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A MODEL FOR THE OPTICAL POTENTIAL OF COMPOSITE PARTICLES

by

P. W. Keaton, Jr., E. Aufdembrink, and L. R. Veeser

ABSTRACT
A model for optical potentials of composite particles is
studied. Individual nucleon optical potentials are averaged over
the internal motion of deuterons and tritons (or 3He) with real-
istic wave functions. Analytic expressions are developed for form
factors predicted. Results of some specific caleulations with

the model are presented.




I. INTRODUCTION

A model of optical potentisls for deuterons was first suggested by
Wa.tanabel and later generalized to 3He and tritons by Abul-Magd and El—Nadi.2
This model has stimulated the interest of many (see Refs. 3-9) in search of
meaningful parameters in an optical model potential for composite particles.
One assumes optical potentials for each of the nucleons in a composite par-
ticle and averages over the internal motion. After folding a Woods-Saxon
potential with an appropriate wave function, one obtains a new shape for

the optical potential. The nuclear radius, diffuseness, and well depth can

usually be adjusted to approximate the new shape by a Woods-Sexon form.

II. THE MODEL FOR A TRITON (OR 3He)

We assume that the total potential between the triton and target nucleus
is the sum of the local, two-body potentials between each of the intersacting
particles. In this context, the target nucleus is treated as a single par-
ticle, but the triton is treated as the bound state of three particles (nu-

cleons). The Hamiltonien can be writtén as

) l)lfl (1)
H=T+ T+ 2V v, 1
s R = R

Jj=1

i$3

where the indices 1, 2, and 3 refer to the nucleons in the triton, and 4 refers
to the target nucleus. The two-body potentials between particles 1 and J are

written as Vi and the internal kinetic energies of the nucleons within the

J

triton are written as Tk' The kinetic energy of the center-of-mass coor-

dinates of the triton is labeled T.

The Hamiltonian for the triton alone is

D) (2)
H = T+ V., 2
o K 2i§=l 13

i#3



which defines the internal wave function, x, of the tritonm. Thus,
> > > >
B x(psr) = € x(p,r) , (3)

where € is the binding energy of the triton (see Fig. 1). The wave function

for the total Hamiltonian is defined by

H ¥(R,0,7) = E ¥(R,0,7) . (1)
Clearly, when ﬁ is large the triton is not under the influence of the force
of the nucleus and Y is separable. One may write

¥(R,5,7) = o(R) x(3,7) + 1(R,3,7) , (5)

where F is zero for large ﬁ and represents the variation of ¥ from the simple
product ¢x when the triton is in the proximity of the potential due to the
target nucleus. It is therefore referred to as the "distortion term." Sub-
stituting Eq. (5) into Eq. (k4), multiplying by XT(Z,;) and integrating over

> >
dpo and dr, one obtains
[T(R) + U(R)] o(R) = E_ o(R) -fd? & x'(x) TR3.D (6)
where Eo = E-e¢ and U(R) has been identified as (see Fig. 1)
u(R) = f fd? @ xR v, (F 3,47, (B )40 (201 3B . (1)
To the extent that the distortion term is small, U(ﬁ) is the first-order

approximation to the triton-nucleus potential. Henceforth, calculations

are made with T(®,p,r) = 0. Two triton wave functions will be used to cal-

culate U(R):

A. The Gaussian Triton Wave FunctionlO

> > - ge
X(p9r) =Be Y s (8)

where B = (2“—@1)3/2 and y = 0.16 ™ and

2

2 2 2 2
g = Irl-r2| + |rl—r3 + |r2—r3| = 2p

3
+2r
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Fig. 1. Particles 1, 2, and 3 are assumed to be bound nucleons of a triton
(or 3He). Particle 4 is the scattering nucleus. Relevant coordinates

for the calculation are indicated.



B. The Irving-Gunn Triton Wave Function'® (see Appendix A)

-—E
X(p,r) = A_P_ ’ (9)
2 .
where A = (ng% . 3/2 ana'® o = 0.768 ™t and £ is the same as for Eq. (8).

In either case, x depends explicitly on spatial coordinates through £, i.e.,
X 1s spatially symmetric about the exchange of nucleons. An important result
of this fact is the simplification of the calculation of U(R) in Eq. (7).

The integral is not changed if the triton coordinated system is reoriented
each time so that the nucleon which is being folded lies along the vector 3.

This allows Eg. ( to be written
u(R) ffao TEAVE) + vy, + v, (D1 x5 (10)

where ; = ﬁ + %-3

The potential U(ﬁ) can be calculated by using a typical nucleon optical

potential,l3

v(3) = -V £(s) - W gls) + xi Ve, (%%;f) G+ 1, (11)
where

a1 s~r Al/3
fs) = (1 + &) ;i x = —2>— (12)
a'0
d
g(s) = -ha — £(s) . (13)

ds
The calculation of the central term is straightforward and the spin-orbit
term is only slightly more complicated. Substituting Eq. (11) into Egq. (10),

the spin-orbit part of U(R) becomes
2 >
1 - —_—
USO(R) = A vsoﬂm dr x- ( ) (c to,t0 g Yol x . (1h4)

Neglecting any d state, the spin of the triton is the sum of the spins of




the three nucleons. In particular, of course, the two neutrons are antialigned
and the triton has spin 1/2. This can be represented also by Pauli spin

matrices, and Eq. (1L4) becomes

sx
u! (R) = ffdp ar x(z & —=y, (15)

where the substitution f E-sxv has been made. Since g = ﬁ + 3

win

38 = %.gR + 30, and because wave functions which depend only on the magnitude

+ . -
of p are considered, i.e.,

2

ooy

> = .(_i)i
v, x(p,r) >

the term

jﬁphxbﬁ)hdﬁ(3+3mxvpﬂpﬂ

vanishes because the nonzero portion of the integral is oriented along ﬁ.
The same reasoning shows that the only contribution to the 3 X $R term in
(15) is from that portion of p which lies along R. Therefore, Eq. (15)

can be written

\' -+
\ _ .2 so [+ 2.2 1ar 2 0:Ry > |
Ul (R) = A2 22 f a8 &F|x|° (S5 (1+5 % )5 - T, (16)
A 1 . .
vhere I = ;—ﬁva. Lastly, it can be seen that Eq. (16) is of the Thomas

form, since

s = (R + 2,2« 2RDY2
9 3
<>
13f(s) _ 1 af(s) , 3s _ af , R
R 3R R 3s 9R ~ 3 s >

and Eq. (16) can be written (taking Uso(ﬁ)g-f = U! (R))

v
USO(R)= iT°%8—Rfdpdrx f(s) x . (17)




Therefore, U can be written

v
() = U F(R) - 1Y 6(R) + 22 2225 . T, (18)
where
F(R) =ffd3 & x5 [£(2)] x(3.9) (19)
¢(R) =ffa3 a* x (3,7 [els)] x(3,7) (20)
U, = [vg + 2v2] ’ (21)
Y= [wg + 2w2] , (22)

where, for simplicity, it has been assumed the neutrons and protons have
the same well shapes but not necessarily the same well depths.

Specific calculations of U(ﬁ) are discussed in Sec. IV. However, many
of the important effects of this model can be extracted from Eq. (18) if
the triton wave function is replaced by a delta function. For Egs. (19-22)
we make the simplifying assumption that Ix(p,r)]2 = §(p) 6(r) and

vP = v =V . Then Eq. (18) becomes
(o] (0] (o]

v
u(R) = -3v_ £(R) - W_ g(R) + xfr —;—"% dgl(f) S.1. (23)

Equation (23) is a standard-shaped nucleon optical potential as in Eq. (11),
except that it is three times deeper and the spin-orbit effect is one-third
as deep. An importent consequence of this result is the prediction that
triton polarization should be small in the elastic scattering process. This
is easily seen from the Born approximetion which predicts that the magnitude
of polarization scales as the ratio of the spin-orbit term to the well depth
(see Appendix B). Therefore,
u. xv

p SO 3 'so

@ = =—— H P

t Uo 3VN

ct

a2
|+~
Z*U




where P the triton polarization, is estimated to be 1/9 of P the nucleon

t, N,

polarization. At present, attempts to measure polarization of tritons elas-
tically scattered from intermediate weight nuclei have indicated small
values.lh’15
One last point should be mentioned. The nucleon optical potentials which
are inserted into the integrals of Eq. (18) to calculate U(R) are known to
be energy-dependent. Each nucleon of a triton at energy E shares one-third
of that bombarding energy. However, each nucleon also possesses an internal
kinetic energy within the triton itself. It is shown in Appendix A, Eq.
(A-9), that this value is 20.6 MeV/nucleon. Therefore,.the nucleon optical

model parameters which are to be inserted into Eq. (18) perhaps should be

evaluated at
(20.6 + —2—) MeV ,

vhere E is the triton bombarding energy. However, an elementary calculation
indicates that & nucleon traverses the triton seversal times during the time
a 20-MeV triton traverses, say a nickel nucleus. This, coupled with the
fact that the triton is certainly distorted during this interval of time,
makes a clear recommendation difficult. An empirical approach to the solu-

tion is in progress.

III. A MODEL FOR DEUTERON OPTICAL POTENTIALS

The general methods used in Sec. II for a spin-1/2 composite particle
can also be applied to a spin-one composite particle. However, if the spin-l
composite particle contains a significant amount of & = 2 orbital angular
momentum (as, of course, does the deuteron), the calculation is considersbly
more tedious. The first exact calculation for such a case was published by
Raynal.h A similar calculation appears in Appendix C. An outline of the

results of the calculation is now presented.




The Hamiltonian for a deuteron is written as H, = T + V__ where T
d pn pn pn
is the kinetic energy of the relative motion of the proton and neutron, and
Vbn is the potential between them. This Hamiltonian defines the deuteron

wave function Xq? where

H (2k)

aXa~ €qXq >
and €q is the binding energy of the deuteron.
The interaction of the deuteron with a "core" can be described by a

total Hamiltonian, H, where

HY=EY,

and we seek the total wave function ¥. The total Hamiltonian can be written
H= Hdc + Hd’ where the Hamiltonian Hdc describes the interaction of the

deuteron with the core, i.e.,

Hdc = Tdc * Udc = Tdc *+ Vpc + Vnc : (25)

Tdc is the relative kinetic energy between the center of mass of the deuteron
and the core, and Vpc and Vnc describe the individual potentials between the
nucleons in the deuteron and the core. It is our purpose to find an optical
potential for the deuteron which will allow us to calculate the wave function
Qdc which describes the elastic interaction of the deuteron with the core.

That is,

H (26)

de d)dc = Fae q’dc :
We will neglect the distortion term Td(ﬁ,;) as was done in Sec. II.

In this approximation we can combine Egqs. (24), (25), and (26) to write

(dropping subscripts)

¥(R,7) = o(R) x(7)

[Ha(F) + T (B) + v (B)) + v, (S )1e(B)x(F) = (eg+By ) o(B)x(F) . (27)




Multiplying Eq. (27) from the left by XT(;) and integrating over dr, we have

[T, (B) + uR)] o) = B, oR) , (28)

de
where a potential for the center of mass of the deuteron has been identified

as
E<U +, > > > > >
U(R) —fx (r) [Vpc(sp) +V_ (s )] x(r) ar . (29)
We now substitute a specific value for Vpc and Vnc to calculate U(ﬁ). Although

it is not necessary, it will be convenient to assume that the proton and

neutron potentials are identical (see Fig. 2). Therefore,

Vo) = v (@) =V () +V ()T - T, (30)

where Vc(s) is a central term (in general complex) and Vso(s) is a functional
coefficient of o + I, the spin-orbit term. T(8) is the angular momentum
operator which is replaced by %-QX$S in the calculations. Using Eq. (30)

in Eq. (29), the calculation of U(R) = U (R) + Uz(ﬁ) becomes

1
u, (%) = fa? x"(F) [2v ()] x(¥) (31)
and
U (B) = [a* }T(F) [V (s)e(3,+3,)-8 x-ZE] (¥) (32)
2 X 50 917%2 1 XY
> ﬁ _x)' 1 > >
where s = + 5 and 38 = EjVR + Vr-
The deuteron wave function will be taken as a Hulthen wave function.16
x(T) = 1 [uir) + w(r) Slz(e,¢)] s (33)
Vi /8
where
>+ > > > > >
812 = 3(ol-r) (02-r - 0,0, -
We can always replace gl.ge by 1 in this calculation because the deuteron

mgy always be found in a triplet state y?, and 3l°32 y? = y?. Substituting

Eq. (33) into Eq. (31), we see that Ul(ﬁ) cen be written as the sum of a

10
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Fig. 2. The deuteron contains a proton (p) and neutron (n). The nucleus

(core) is represented by c. Relevent coordinates for the calculation

are indicated.
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central term and a tensor temm,

v (B) = u) (R) + U (R) - [E-DZ-3], (3)
where
u, (R) = %fd; v_(s) {[ui,r)lg + [“ﬁ}"]e} (35)
Uyp(R) = 22 [aF v _(s) P2(e){u(;;‘2_r) - [Wg)]‘?} (36)
(807 - 21 = 2 (3G, -R(G,R) - 1] = g 8,(R) (37)

in which § = :—QL-(E?l+6’2) end P,(0) is the Legendre polynomial for £ = 2.
Returning to the calculation of Uz(ﬁ) in Eq. (32), we see that it can

be written as the sum of & central term, a spin-orbit term, and a tensor

term. That is,

u (B = U, (B + U, (R) B-T + U(m) [(BeR)% - 51, (38)
where
U, (R) = = f & v_ (s) {[%12 r2- (& [‘512} (39)

280 2

v (s) > > 2
U, (R) = i—“ fdi-*i"-z—— [U2 - w2](1 + IRy :/—i [uw + "QL-]sinze (L40)
r 2R 8

.2 oy 2
U2T(R) - % fd; Vso(s) sin“6cosH | (wu ;uw ) + 2121w _ Lw .
/2 r /2or

18R [.>
- En_fdr Vgols) rg/é' [u ) 7;] . .

Section V will consider specific calculations of U(ﬁ) . However, Jjust
as in the case of the triton, same general observations can be made at this
point. Satchler has shovml7 that a consequence of parity conservation and

time reversal invariance is that U(R) can, in principle, contain three irre-




ducible tensor terms. They are

(3-8)° - -’;‘-
(2.3)2 - %pz (42)
(3.2)% + % (3.1 - % 2 .

If the present model is valid, only the term [(§°ﬁ)2 - %] appears in the
tensor optical potential for deuterons.

It is interesting to note that if one sets w = O in the Hulthen wave
function, then all terms of [(g-ﬁ)2 - %ﬂ which appear in U(R) venish. That
is, the existence of a tensor potential in this model is the consequence
of the D state of the deuteron.

Taking U(r) as a delta function 6(r), and setting w(r) = 0, the deuteron

potential reduces to

U(R) = 2V (R) + V__(R) 3.7 (43)
or
u(R) = 2v _(R) + % v_(R) (53, - 1. (1)

Equation (Lk4) is written in a form which emphasizes that just as the triton
spin~orbit potential is one-third the nucleon spin-orbit potential, so the

deuteron spin-orbit potential is one-half the nucleon spin-orbit potential.
> >

c.+0,.).

This point is less obvious in Eq. (43), where g = l-( 110,

2

It should also be mentioned that there is no a priori reason to exclude
the Coulomb term from VC when calculating U(R). A study of this problem
revealed that the effect on the central part is negligible, in the sense

that the new "shape" for the Coulomb potential is of the same form but with
the Coulomb radius, L changed by less than 1%. Optical model fits are

very insensitive to such a change in rc. One point we have not investigated

13




is that the Coulomb potential contributes to the tensor part of the deuteron
potential as can be seen in Eq. (36).

' Again, just as in the case of the triton, one may include the internal
kinetic energy of the nucleons. This is calculated in Appendix D [Eq. (D-29)]
to be 25.6 MeV. Therefore, the nucleon optical potential parameters which
are to be used in Eq. (29) -perhaps should be evaluated at (25.6 + %) MeV,
where E is the deuteron bombarding energy (see, however, the last paragraph

of Sec. II).

IV; EMPIRICAL FITS TO THE TRITON OPTICAL POTENTIAL

The formulas for U(R) in Eqs. (18) through (22) have been calculated
in a computer program for both the Gaussian triton wave function [Eq. (8)]
and the Irving-Gunn trifbn wave function (Eq. (9) and Appendix A). The re-
sults of some preliminary studies will be presented.

It was found that when a Woods-Saxon shaped potential is used to cal-
culate U(ﬁ), the result appears close to a Woods-Saxon shape. That is, with
a new choice of diffuseness, radius, and sometimes well depth, one can find
empirically a new Woods-Saxon shape that is close to that calculated for
U(R). Optical model computer programs usually are written with these shapes
(including derivatives of Woods-Saxon, etc.) as options. This avoids having
a table lookup form factor. '

We have devised a computer program (RHOS-T) which calculates the integrals
and determines "best values" for a modified Woods-Saxon shape. The triton

optical potential that is calculated by RHOS-T is [Eq. (18)]

v
u(®) = -u_ F(R) - 1Y_ G(R) + xi %" . %%3 .7, (45)

where

F(R) =f dp dr x+(p,r) [£(s)] x(p,r) ,

1k




or

-] 1 o
F(R) = sﬁf o dpj £(s) duf [x(p,0)12 12 ar , (46)
o -1 o)
where p = cos@, s = j%g + g-P2 + %-Rpu, and
1 S-r Al/3
f(xo) = —_— x =—2 (k)

( l+exo ) o] a.o

Adjustments were then made to find ré and aé such that

1/3
. R-r'A
%%%%-= f(xé) ; xé = ———f%r——— . (48)
o

Likewise, for the imaginary part,

G(R) =ffa3 aF ¥ (o,r) [als)] x(p,r) ,

or - 1 -
G(R) = 8Tr2f 0? dpf g(s) duf [x(p,r)1% 2% ar , (49)
o) -1 ] .
where g(s) might be a volume term,
s—riAl/3
glx;) = £lx,) 3 x; = T , (50)
or a surface term,
_da
g(xi) = I f(xi) . (51)

1

For the surface term, a, and r, were determined such that

a(R) R—r!Al/3
73 = g(x!) , where x! = —r—— (52)
a(r!a 3) * ' * &

The resulting modified parameters are indicated in Fig. 3. The nucleon

parameters were taken as18 r =1.25F, a = 0.65 F, r, =1.25 F, and a, = 0.L7 F.

15
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Fig. 3. Woods-Saxon parameters for triton (or 3He) optical potential form

factors plotted as a function of atomic number. The calculations were

made with the following nucleon parameters: r, = 1.25 fm, a, = 0.65 fm,

r, = 1.25 fm, a; = 0.47 fm.
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A Gaussian wave function [Eq. (8)] was used. A plot of the effects on u(R)
as a function of atomic number, i.e., nuclear "size," is indicated by showing
modified parameters. F(0) did not vary by more than 1% from 1 in the range
from A = 27 to A = 120. G[(ri/ai)Al/B] was also essentially constant, not
varying from the value 0.77 by more than 1% over the same range.

We have used the geometry in Fig. 3 and obtained reasonable fits to
triton elastic scattering data for nuclei in the region of A = 60 by allowing
Uo and Yo to vary. However, we have not attempted a systematic study pending
our polarization measurements of tritons elastically scattered from nuclei
in that mass region. We anticipate that triton polarization measurements,

15

which are in progress, ~ will expedite such a study.

V. EMPIRICAL FITS TO THE DEUTERON OPTICAL POTENTIAL

We have also devised a computer program (RHOS-D) to calculate the deuteron
optical potential U(E) of Eq. (29). To date, we have calculated only the
zeroth-order terms as indicated in Appendix C (Sec. VIII, part C). Keeping

only the large terms,

u(R®)

i@ + v g2+ O (@02 -2,

where

u{O(r) = %;fd? v (s) (92

v (s) >
Uég)(R) = %—fd; < { w? o By TRy, dw sin-6
T V2 V8

Ué,o)(R) %r‘/—-é_fdi v (s) —:%P2(9) . (53)

Assuming that the proton and neutron optical potential shapes are the

same (which in practice is not true) we take as the nucleon optical potential

18




>

Vi (s) = -v_ £(s) - iW_ e(s) - A:‘; V_, B(s) s -1, (54)

where f(s) is given in Eq. (47) and g(s) is given in Egs. (50) and (51).

The term h(s) is defined as

Substituting Eq. (54) into Eq. (53),

U(R) = -[UO F(R) + iY G(R)]
2
-[a Uy H(R)] 8.7

-0 Uy MR) + 02 v, ()], (56)

where the central part is

I_l

F(R) = %f dr du f(s) u2(r)
0]

® 1
G(R) = %f dr f dp g(s) u2(r)
o) -1
2 r2
s=R+h—+Rru 5 U = cosb ,
and
U =V o+ yP
o o o
Y =wh o+ (57)
o o o
The spin-orbit term contains
o 1
mw%faf@mamﬁEM+§+ﬂuwﬁ
/2 /8
o} -1
U _ =y , A% =2.0 m° . (58)
so §0 T

19




The tensor terms are written

w 1
M(R) = —3—f dr du £(s) u(r) w(r) P2(u)
/5
o -1
® 1
N(R) = —3f e [ gle) utm) wl) 2()
/5
o) -1
P(n) = (2% - 1)
Up = Vi + VE
YT = wl; + Wg B (59)

Each of the form factors F, G, H, M, and N has been calculated for vari-
ous values of atomic number, A, with RHOS-D and a characteristic shape has
been determined. By trial and error, we were able to find form factors that
approximate the integrals in Eq. (56) (see, however, Ref. 19). These form

factors are defined below:

fd(R) =F £(R) = F(R) 5 f(R) is Woods-Saxon shaped ;
gd(R) =g g(R) = G(R)
H £ (R)

= a a -

hy(R) = 2= 5= v ) = H(R)
h.(R)
m (R) = -R-M_ S go ) = M(R)
(R) = Ren. & (2 (28] 2 y(g) (60)

Bt = 228, @R 'R &R ¢ 't .

The constants Fo’ Go’ Ho, Mo’ and No must be adjusted to fit each integral.

The specific form factors that have been calculated are listed below.

20




fd(x)

gd(x) = —hai G

h (x) = - _g_g;_(fQ) = o e’
d R F, Rag (1+e¥)2
h M X a X
d d o} { e o) l-e
m (x) = -RM_ = () = R "
d o dR HO (38)2 \(l+ex)2 R l+ex
a (14 ,%a s \ R x, 2x ox
rax) = W G |5 (G =y |omy) | (e (1), (61)
o} i \(1+e™) 1
R_Ré R-R!
where x = aé for the real potential terms (fd, hd’ and md) and x = a{

for the imaginary potential terms (gd and n.,). Often one can find a single

d
set of Ré, ai, Ri, and ai that will fit all five form factors of Eq. (61).

Figure I presents the results of a calculation of the form factors for
deuterons elastically scattered from 6ONi, with nucleon parameters from Ref.
20. It should be noticed that this model predicts a real and imaginary tensor
term of about equal size. It would seem unlikely that either can be ignored.

A rigorous test of this model for deuterons will be a systematic study
of vector and tensor polarized deuterons elastically scattered from intermediate-
weight nuclei at about 15-MeV bombarding energy. A high-intensity polarized

ion source has been developed for the Los Alamos tandem accelerator, and

such a study is being planned.

VI. CONCLUSIONS
The theoretical basis for a study of composite particle optical potentials

has been reviewed and extended. A consequence of summing nucleon optical

21




T T T T T T T T
IO ———- — F(R) ~

o e ~
o o NG === t(s) [NUCLEON FORM FACTOR]
. \ N fy * 114 ¢m

\ ag * 0.97 tm
0.6 - \\ F, = 0.91 4

0.4
0.2}
o | . '
0 2 4 ® °
R(fm) or S(fm) —
(2)
T T T T ' A ' l
.o e GR) N\ |
08l ——=8s [NucLEON FORM FACTOR] // \ -

r's 1.28¢m / \\
°l" 0.87fm / Ve \
0.6 - Gy * 0.65 \\\ T
/ \
. / . -

R(fm) or S (fm) —=
(b)

Fig. 4. Dimensionless form factors for the deuteron optical potential of
60, .

Ni. The nucleon parameters used in calculating (a) and (d) are r, =

1.17 fun and a.o = 0.75 fm. The nucleon parameters used in calculating
(c) are r = 1.01 fm and a_ = 0.75 fm. The nucleon parameters used in
calculating (b) and (e) are r; = 1.32 fm and a; = 0.56 fm. It has

been assumed that Ai = 2.00 ﬁn2.

22




T T T T I T ]
0.15]- A7 H (R)
_—s o Ar? hg(R)
. . N, t/ ® 0.97fm
0.1} ,/. \ ol * 0.97fm
_—/ .\ HO s 0090
( ]
.05} \
@,
\.\
0 | l ! ! | R
o) 2 4 6
R (fm) —
(e)
0.020 T T T T T —T" T T T
0.015} Am? M(R) ./\
® X‘Wz Md (R)
r°' = .14 fm
0.010 05 = 0.98 tm
) Mo' 0.07
®
[ )
0.005¢

- 0.005

-

H

-
-

-
-
-

Fig. 4 (cont.)

R(fm) —=
(d)

23




0.06 T ] T L T T T T T
A72 N(R)
0.04 A 72 Ng(R) i
i n'«1.29¢m
o = 0.87tm
0.02 |- NO 2 0.048 L4 -
o \
/_\ .
0 ———p=—" : —t — : :
2 \; ’ 8
-0.02 "
-0.06 |- _
1 | 1 1 [} 1 1 | 1

R(tm)—
(e)

potentials is that the spin-orbit well depth is decreased by the number of
nucleons in the composite particle. The model therefore predicts small polar-
ization values for elastically scattered mass-3 nuclei. The validity of this
model has not been confirmed or denied by existing experiments.

And, finally, we have suggested specific form factors for the tensor

portion of the deuteron optical potential.
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APPENDIX A: IRVING-GUNN WAVE FUNCTION

I. COORDINATE SYSTEM

The coordinate system is defined in Fig. 1. We define in addition,

> - > >
T, =T =T,=T
> > > > ;
Ty STy =T, =p+ 3
>
> > > _ > r
Ty STg-T = -3
It follows that £° = |;12|2 + |_1t32|2 + |;31|2 = 20 + % r°. It will be neces-

sary to discuss the center-of-mass coordinates to some degree.

1) _ 1,1~
rcm ——3p+2r
U g 5
cm 3P 2
+3) _ 2>
em - 3°

The expectation value of the momentum squared (or kinetic energy) of any one
of the nucleons must be the same as any other. Therefore, for our purposes
we need calculate only (_65:1?1))2'

ox

8 ___._©o_, 3 _3.3
3x(3) Bx(3) ax 2 3x
em cm e
2 ox 2 2
3 3 fol 3 99
57| =3 . = , ete.
axci) 2 Bxii) 3x2  * ox®
Therefore,
>(3)y2_9 2 9 1 3 23 -
(ch) —hvp_ﬂp2app 9p ? (A-1)

where the last equation holds for the function which depends on only the

magnitude of 3 .
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II. NORMALIZATION

The Irving-Gunn wave function for mass-3 nuclei may be written

a 2 1/2 o,
—(r12 n* 32) 2%
A _ A e ( ) .
X = 2 2 1/2 T T > A-2
(r12+r31+r32)
where § = (2p2 + ‘2— r2)l/2. We require that the integral »0 = 1, where
\0=(h1r)2ffx2p2r2dpdr.
o O

Let x = V2 ap and y = V3/2 ar, then
\0 ——)“T—AL’I fx dxf Y
2 2 2 '
3%/ +y©)
Let x = Rcos® and y = Rsin®, and integrate over the first quadrant of the

element RARd6 = dxdy. :The integral is separable and we find

. o /2 o
\9 = %%)_u f sinzecosgede f R3 e_R dry) .
3 o
(o} o

The first integral has the value w/16 and the second integral is one of the

integrals

[+ <]

fRNe_RdR=Nl.

o)
Setting \0 = 1 we find

1/h 2

(A-3) )
3/2/—
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III. MEAN SQUARE RADIUS
The mean square radius of a nucleon (measured, of course, from the center

of mass of the triton) can be obtained by choosing particle 3. In that case,

<R2 < = <]r(3)[2> = E-<&;2>
rms cm 9

<R2 > =-E S <R2cos26> .
rms 9 2

2a

The integral obviously separates again, and since

/2 n/2 :
f coshesinzede =%—f cos2esin26de R
o) : o]
<R2> &.__]-__<R2>=£.__l_.21_.
rms 9 hae 9 haz 3!
Therefore,
rms 9 "
In particular,
2 _ 2 _ -1
<Rope> = 3-77 for o = 0.768 fm

IV. THE AVERAGE KINETIC ENERGY
The average kinetic energy of a nucleon within the triton can be cal-

culated by choosing particle 3 again, and finding

p2 2
=¢-3 5. _ B _2(3),2
T3‘<2M3>*'2M<(ch. >
from Eq. {(A-1),
n° 9 2
T3= (—ﬁ C % <Vp> . (A-L)
Using Eq. (A—2)
o a
3 e—2€ LI e_Eg
gx(p,r)=%(A £ ) = ap'ag(g )
2
§§=-p(%+;—2-> x(p>r) .




2
A I SR
0 o] P P op . sp
== 3 (24 x(pur) + 207 (Z5 4 2D x(oar) + 07 (£ + 2% x(p,r)
£ £ 2 2
Therefore,
2 o 2 2'a2 6o, 12
v x(p,r) = —3(E+-3) + p (—2+_3+—IT) x(p,r) (A-5)
£ g 3 £
with the substitutions £ = R/a and p = Reosd , Eg. (A-5) becomes
a/2
2 3(;.+ E—J + EQEEQ (l + §.+ ;go ( ) (A_6)
o 73R 2 2 R © 2] X\PsT/ -

The integrals again separate, and performing the integration over 6, Eg.

(A-6) gives
2. _ 2 1 3
<Vp>-—a <)-l»_2R_eR>
_2l_321 .1
=" [F-537- 337!
3 2
Wi = - Fa® L o (a-T)

Substituting Eq. (A-7) into Eq. (A-4), we find
2
=2, .27 2
L= G T -

>

If T, is expressed in MeV and o is expressed in fu 2 = (107F meter)—z, then

3
e 27 2

Iy = e 1Y

where T. is expressed in electron volts and e is the electron charge in coulombs.

3
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|

20.7 MeV - fm~ .

2Me
Therefore,
= .27
Ty (20.7) g o MeV
-2
For a = 0.768 fm °,
T, = 20.6 MeV (average kinetic energy per nucleon).

3

(A-8)
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APPENDIX B: POLARIZATION FROM ELASTIC SCATTERING

IN THE BORN APPROXIMATION

For reference, we calculate here the polarization which one obtains
from first using Born approximations with optical potentials. Consider the

total Hamiltonian as H = Ho + Hl where

Hy = V(r) + iW(x) + v (x) G- L
V(r) = -V f(r)
W(r) = - W glr)
Ai =2 w2 . (B-1)

In the first Born approximation, the scattering amplitude F(6) can be written

F(g) = %;fffd? T s (B-2)

where U(r) = g—g— Hl(r) , U is reduced mass. The initial momentum is Ei and
h
the final momentum is K and K = Ki - l_:

> >,
P The angle between ki and kf is 8,

P

the center-of-mass scattering angle. Define the Fourier transforms

ji?fffe_i_i.; £(r) ar

4(K) 2;2 fffe_iﬁ.; glr) ar . | (B-3)

Substituting Eq. (B-3) into Eq. (B-2)

F(x)

2 > > O

uA v -ik_*r ik, T
F(o) = -v_FH(K) - i¥_J(K) + ——"—gﬂfffe fEhHdte ' &, (W
27h

The integral in Eq. (B-4) can be rewritten
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H
ay
—
]
o
b
e
<J
pac
e
"
o
&y

-> -> > '_IE-* ->
-kixff (Ve ™) £(z) ar ,

where the last step included an integration by parts. Therefore, the integral

]
|
Q

in Eq. (B-4) becomes

2
i3 Kx RIK) - -2—?—- , (B-5)

and for elastic scattering,
> > > > 2 . -
k., K=k, =k, = ki sin® n ,
where n is a unit vector perpendicular to the reaction plane. Equation (B-k)

can now be written

F(8) = -V HK) - i AK) - 1 N2 V_xCsino A(K)] 3 + A
= a(0) +b(8) G+ 7 ,
where
a(e) = -V H(K) - iW_AH(x)
ble) = -1V, [2° k% sine H(K)] . (B-6)

In terms of a and b, FFT can be written

FFT

[12]® + [6]] 1 + [ab* + a%b] o

[[al? + [9]%] 1 + 2lRe(a®)] o
The cross section is (ef. Ref. 21)
1 + 2 2
I,=5Tr (FF) = [|a]® + [p[°] ,

and the polarization, Py’ is
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=1 t = _
I Py =5 Ir (FF oy) 2Re(a¥*b) . (B-7)

Since b is pure imaginary, it may be noted in passing that the first Born
approximation predicts a zero polarization for a real potential. Substituting
Eq. (B-6) into Eq. (B-T), we find
. cy42 2 .
2[1wo;(7(1<) (—1)vasokis1n65(K)]

Y Ve APwe 4%] + v2 232 sineF )P
O [o] SO m 1

or
oWV H(K) F(K)(3%2)sine
P = 0 SO T i
y 2 g2 .2 22 2 2.2 . 2
[voﬁ +Wo,d ]+Vso[)\“ki31n63(]
For the usual optical potentials, V0 >> WO > Vso' Therefore, we may write
WoVso
P o« —.
y Ve
o

Of special interest in this report is the fact that, for composite particles,
the ratio (Wo/vo) is independent of the number of nucleons in the composite

particle, and therefore
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APPENDIX C: THE DEUTERON OPTICAL POTENTIAL

I. Consider the deuteron as a proton and a neutron bombarding a core, and
assume that the total potential can be written as the sum of individual (two-

body) potentials (see Sec. III of the report).

A.
H. =T + V
d pn pn
= +
Hdc Tdc U
=T, +V +7V
de pe ne
= +
H Hdc Hd
HY = EY
Taxq = €aXq
Hac®ae = Bac®ac
E= Edc + €q *
B. The coordinate system is shown in Fig. 2 where
> >
r +r >
R=2—R-7 3 =%+ %
2 c P 2
>
> _ > - ->_§ r
r=r -r s =R-=
P n n 2
> > >
s =r -7r
p b c
> > >
S =r -r .
n n P

C. Neglecting the distortion term,
> >
¥(R,r) = o(R) x(r)
(subscripts are dropped). Then,

+ = .
(Hd * Toe Vpc + vnc)w (ed + Edc)w

33



Multiplying this equation from the left by X+ and integrating over ;,

o) *+ Ty (xox) *+ GG IV 9, 10T #(R) = (e gtBy ) (ese) o)

ed 1 1

Therefore,

(T, + UR)) o(R) = B, o(R) ,
where we have identified
u(R) =f[x<?),[vpc('s*P) +v_(3)1 x(¥)] &,
as the deuteron potential in Hdcé(ﬁ) = Edc¢(§).

D. The problem is to calculate U(R). To do do, we assume an optical poten-
tial for the nucleons, which does not distinguish between protons and neutrons
(this is simpler, but not necessary).

v (3) = v () =V (s) + Vl:o(s) s -1.

Notice that if we reverse the directions of ;, gp -> gn’ ete., we need only

calculate the effect of x one one of the nucleons. We will need

> ; > 1

S =R+ ; V=gVt
=12 . =12

Bo=18 0%, 5 =13

For convenience, we take A = 1. We must evaluate

Ul(is) =fd}* [x,zvc(s) x(T)]

and

Ug(ﬁ) = %fd; [X,Vso(s)(gl + 3*2) . 8 x %S x] .
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I1I. HULTHEN WAVE FUNCTION

A. The Hulthen wave function is of the form

(%) = [u“‘) + 22l s (o, >] ,
Xir e r /8 12 ¢

where

> > -
S 3(01 0y Oy -

12

C B3, - P -

Since the deuteron is always in a triplet configuration, we replace o, s

1 2
by 1.
. 2
B. TFind (812)
(6, +)(5,-¥) (5,-¥)(5,7)
S.. 8. =13 -1]113 -1
12 12 2
r r
(31-?) 2 [(32-‘5) 2 (31-?)(32-15)
=9 r r -6 2 +1
" " r
1 1
(5,-7)(3,+7)
1 P
=10 - 6
r
Sip " Sip=8-2 [3(31-£)(32-§) -1]=8- 25,
2 —
(312) =8 - 28, -

C. Expand Slg(f) for triplet states:

515(F) = 3(5,7)(5,+7) - 1

Z
1

Yy
1

y

X_.
= 3[(0181n6cos¢ + 0 2

sinfsing + o cose)(c;sinecos¢ + oYsinBsing + c;cose)] -1
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= 3[(cF o 31n26003 ¢ + c{ 231n 981n ¢ + oi cgcosze)

l 12

Xy y X . 2 .
+ (cl oy + 0 02) sin“6cos¢sing

X z z X\ .
+ (01 o, + 0] 02) sinBcosBcosd
y .z Z ¥y . . _
+ (ol o, * 0 02) sinfcosbsing] - 1 .
27w
. . 2 _
D. TImportant special case: 'f\ 5., ¢ (S12 =8 ~ 2812)

e}

For this case, all ¢ terms will integrate to zero except

21 2T 2T
f cosg¢d¢ = f sin ¢d¢ —-(21r) and f a¢ = 27 .
o o o

The only surviving terms are

———izl d¢ = 3[2( X xsinge + oY y81n ) + Zcosze] -1
oy o9 5197 9o 91 % o] op
0
but
X X yy_> > _ 2z Z_._ 2 2
ol 02 + ol 02 ol 02 cl 02 1 ol 02 .
Therefore,
(r) ‘
- 1 A A 2 z 2
J[ o 49 = 3[§(l -0 02) sino + c o,cos 0] - 1
=3 458 2 3 -
= 5 sin"6 + l 2 (3cos“6 -~ > sin e) 1
=3 g2 g2 b— cos28 - —O - (—-cos 6 - ;0
12 2 27

If the z axis is oriented along ﬁ, o? = gé— and since

(-g- cos0 - !'-) = P2(6)

the Legendre polynomial Pl(e) for & = 2, we find
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57 | S1o(F) 6 = [3(3,-RI(3,-R) - 1] P,(e)

or

III. EVALUATION OF Ul(‘R’)

A. Since U, contains only Vc(s) » the potential is

1
2
U, (R) = 75y
L > (r) Ay 1
+ mfdr u(r) VC(S) 1}_;:—812(1') r—2
2 > w(r) wir) .2 ,~y 1
T T W/g ols) /g— 515() ;2" .

B. The first ingegral stands. The second becomes

nr; y ( ) W(r) P (e)} (R) .
(m/‘ {f 12

The third term becomes

iy [ Hely el _ls 1,

(L) h 12

which clearly gives a central term and a tensor term.

C. We conclude that Ul contains a central part, U (ﬁ) and a tensor part,

1C

U,.(R) S..(R) where:

1T 12

Ulc(ﬁ) = (—lh—")-fd; %—li vc(s)

o W(r) (s) w(r)

Uyp(® = oy fd; Uzl v (o) L v (o) - 5Chn) fd; el
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IV. THE APPROACH TO Ue(ﬁ)
1l ,~»> > 1,2 ; 1 > >
A. Since T (s x VS) =3 (R + E) x (E Ve * Vr)’ we must evaluate:
_)
> 1 »lu(zr) w(r) 1> ulr) . w(r)
0,(R) = T far[ + ()@ (Bl (R v [0l )
2 (1) (hm) r B S1o]V Y r'{ r /8
B. The plan:
1. Show that any contribution from ; X _V*R comes from a component of
->
r along ﬁ Thus we will have
1 oo+ 1 T ﬁ > 7R
i—(§+§) x V=T (1+ =) R x VR=(1+—§)f .
2R 2R

2.

terms and tensor terms.

Calculate the contributions from —ﬁx 31_ which will consist of central

3. Write %—_f X -V>r = _f, an operator on 812 which can be written as
J=1+8,
and ? is an Hermitian operator for x (or 812)' We will find
§,g=1(3+1)—z(2+1)-s(s+1)
> .
V. CONSIDER THE Vj TERM
> > | > > ; > -
fVSO(s) {x(r) [cl + 02] x(r)} . (B + E) x Vg dr .
A. Calculate x(g, + 9,.)x
1 2
1 5 [u(r) + 1’.(_1_')_512 31 u(r) + E(—QSJQ
hyr /8 /8
I - u(rjw(r) ( ) +}_¢Es ]
hwr% 1 /B 1271 8 1271712
Note that

38
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B. Then, since o

1 712 12 "1 r2 2
or
X xyo _ bxi > > X 2
(cl I 812 01)1 = ;5— (02 r) - 207 1 .
Adding the three components,
> > ap> oA >
7, 812 + 812 o, = 6r(02 e r) ~ 201 .
Likewise,
- -> ap> A >
G, 81p * 8150, = 67(0y T} - 25, .
Then
> o> > > P ~ > >
[(cl + 02) S, * 812(0l +0,)] = 6r[(ol +a,) - r] - 2(o + 02) .
&> >
c. 812(°1 + 02)812
. > > A R NPT e e SN N2 i
Since (ol+02)s12 + 812(01+02) = 6r[(ol+02) T 2(cl+02) R
multiply from the left by 812,
> > Ap, > A > > 2 ;> >
= er| = - +
812(°l+°2)812 6 812 r[(ol+02) r] 2812(cl+02) 512(01 02) R
since
2 _
510 = 8-25,,>
> > > Ay A > A > Ayqa > >
S12(01+o2)s12 = 6[3(cl-r)(02-r) - 1][(01-r) + (cz-r)]r - 8(cl+02) .
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NoTE: (3, - #)2 = 1. Then

S (* +o }s
12'1917%7"10

or
812(6’1+32)812 = 12[(31-3) + (32-5)11' - 8(§l+32)
It may be helpful to note that
81, 0y Sqp = 613(5,+8) - (5,+F)] - &, .

D. Again, X(gl + 32)x

+5.)8

X(BE () = 2 {u2(31+32> + Aladulr) g
)-l»'rrr /8

2
W > >
*8 S12("1*"2)312}

hnr2

2
W -> ~ ->
+3 [12(olor + 0,

Then

2 > >
- W ] (ol+o2)

~ 8

Also note that

x(r)glx(r) =

40

+
1727712

)P — 8(31+

6[3(3,+7) + 3(3,+7) - (3+7) - (3,°1)] - 8(5,%3,)

> >
812(01+°2)]

= {u2<31+z§2) + ———i—u(r"/’; I) [6((3,43,)-5)F - 2(3+3,)]

>

02)]}.



B. We have now

{ilfd; Voo(8) I(FNE) + T )x(H)] « (R + §>} x Vg -

1. Using the expansion of x(gi + Zg)x from D, we first consider the

o.):

coefficient of (o. + 5

1

%fd;VSO(S) [ug—%w-_—WQJ (31+32) . (§+§) x_V*R .

>
r

N

The only ¢ terms come in through and they integrate to zero. This gives

a cos 6 k term:

F. R,

r cos 8 E =
R2
and
>
%fd}’ v_ (s) pl w2 (31 + 8’2) - R(1 + r'g) x 'V’R
/8 2R

> 2 2 +-§ > - 1 >
fdero(S) [u -%—W] (l+-z¥) (cl+02) . (;RxVR)

2. Next we notice that the re> x gR term vanishes.

3. We have left

2
{%;f% dr v (s) 3[%+ ‘2’—] [, +3,) - ;.];.} B ox Y

(cj°r)f = (cgsinecos¢ + c?sinesin¢ + o§cose)(sinecos¢§ + sinBsingj + cosek) .

Integrating over ¢,

2%
1 > Ay oA l, x 2 Yy 3 . 2 A 7 2
= (o,°r) 2dp = 5 (o, i + o7 3) sin“0 + & o2 cos“p
2ﬂf J $ =219 i J
o
1> .. 2 Z 2 l .2 ~
= = + - — .
5 04 sin 0 + o, (cos“p > sin 8) k
The last is zero because k + R x $R = 0. Thus, the relevant term becomes

L1



2n
1 s ey a1 2.
5 .[‘ (oj-r) rd¢ = (2 sin“e) Iy s
o)

and the desired integral is

(3 [ vegter -

F. Does the spin-orbit term of deuteron have the Thomas form? Consider

+

Hrol2
S |=

STES

1 .. 2 > >
» 5 sin e] (cl+02) 7.

only the u2 term for the spin-orbit term.

_It.
s _ 2 ¥ R
3R 5
£2(R) =f12 £(s) ar
Bfo
1 7a_1 2 3f(s) 2 _ 1 2 (2f) 3 g
R o R oR R ds’ 9R
TR
"R ds S
+
=fu2 dar n(s) (1 + r—'g-)
oR
0
1% o
R R d’

so that the largest contribution (from u2) is of the Thomas form. However,

in genersal it is not.

. 1 by 1~ .

G. Conclusion for the T (R + 2) x 7 Vg term:
1 -> > > ? > >
o7 VSO(S) [x(r)[cl+02]x(r)] - (R + 5) x Vg ar

/7 2

v (s) >
SR S PSRN | NI A Z-R), 3w RIATT- A PG
IR 2.[ S:-E [u e ](l ’ 2R ' /8 e /2]Sln o)t

>

Or, if we write g = %-(cl+gé), this is the "S-I" term in the potential.
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VI. THE R x$r TERM

Next we consider
1 > > > -> >
1 ‘[;r v (s) {x(r)(01+02) - B x V. x(r)} .

A. Calculate gr x(¥):

1. In spherical coordinates,

a

+ —
Vp T ar

r

+

CRLT”

., 6 3
0

L2 | >
[e>)

where

>

r=23gin 9 cos ¢ 1 + sin 8 sin ¢ J + cos O k

m>
n

6 cos © cos ¢ i+ cos 0 sin ¢ 3 - sin 6 k

m>
i}

p - sin ¢ 1 + cos ¢ 3

2. 'v*r 8., (8,4)

- -~ 5] ~
Note that V (r) = — (e
r r

<%
)

-> > ANy F A > Ay >
S0 3(0l - V. r)(02°r) + 3(°1°r)(°2 - V. r)

= -3-[(3 ERICREE +(0 £, )G 7)E, +(5

2’ ¢ o 01
= 3{(6 EATCRENEN (G- ¢)e¢]+(31-§~)[(32-£6)€e+(32o£¢)é¢]}

)(02 e)e +(ol )(+ °s¢)e¢]

- %{(32-})[31-(31—2)}1«8’1-%)[32-})%1}
Vs, = -j-{(él- )0 (8 2)8 -2(8 1 1) (G })%} :
3. %r x(;)i

> > > 1 (r)
Y {mf’zr [u('r) = 812]}

S
7 x(F) = [d—< (=)
X (bn)2 L9 T

124 ,wir)
/S'dr(rr)]

wir) =

> S
(hr)2e/B © 1P

+
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T 7y o 1 a ,ulr) Sl2g_.w(r) ~
V.. x(r) = (u“)% [dr ( . ) + 5 ar ( " )]r

w(r) (2 .oy > oy > Ay L aya
+ 2 5 [(01 r)02 + (02 r)cl - 2(0l r)(c2 r)rl).
r v8
S + 1
: S Ay Ay _ D12
Or, since (ol r)(o2 r) = 3 s

> > _ 1 d uy wlr) . 1.4 wiz) 2w(r) ~
v, x(r) = (lm)% [dr (P - r2/§+ /5 [&g G -5 ] 812]r

+ %%‘)— (3,13, + (5,-5)3 1y

B. Often used relations:
. ik
. . = +
1 cJ Oy ij ie 02
JkR _ . .
e =1, ijk + permutation of 1, 2, 3

= 0, not permutation

= -1, jk& odd permutation

i.e,, if J=k,
c,0, =1
S|
if J=1, k=2,
a =1ia
Xy z
if J=2, k=1,
o _=-1ga
y X z
Therefore,
oc +0aq =20
Xy Yy x
gag -o0d =120 , ete.
XYy ¥y X z

g




2. (o:K)(5-B) = XB) +173 - (AxB), where X and B are two vectors
which commute with g. Example: Let o = 31’ =%, 8= 32,
> Ay, > A > . > ~ >
(cl‘k)(ol-oz) = (k°c2) +1i9 (k 02) .
. > > .
Since (01-02) = 1 for triplet states,
-> A —)_. Z—Z
g, * k xo,= 1(02 ol)
> s> _ L Z oz
o, * k xg, = 1(02 ol) .
3. In a triple scalar product, the aot and cross can be interchanged.
I
Xy =z
> ~ > .
c *kxg=1[0 Q 1 = -~g.0_+*+ 00 =-210
Xy ¥ x z
g o
X'y 2z
6. 0. O
Xy z
> > A
- 0x0g°*k=-|0_0 o] = -0 0 _ + 00 =-210
Xy z X x z
0O O 1
or
> > ~ . ~ .
-0 x0 *k=-210°*k=-21ic0c .
> ;> A > Ay X X yy 2z
. 7)) + . = + + £
oo oy(oyrx) + (6)-Floy = (o) 2+ o) T+ o] D)
XX, YL, 2 2Zy>
* (o] T ¥ 0] ¥+ ]P0y
+22i+2¥34+22%
T T r
or
> ,> A > A ~
ol(ol~r) + (ol-r)ol =27
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"Standard Forms"

2.

21[(s3)% + (62)%] - [(oTo} -

. 4 >
hi + 21(0l 9,

Z 2y _ ogo
- 0102) 6i

L6

27
> > ~ 1 > AN +> AV
ol+02) k x 5= ‘/~ [(ol r)c2 + (c2 r)cl]d¢
o
_ > LD 7> z> o T (T 2> z
= (ol+02) k x [0102+0201] k (cl+02) x [0102+0201]
- 0. > > Z g7 . Z Z
= -k [(olxc2)(ol 02)] [4i 0102]
= s 2.2 L2 2z
= -Li 9 0, + 2i (cl 9, 0102)
- _os z 7
= =2i [30102 1]
=-21 8, (R)
27
> > ~ 1
(G +0,) « k x 5= 8., T d¢
o
2r
_ 3 ...2 [xz 7 X\ e Y Z,Z Y2 A]
.j’ S, T d¢ = 5 sin"6cose (0102+0102)1 + (0102+0102)j + (k
_ 3 ...2 Z z A
= 3 sin“6coso [0102+0201+()k]
¥
kK x k 0
= —(3i) sinzecose s. . (R) .
: 12
27
> > ~ 1 > A > AN
(3,43, + & x = ~/‘ [(3,-8)3, + (3,-7)3,1ag
o
= (2 4Ty .2 > Z > Z
= (ol+02) k x [olol+0202]
_ > IR S > 7z Z - - A Z
= (clxcl) ko) -0y %0,k [ol 02] + 0, x 0, * kK o



SUMMARY :

STANDARD FORM I

2m
> > A 1 > A > A _ . A
(3,43, - & x f [(3,-9)3, + (5,-5)3, 186 = -21 5., (R)
o}

1 2 12
STANDARD FORM II
2n
> A1 ANA a2 -
(cl+02) k x e f 812 (r)r d¢ = -31i sin“Bcosd 812 (R)
o
STANDARD FORM IIT
2w
> > A 1 > A > A _ . . zZ 2
(ol+02) k x 2= f [(01 r)ol + (02 r)og]ddh = 6i - 2i 0,0, -
o
D. Definition of Terms
>y > _ 1 > > W > >
1. X(r)(ol+02) = (hw)l/zr {u(cl+02) + /gsl2 (ol+02)}

1 > > W N ~ > > > >
o 1/21- {u(ol+02) + /—8' [6r[(cl+02)°r] - 2(ol+02) - (cl+02)812]}

>, > > 1 > > > > 6war, > > ~
x(r)(ol+02) = (lm)l,ér {[u— /—;](cfce)- 7;(01+o2)812+ —/-B;r[(ol+02)°r]} .

Also

V@) el @ _we)y s, 1d oy 2w s
T X = {[[dr Q- - s, r]

We wish to evaluate:

%fa}* x (%) v, (s) (31+32) « R x 31, x(7)

= -Ef—:; fd_f Vso(s) {[d(r)(gl+32)+e(r)(gl+32)812+f(r)[(gl°f)+(32°f’)]f‘]

« k x [a.(r)f’-f-b(r)sl2

FeIE 03, + G|

b7



X(;)(gfgg) = a(31+2:2> + e(31+32)s12 + f[(gl-lﬁ) + (32-£)]£
1
a(r) = - fu - —;L]
e(r) = - 2—
rv/8
(r) = @’_
r/8
and
v*r x(7) = a(z)r + b(r)S,, o+ c(r)[(a*l~§)32 + (32-1“-)31] ,
where
d (u W . = L (W _ 2w
an) = [ - 52 5 ) = [ Q) - 5
(r) = =2,
c\r rz/g

E. Evaluations of the ﬁ X Vr terms:

1. The d-a term = 0, (kK x k = 0).

2. The d~b term

ol EAMOEONORCAAREFENE S

Using Standard Form II this gives

- %—% {fd; Vso(s) « (d<b) sinzecose} Slz(ﬁ) .

3. The d-c term = %fd}’ v, (s)(are) [(B43,) « & x [(3,+8)3, + (3,-9)3,]]

Using Standard Form I this gives

- ﬁ—fr‘ {fd? v, (s) - (dc)} sla(ﬁ) .

_ _R > > > . T ~
4. The e-a term = mfdr Vso(s)(ea) [(cl+02) k x 812 r].




Ageain, Standard Form II gives

Jﬁ;; Vso(s) s (ea) sinzecose} Slz(ﬁ)

= B > L0 2
5. The e-b term = ey fdr Vso(s)(eb) [(osz) k x 812
2

812 =8 - 2812, the term with 8 vanishes, leaving

% {fd_f Vso(s) + (e*b) sinzecose> Slg(ﬁ)

6. The e-c term = %fa? v (s) + (ec) [(§1+32).ﬁxslz[(a*l-f)32+(32-£)311]

f], but

but
> Ay A > AV > AN
[3(ol-r)(02-r) - l][(cl°r)c2 + (02°r)ol]
> A > Ay > Ay > A
= 3(c2~r)c2 + 3(ol-r)ol - (cl‘r)o2 - (°2°r)°1

Then the integral becomes

vy fa? v, (s)(ese) {(3l+32)-ﬁx[3[(32.f)a*2+<§l.f~>3l] - [(cl-r)§2+<32-f~)311]

Using Standard Forms I and III, the brackets give

. . 2.2 . 7.2 . .
18i - 61 9 0, * 6i 0,0, - 2i = 1631 .
Or this term becomes
16R ar v (s) - (e-c) (a central term)
b so
T. The f-a term = O because r x » = 0]
8. The f-b term = O because r x r = 0

9. The f-c¢ term

uu jdr V. (8)(£-c) [f kx[ (3 £~)+(32-£~)][(31-§)§2+(32-£)31]]

The brackets give

L9



> > A
. + (o.+7)(o

ay >
o 1 E-r)o + (o -r)(c PO +0

1 271

= [(3,+7)(5,°F) + 1] (5,+3,)

The "1" in the brackets contributes zero, so we can subtract - % (gl+32).

Thus, the term becomes

> >
812(01+°2) > —(01+02)S12 (because other terms are zero).

Then we have left

S
12 ,» >
(°1+°2)

Therefore, the f-c term becomes

lml fdr v (s)(f°c) [r < k x (c +0 ) §2]

_ R.';L_—r . +—>.A
=+ T dr Vso(s)(f c) [(ol+02) k x 8y, ] .

>

3

which gives

{ ar V s)(fec) s:Ln2ecose} Sle(ﬁ)

.
F. Summary of R X Vr terms:

3R * S,.(R)
12 > L2 . o _ fee
= fdr Vso(s) sin ecose[— d*b - e*a + 2e°b =5 ]
2R S.,.(R)

Al drV (s)(d'c)+l6RjdrV (s) (e c) .

But the brackets become

=L ) r, o Myd Wy 2w 4 (uy __Ww
7 R Ch R TR ¥
2w 4 Wy _ 2w 6w W
2igom-H-% [—rzl}
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2
1 d u d w w d W w
SR S SRR Sy 0. R - SyS SUN
r/g{ dr dr 'r /2—6.1' r r2/-2-
o’ ouw . 2wt wd (w 6w

=2y iy - 4w QW__ﬁwg
/B dr 'r dr ‘r 2 /2—1_2
Letu'=%;w'=%’. Then
2
=.__.l— (Wu' —W') +2;élw__.—)+12_
r/8 r /2 r

Therefore, the R x _V*r term is

2

. 2
%fd; v__(s) sin"ecose /v | n) +2121_W.__h.1’_2_ 5., (R)
r/8 r V2 r

3R x W - A
- i fdr Vso(s) r3/'2_ [u - /__] 812(R)

2
2
6R > w
n fdr Vso(s) 3

%fa}* v_ (s) x(F) (3+3,) « T x(F)

T =% - 4 [P-+Ls
(hw)% r B 12

1w g
(lnr)l/2 r/8 12

=0 + s

where % is now a vector, (2 = 2), and can be moved anywhere. Putting it

back into the integral as a number, we note that

vw,)=8 3 J=1+8.

1,»>
5(07%9,
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Therefore,

3(3+1) - 2(2+1) - S(S+1)
2

where j =1, 2 =2, 8 = 1. Therefore,

Then the I term becomes

3 > > W
-2 [ v 0 x® o,

= 3 > I
-y [ o) Bz ey, e

which yields a central part

2
W

3 >
_mfdrvso(s)r—e,

and a tensor part

VIII. SUMMARY

The problem is to calculate

u(R)

Ul(ﬁ) + Uy(R)

where U, contains V., and U, contains V_ .
1 C 2 SO

e
[
|

2 2
1= Vet Ui [(8-R) - 3!

o=ty J vt [« ]

v, =92 fa? vo(s) YLl 2 (o) [u(r) -ulz)
r

7

1T = (bw)

52

-5
=0

2
3 > uw W
T (4w) ‘[ﬁr Veols) [rz/g-' Z;E}} 515

g )

-
—

8r2

8

A

R) .

8- 28] ,

ﬁ}* x(F)[2V(8)+V_ (5)(5,+5,) (R + 3) (

$§+$¥)] x(¥)

4



1. Central:

2 P
- _ -3 x Rw_
UC(R)—— (hﬂ)fdr VS°(S)[r2+2r3 ] .

2. Spin-Orbit:

' v (S) ->
_1 > 2 2 R\ | 3w wi .2\ .
U sO(R) =i fdr 5:2 {[u - u: -w ] (l + ———ZRz) + ——/8_ [u+ @]31n e}

3. Tensor:

2
U. (R) = Lfdr v ( ) sin ecose [(wu'-uw'l 4 2uv hw ]
o r/2 g r2 /5}2

-18R fdrV (s)

C. Regrouping the potential into zeroth-order and first-—order terms, we write

l#

[u——"]

o = 100 @l () 1416 vl D @) 182wl @RE - 51

where

ol ) = hW)fdrv(s (B2
2 2
(yz:) - (Sn)fd—{‘ Vso(s) [§2—+ 2?_’2 ]
{[u2 - Ew—] (l + ;—.-g—) + 3uw sin29
/2 oR /8

v, > 2
(l)(R) = T—)—fd; —2— [(—w i1+ ;——g—) + -3%- sin26]
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{9 (w) = 82 farv(s> P, (6)

U,(rl)(R) = ﬁfd? Vo(s) P (e) lﬁi) fdr v s)

2
[P
fdr v (s) sin ecose [(wu ruw ) . 2;.w _ Lw 2] .
/2 r ver

[u——-]

§h



APPENDIX D: DEUTERON WAVE FUNCTION

TI. COUPLING OF ANGULAR MOMENTUM

The deuteron is a composite particle with even parity and total spin
I =1. It consists of two spin-1/2 constituents, §i =1/2 31 and §é = 1/2 3é.
Coupling orbital angular momentum (fd) and spin (§d = §1 + §2), we find

=2, 48, .

Since Sd = 0 cannot couple to & = 2 to give a spin Id = 1, the spins are

- /2 _  _ ,1 -1/2 _ . _ (O
always parallel. Writing 81/2 =g = (O) and 81/2 =g = (1), we can form
the spin wave function y?I as
m msm,m m
I - j{: s ) my 2
1 37172172 8172 8172 -
m,=m_-+m
312
Since I = 1, only, for deuterons,
1
Y17 % %
0 1
vy, = —[o,8, + B.a.] (D-1)
1 /2 172 172
-1

II. S AND D STATES
We couple the y? with the two possible angular momentum states which

are allowed by parity, namely £ = 0, 2.

A. Coupling of y? and Yg

m
We define the angular momentum portion of the wave function as ¢I12' Then
b

1 _ .01
%10 = Yo V1

0 _,0 .0

91,0 = Yo V3 (D-2)

-1 _ .0 -1
1,07 0¥ >
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m .
where YZSL are the spherical harmonics.

. m mo
B. Coupling of ¥y and Y2

mI_Z CISLmYm!,m

121 2 Y1

1,27
That is,
1 _j1 ,0. 1 3 (1.0 6 2 -1
91,0 JlO I, ¥ - JlO T 90t JlO I ¥y
o _ 'éL_ 11 fg_ 0.0 r;_ 1 -1 ~
41 ,=J10% 1 {w e tilon (D-3)
-1 _ 6,2 1 3 1.0 1,0 -1
o= J0% Y- jlo I v # Jlo Ly, -
C. Vector Version of the Deuteron

Wave function ‘1’(;). We define the S and D wave vectors as ¢2, where

1 1
1,0 %1 ,2
> > _ 0
% =1 %1,0 : % = %12
-1 -1
41,0 9,2
0 1
Y‘O 0 0 ¥y
= 0 > _| .0
A={o0 YO 0 H y={vy
0 -1
o o Y, v

<
N N

(D-4)

=] B g
r

2
NN o




The radial part of @ is, of course, calculated from the Schré&dinger equation.
We write here the total deuteron wave function (the Hulthen wave function)

in the standard form

> > > 1 (r) (r) >
¥Ur) = x(¥) ¥ = /H;_[ur + : - Ei?] Y o (D-5)

where 812 is here a matrix operator. The solution to the Schr¥dinger equation
can be written as the sum of an £ = 0 solution and % = 2 solution.

-2 fux) L wx), o
%)_m[urr a¢o+w/;_b¢>2], (D-6)

r
where a and b are to be determined. Since &:o =AY and ?52 =B- v,
¢(¥)=—1—[“(—r)-a0\+mb8 y . (D-7)
r
Vi r
Comparing Egs. (D-5) and (D-7) and using definition (D-L) we set a = 1 and

we have to show that b[B = 8.5
lae'd

III. EVALUATION OF s12 (A SPIN MATRIX OPERATOR)
We have already stated that
> > >
s - 3(01-1‘)(02'1”) e

12 2 0179 >
ARAN T

(D-8)

where it is written with wavy lines to emphasize that the o's are taken here
"as matrix operators. Before proceeding, the reader may easily convince hinm-
self of the statement that 31-32 may be replaced by 1 for triplet states

by calculating

> » m_ )01, ,01 0 -i, ,0 -i 1 0, ,1 O m
91°9p Y1 = {(1 11 ol v (L 9§ olat (5 -1 -1)2} Iy oo

Substituting y’;_‘ from Eq. (D-1) and recalling that o, = (1), ana B, = (O) R

0’1 1’1
one demonstrates that I
> > m m
01°05 ¥7 = ¥ - (D-9)

5T




A, A Generator of S12

(S

One can easily demonstrate that

3x X —r25
S, =3 (3,23, - 3,0, = ~oB  aBf ab (D-10)
12 2 1 2 1l 72 2 172
r aaB r
[s}

> R
where xa are components of the vector r, and g, are components of the matrices

J
33. This can be proved by explicitly expanding both sides of Eq. (D-10).

Writing Ta for the quantity enclosed in brackets in Eq. (p-10),

g

3xax8—r26a
= o8 _of _
Tas 2 , (D-11)

m

L

it follows that Ta are linear combinations of the spherical harmonics Y2 .

B

- gl2m (y2 , 42 Lr O
Ty = 6T (Yo + Y00 - Js o
- 12T (y2 2 lﬂo
Tpy = -6 5 (Y2 + Y, ) - = Y,
_ ,hﬂ 0
T33 = 2 5 (Y2)
_ _as]2m g2 -2
Typ = -34T5 (Y5 - ¥57)
R
T23 = -31 G (Y2 Y2 )
N e R -
Tl3 = 3 G (Y2 + ¥, ) . (D-12)
For reference we write here the spherical harmonics Ygl.
v - | 5. 32° - x°
2 167 2
r
Yil _ -1 x £ iy 7
2 ~ H8n 2
r
+2 ‘15 (x+13L)2
Y © = . = . (D-13)
¢32ﬂ r2
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m
. R A
B. Expansion of S12 into Y2

VAAM

Expanding Eq. (D-10) directly, we have

g B m
E: Tag 19 73

Syt =
12 V1
AAAAAS a’B

- X X y zZ z Xy , Y.X
[Tll 0105 *+ Ty, 030) + T3z 0105 * Typ (0905 + 070,)

vy z zy X 2 z X m _
+ T23(olc2 + 0102) + Tl3(olc2 + 0102)] ¥y - (D-14)

Substituting Eq. (D-1) into Eq. (D-1L4), one can show that

1 _ 1 0 : -1
S1p ¥y = To3 ¥ + /E'(Tl3+T23) yq * (T -T,,+21T ) v

or using Eq. (D-12),

'
1 ~—|i{1 ,0_1 3 410 6 L2 -1 _
S1p ¥] = Wer| (95 Y5 ¥) JlO oyt Jlo o ¥y ]’ (D-15)

Similarly,
-
s uo |31 1 _ |k 00 3 41 -1 _
S1p ¥y = Wam )‘10 IR A J 10 2 ¥1 +,‘1o Yo ¥y (D-16)

-1 '6_-21,_3_-10’1_0—1
S1p ¥y = h“EE-[ 0% Y1 -{T0Y Y10 yl.] . (D-17)

AAAAS
1
Y1
. > 0] R
Recalling that y = y; | Eas (D-15), (D-16), and (D-17) can be written
-1
Y1

in matrix form as

1,0 Fi_ 1 6 .2 \ 1
102 (0¥ 10 2 {1
> 3 -1 4 o 3,1 0
81,7 = (/8) (VL) o Yo “‘10 ¥, R |- (D-18)
AAAY
6 -2 3 -1 1 .0 -1
102 gl 10 2/ \"1
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Comparing Eq. (D-5) and Eq. (D-T) by substituting Eq. (D-4) for [B and Eq.

(D-18) for 812 we see that

L

=/8 « V/in B.

AN,

This accomplishes the goal of finding an explicit operator form for the deu-

teron wave function ¥(¥).

IV. EXPANSION OF S_.(z)

A2
For completeness we show the relationship between Slg(f‘) and

[(@5)2 - S8 - [(35)2 - 2] wnere § = L (343, .

[(8-5)7 - 2811 = £ [(5,+5,)-#1° - 35 (5,437

=5 B R)% + £ (3,08 + 3 (3-8)(F,08) - 35 (35 + 35 + 25,3,
but (3-2)2 = 1, 32 = 3, therefore,

242 (5 8By ) -3~ 28,48, = 2 [33,-8)(3,-8) - 1] .
Therefore,

[(3-)% - 512 2 [3(3,-#)(5,+5) - 1] . (p-19)

V. NORMALIZATION

The wave function in Eq. (D-5) is required to be orthonormal; therefore,

I[[ve v a-

Substituting the Hulthen wave function for _‘17, we have the integral, I, where

2n w
2
L ff f [ui,—r) + % 812] r® sinedrdeds (D-20)
8F a5
O O O
I= f [u2 + w2] dr , . (p-21)
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where Eq. (D-21) follows directly from Eq. (D-20) by recalling that S

8 - 25_,,
A-C-léa- 2-"
l ~ - A
o ~l\ Slg(r) d¢ = ng(R) P,(8)
o
and
m
fpe(e) sinfde = 0 ,
(e
where Pg(e) is the Legendre polynomial, Pz, for g = 2.

16

The values of u(r) and w(r) which are to be used are

u(r) = N cosé [1 - e_Bx] e X

wir) = N sins [1 - e 7] ™* . A(x) s
where
-YX -YXq2
Mx) =1+ 3= 1, 3lice 7]
b'd 2
X
and
X = ar .

We will calculsate

0

as to make up 96% of the ground state of the deuteron.

[+ -] [+ ] (<]
2 2
f u2dr %fuzdx = E%-G-f [1 - e_Bx]2 e_2x dx
o o o

Y. 2 2

2, . -Necos§ 1 _ _2 1
fudr‘ a2 st HeD)!
O

The values which properly normalize Eq. (D-22) are

=
n

0.875041 2.0170 coss

<
0

4.7533 siné

™
I

0.03356 a

61

0.9994T

0.2318175 fm

2:
12

NAAA

(D-22)

u2 dr to demonstrate that this is normalized so

(D-23

1 (D-2k)




Substituting the values of Eq. (D-24) into Eq. (D-23) we obtain

-

vf uzdr = 0.9594.

(o}

VI. THE AVERAGE KINETIC ENERGY

The average kinetic energy of a nucleon in the deuteron can be calculated

2 2 2
(D @ wa

where Vim is to be tsken with respect to %-;, the distance to the center of

mass. For this calculation, the D state of the deuteron will be neglected.

To do so, we must renormalize the S wave. Let
w =N [L-ePe™ |,  x=or; (D-26)

then from Eq. (D-23) we see that the restriction

f(u’)g ar =1, (D-27)
o
gives (N')2 = a[%-— 832 + 2(;+1)]-l, or from Eq. (D-24) we find
(N')2 = 0.7973 , N' = 0.8929 . ' (D-28)

Next, we note that since x = ar, Vi = a2 Vi (keeping in mind that x in this

sense is still a radial component). But one can show that

w',_1 d4 .23 ,u'y_13%
v (gfd =TTt ax (x ) = x .2
X ax
-(g+1)x
_u' ' 2 e
== -0 [8° + 28] - .

Then
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X

[+

= ag\l‘ u'2dr - N

o

[ 0 @ e - [ @ 2 @) Pa
(o} e}

[82 + 28] uf\uﬁ e—(B+l)x dx .
o

The first integral is one [Eq. (D-27)] and the second integral becomes

1

()% [6° + 28] (53

Therefore,

<V2>
r

from Eqs. (D-28) and (D-24),

2

<V'> = -« 2 .
r

0.309 fm~

Recalling Eq. (D-25),

2
_ hy . 2
Tp = (- 2M) L V>

But

2
(EMJ = 20.7 MeV ~ fm

Therefore,

T 25.6 MeV
b

1
B 2(3+1))

o® - (1% (1 - 2T,

2
= (&) (1.231)

2

(average kinetic energy per nucleon).

(D-29).
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