-22) are

N= 0.875041 Y = 2.0170 COS6 = 0.99947
(D-24)

● f3= 4.7533 sin~ = 0.03356 a = 0.2318175 m-l .
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Substituting the values of Eq. (D-24) into Eq. (D-23) we obtain
co

r u2ar = 0.9594.
d
o

VI. THE AVERAGE KINETIC

The average kinetic

ENERGY

energy of a nucleon in the deuteron can be calculated

as

T, =<$>= -&)v; =(-$) 94 ● (v:), (D-25)

where V2
1+

~ is to be taken with respect to ~ r, the distance to the center of

mass. For this calculation, the D state of the deuteron will be neglected.

To do so, we must renormalize the S wave. Let

=N’[1-e
-~xl e-x , x =

u’ ar ; (D-26)

then from Eq. (D-23) we see that the restriction

m

J
(U’)2 dr=l , (D-27)

o

gives (N’)2 = a[~-fi+—
-1

2(;+1)1
, or from Eq. (D-24) we find

(N’)2 = 0.7973 , N’ = 0.8929 . (D-28)

Next, we note that since x = ar, V: = a22Vx (keeping in mind that x in this

sense is still a radial component). But one can show that

u’
-(f3+l)x

= —-N’ [62+ 2@]e .
xc x

Then

62

.

●
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c

?

w 02

J ($) [f (*)] r2dr = a
J

(:) [v:(:) 1 x2dx

o 0

0 0

The first integral is one [Eq. (D-27)] and the second integral becomes

(N’)2a [62 + 2P] (-&- ‘&) “

Therefore,

2<V>=a
r +

2- (Nl)2@ (1 - ‘2 )
2 8+1) ‘

from Eqs. (D-28) and (D-24),

2<v>=
r - 0.309 fro-2.

Recalling Eq. (D-25),

Tp = (- ~) “ 4 <v:> ?I.2
= (~) (1.*37) .

But

?12
(~) = 20.7 MeV - fm2 .

Therefore,

(aver%e kinetic energy per nucleon).

(D-29).
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