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Abstract /

A theoretical model has been developed to predict the//spin and parity distributions

of the residual nucley% remalmng followmg a (p,t) two neutron transfer reaction.

ﬁ} oA
These distributions may be compared agéu t those expected for the same/nucleus

produced via an (n,7y) reaction and therefore provide information on whether (p,t)

can be used as a sultable surrogate in cases where an (n,y) reaction can not be ob-
aeveloped st

The
served directly.. Thrs mode}\predlcts the possible J™ and energy values of the discrete
excited states whi¢h Ty be populated in the residual nucleus and calculates the

AGnomvncod
strength of each transition, including both the kinematic and structural components

of the cross Sectlon The model has been designed to be purely predictive and to

Jv“chL.J
require little or no rior information regafdmg the target nucleus in question. The

model developed h;s been applied to the case of 28.53 MeV protons incident on an
isotopically enriched %2Zr target, a case for which experimental data have recently
been taken using the STARLiTeR detector at Texas A&M University. Data exist
" for the triton energy spectrum, triton angular distributions in the range 6 ~ 25° -

S (.L\!r g\,\,Lk ‘
60°, and coincident y-ray decay spectra. The-preliminary comparison between the

'\O{ > {’ model and data shows a reasonable match to the average trends, but a breakdown
! WV |

when individual discrete states are scutinised in detail. In particular, the model fails
Pohaiown

to predict th!e kstem:e of a number of states observed in %9Zr jsuggestlng a more

sophisticated approach to the structural c&leu_l/ations incladed is required.
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Chapter 1

Introduction

'

s
/ M Suued .

/ 7 9,
1.1 Surroga/te/reaction method Ll\k\*}“&&-&_tw 7

KT\f\& i s
LCalculations of nehtrm%nduce reaction cross sections rarely produce perfect matches

to the true physical values. Often)experimental data are required to constrain the
inputs td a calculatior&V or even toy scale the results. The fidelity of calculations gen-
erally decreases as oné moves further from the line of stability on the Chart of the
Nuclides, often referred to a?;\(Q/Segré chart []. Cl\\f'é (fQ)

Unfortunately, for many isotopesJit is not possible to conduct/ conventional neu-

C\g Lﬁ"\/ FE;)n) cross section measurements. There are various reasons why it may not be

A% 5 '/pgssible to measure a certain nuclear reaction directly. Most common amongst

Lu’;\ these reasons is too short a lifetimé for th ta;gét’ nucleus in question. This is espe-

cially relevant for many of the isotopes produced during fission, which are generally
neutron-rich and rapidly undergo [-decay. E}\L:}-va N )‘:(

The majority of reactions of interest to the nuclear industry, and many relevant

to astrophysics, involve the collision of/{m incident neutron with a target nucleus.

Aside from elastic scattering, the reéfétions which may occur due to an incident

neutron typically take place through an intermediate compound nucleus state, as

shown in figure 1.2. VL> t L
‘ = >l “1u0..
o p AU e A Tou ‘j/j‘— v

— Lwv \»\) ( \’\ N vx)\’”'
LK OV \"\DPL(, - 7



1.1 Surrogate reaction method 2

Z, number of protans

I, humber of neulrons

'™
L

Figure 1.1: The Chart of the Nuclides, showing the line of nuclear stability in black.
Created using [].

Figure 1.2: Illustration of a nuclear reaction proceeding through the compound
nucleus stage. a collides with A to form B*, which then decays to a number of
possible products.
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Here the incident neutron is absorbed by léle target nucleus and forms an excited

compound nucleus. This compound nucleus is unstable and will decay after some
time to form the final products of the reaction. The s{frcr\ogg;%etéaa‘gt\l%n method
‘| 3\’(, exploit)! the Bohr assumptionjtha,t the mode of decay\of a compound nucleus is
independent of the type of reéction from which it formed []. It is assumed that only
the spin distribution of the states, in both energy and angular momentum, populated
in the compound nucleus plays a role in determining the statistical l\ikelihood of
decays via each possible channel. EM/JS o s \/\V’V‘O_& NY%) ‘\,L“J
In the surrogate reaction method, a suitable surrogate nucleus and reaction are
sought, such that the same compound nucleus, spin distributiog will be formed as
|S mwidtld e expected in the reaction of interest. The surrogate process is illustrated

3 o lg' PG‘SS k\D\L b\'E

in figure 1.3.

d e

.moo»
S T

Figure 1.3: Illustration of the surrogate reaction method. Here, d interacts with D
to form the compound nucleus B*, which then decays in the same manner as would
be expected through the desired reaction. d may simply be scattered inelastically,
but most often loses or gains nucleons to form particle b.

Se, negds

In the surrogate method, one )Lisifes to determine the cross section oq,, (E,) for
a reaction with incident channel o (a+ A) at an incident energy E, and exit channel
X- Oay (Fa) @E@ broken into two components, as shown in equation (1.1)

—
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. 1.1 Surrogate reaction method / ‘ 4

/

Oox (E ZO’CN (Eex, J, ) GCN (Bex, J,m) . (1.1)

s S }HAQ\#{\)

Here oSN (Fe, J,m) is the cross section for forming the compound nucleus B* in

the desired reaction channel and GSN (Eex, J,m) is the probability of B* decaying

\

Ina Standald measurement both oSN (Eex, J, 7r) and GCN (Eex, J ) are measured

dnectly ' In the sulrogate approach however, only GCN (Bex, J, ) is measured and

oSN (E, J,m) is instead calculated. The surrogate approach is therefor*e/a hYbrll(,i of
W HrwvnS(cov )

theory and experiment. There are obviously greater subtleties to the method than

a single equation and figure, however the description given above serves to convey -

C

W sk

.%}—»i{ 7

[ry]

d
the basics. Lg( rond $ A Jal bk—kk S\ \&LMUV\)/ vy k%PC\’V\d N %’d&’"

The surrogate method was first applied in the 1970s to the (n,f) reaction by e.g.
Cramer and Britt [| and then Britt and Wilhelmy []. These studies employed the

, ,Welsskopf Ewmg approximation [|, which assumes that the probability of decay /v/

any channel is independent of the J™ components of the compound nucleus spin

distribution, i.e. it is only dependent upon the excitation energy GSN (Eex, J, ) —
2

ec
GCN (Eex). These early surrogate studies show/a good match against available direct

~

Y
measurements of the desired reactlon,(abovéknel gles éf ~1 Me\)/ to an accuracy of
w iHhin -

10 - 20%. A match to the data of less-than 20% would generally be considered better
than that expected from a purely theoretical calculation ].

Interest in the surrogate method has been rekindled in the last decade, with
A el ons
dedicated surrogate,'éroups forming in both the US and France, and with smaller
/'\

scale efforts also underway in India and Japan. These groups have largely focussed

their efforts upon measurements of the (n,f) cross sections of minor actinides in
(ISUVAV ZV
support of nuclear fuel cycle applications []. An excellent QOIQLpaper by Escher et al

[] gives detailed descriptions of both the surrogate method and the current worldwide
experimental programmes. The results of modern (n,f) surrogate measurements
compare favourably with direct experimental data. However, generaH}} for each

/
isotope studied, this match breaks down at lowelyiexcitation energies and also, in

/

s
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some cases, above the threshold for second chance fission ].

The poorer performance of the surrogate method in certain energy regions is due
to a so-called spin mismatch and the breakdown of the validity of the Weisskopf-
Ewing approximation. At low excitation energies th\evfazagéigf: levels which a nucleus

may occupy are discretely spaced‘\a{;in energy, with each level possessing a unique

i Hhe

J™ assignment. As/excitation energy increases, the density of levels increases until

QG Man 1-*d ANA OV ([ON FPRVCN
eventually a continuum of/ states is reached. At lower excitation energies, a very

particular spin dlStllbutIO;l:’nust be imparted to a target nucleus in order to') 3 )W}EO\M
the levels available with the same distribution strength as in the desired reaction
channel. A surrogate reaction may//ﬂ?/e@ﬂyé\ quite easily populate a different spin
distribution in this lower energy region if the reaction used tends to transfer very
different, values of J. e

For fissile nuclei at higher excitation energies, the (n,f) channel is generally dom-
inant and the distribution of fragments generated, which meg be altered by the
differing fission decay channels taken, is not importanto‘j:m%"%atheg it is the inte-
grated (n,f) cross section to all final products which is the value of C(;ncern. In other
words, although the decay path taken from a higher excitation energy state may be
different in the surrogate case compared to that of the desired reaction, it will still
result in the production of fission fragments and hence the same (n,f) cross section.

The limitations of the surrogate method, due to spin-mismatch, are greater for

, o _ g
the case of the (n,y) reaction. The (n,y) reaction is of importance to botthuEEar

industry and to an understanding of key astrophysical processes, such as the stellar

) s— and r—processes []. Surrogate (n,y) studies, e.g. by Scielzo et al [], have shown
1 thatgfor the current surrogate approaches employed, a more sophisticated application
{ of theory is required to take into account the differences in spin-distribution between

the desired and surrogate cases.

In parallel to efforts to ,]devAe‘I‘(}p additional theory to ‘translate’ from a measured
spin distribution to the exg(:cl’éed one, it is worth exploring new types of surrogate
reactions which may populate spin distributions closer to that expected in the desired

reaction. Although early studies employed the (t,p) reaction as a surrogate, no
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. 1.2 (p,t) transfer reactions 6

studies have been reported which utilise the (p,t) transfer reaction. ~

In this study we have therefore developed a model for performing (p,t) calcu-
lations over a range of excitation energie‘s)iH order to predict the observables of a
typical Surrogate measurement. Thié model has been designed to require only very

QU
hmltederlor information regarding the target nucleus to which it is applied, with

-y the-hope that it can be taken and applied relatively quickly to a range of isotopes in
orciandt
KR

order to better inform the selection of candidate surrogate experiments, i.e. those
in which the spin-mismatch is likely to be at a minimum. This developed model has

been applied to a recent measurementgof the 92Zr(p,t)%Zr reaction.

' /
| B Moade U\ A JfC\\ C\,U,Q/\ X ?/U”W‘/U» VJ(CJ

1.2 (p,t) transfer reactions S wdwy) £y J 5

Nuclear reactions may be divided into three broad categories; compound nucleus,
o Uiy

pre-equilibrium and direc})ﬁw Reactions may be placed into these categories based

~

n WV ) X preled 'O
upon their timescales and also the number of & iskién\s wéépv@h occur between the
constituent nucleons of the target and the incideny/\nuclel ).

Compound nucleus reactions occur over the longest timescales (=~ 107'°s) and
involve a large number of collisions and sharing of energy between the incident
particle and the nucleons present within the target nucleus. Direct reactions occur

' . S A ace dovunoeted
over the shortest timescales (= 107%'s) and typically mvolve/colhsmns between the
N
incident particle and only one or two of the nucleons of the target nucleus. Pre-
equilibrium reactions occupy the middle ground between these two reaction types _
in terms of timescale and number of collisions. L\\»\) Vo N (‘JS phe -—L¢ ibb@l,

At relatively low energies (of a few MeV per nucleon) direct reactions are more
likely to occur for charged incident particles, as the Coulomb potential between
the nuclei will hinder their ability to appreciably penetrate beyond the surface and
form a compound nucleus. For a significant fraction of direct reactions to occur,
the energy of the incident charged particle must also be higher than the Coulomb

barrier of the target nucleus, otherwise it will be deflected via Rutherford scattering

before a short-distance collision can take place. LM—;:) o scad NS AT ]
ASpechs o '

\“ /‘X Shott i\—‘é«(’C’\‘f ow/ o L\,.(“\“"t W) WD PLJ’\ /\,\Q\V\s’qrt '\/‘V\

e [ .



2. 1.2 (p,t) transfer reactions 7

Transfer reactions, a category of direct reactions, involve the transfer of a nu-
cleon, or a cluster of nucleons, either to or from a projectile when incident on a
target nucleus. When the projectile removes a nucleon from the target, e.g. in a

(p,d) reaction, it is referred to as pickup. When the projectile loses a nucleon, e.g. s
" Covngp din S\ ve N/ YA
w boaYye (_3 A’L\ S o

The (p,t) reaction was first studied in the 1950s, where a simple Plane Wave Born

in the (d,p) reaction, it is referred to as stripping.

P N -d ks Approximation approach (see section 2.3. 1) was applied to single step transfers of
#—% di-neutron clusters by e.g\ El Nadl [?, ‘ 7] | The more sophisticated Distorted Wave
c)tu \Cunns Y Born Approximation (DWBA) (see rsectrlon 2.3.2) was appheé-r&igx% ICW)hTéh took into
IS‘ account competing elastic and compound nucleus reaction channels. Methods were
\,\*Zrl\\:\[' . developed by Moshlnsky [], and later extended by Bayman and Kallio [, to translate

U (L \/rl\.\:u ‘/
the pr@pe}“—’gaes of two individual neutrons into the prepeﬁtles of a single di-neutron

cluster and to calculate the probability amplitudes for such f(/conﬁgurations

3 These early calculations assumed a zeroﬁange approximation to the tritovnzwi\rfi;

3 function which forbids the population of so-called unnatural parity statesFin the

Q :7 reaction when an even-even nucleus is considered as the target (see section 2.4).
j, Y ‘Forbidden’ transitions were however observed in (p,t) reactions on a number of iso-
=5 - | topes, e.g. 2%®Pb(p,t)2% []. Methods for incorporating two step processes into (p,t)

DWBA calculations were developed by e.g. Asciutto and Glendenning [?, ?], which

MO ot
ye

allowed these previously forbidden transitions to occur. Two step processes were

Lol S =

y j
Ul o

also found to be required to explain the cross sections and angular distributions

measured for a number of natural parity transitions which had previously only been

Q 70 Sec

Q¥ 3
EP
— J
J ) O35 considered using standard one step DWBA calculations, e.g. the 116Sn(p, t)Sn“4
o . Q N\
SRV, 50 reactior == My B CL*J AR C/‘Ji ‘]
Y QY —~— /
OF¥P .
DIES j < A number of authors, including e.g. Nagarajan et al [], found that a number
2 0y~
- ;2 of these forbidden transitions or discrepent datasets could instead be explained by

7

G

introducing a more realistic finite range triton wave function into calculations. This
more realistic wavefunction included a small higher angular momentum component,
which allows for the population of unnatural parity states [].

Methods beyond the DWBA approach, such as coupled channels calculations
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have ibeen applied extensively to (p,t), by e.g Thompson [|. These calculations
are agle to demonstrate the contributions and importance of competing reaction
pathways. In general however, the standard one step DWBA approach using a zero
range approximation is éémksii‘éttvfﬁ?eL V-\iah L £ tle( ?or use with most spherical target
nuclei, with higher /\(')1 der processes only considered as standard for deformed nuclei
with strong coupling to collective modes of excitation []. This standard one/;tep
di-neutron DWBA approach will also be applied in this study: :a:t:dHngher order
processebs} 5513// cén&dered if forbidden states are observed in the experimental data
or there are large discrepencies when attempting to match the measured data for
allowed transitions.

(p,t) measurements have previously been performed for the Zr isotopes by Ball et
al [?, ?] with detailed comparisons against theoretical calculations ﬁljd»ﬂl}dde Given
a desire to create a generic (p,t) model which can be applied to any target nucleus,
regardless of prior data being available or not, we have not used this prior study to
influence the model 8 development However, we /dQ compare our calculated results
against these earl Zr ( t) data (see section 5.6.2). Furthermore, we are infaet
influenced by this previous work in that their assessment is that for (p,t) reactions
on Zr hlgh€fL01 der processes are not required and a simple one step DWBA approach
is sufficient.

The main body of this work is divided into the following chapters. Chapter 2
describes calculations of two/\neutron transfer reactions, including both the kine-
mafic DWBA component and necessary structural factors. Chapter 3 describes the
specifics of performing these calculations for the Zr isotopes as well as the meth-
ods for determining the energy spectrum of the states excited in 90Zr Chapter 4
outlines the experimental setup and how the theoretical results shQuld be presented
in_order to allowb /;;rcz(k)(r?lparlsonx with the measured data. Chapter 5 reports the
results of this study and the c;mparlson against the experimental data. Chapter
6 outlines potential methods for enhancing or extending the developed model and

finally chapter 7 provides a summary of the work performed, draws conclusions and

identifies poten,t-iél areas of future study.

L poag ovnd

dv) naced
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Chapter 2

—

TWOLNeutron Transfer Reactions

In this chapter we develop and describe the necessary formalismg for calculating the
physical quantities of twoZneutron transfer (p,t) reactions. In order to simplify the

development of our (p,t) model and begin with r‘eﬁgfoelgl\slﬁ\plﬁe casesa\ﬁé make the

followi tions: Spr™Ie,
/ ollowing assumprutlons: ’\/:(\/\_ \) o \&’V‘C\/V\"t

e The target nucleus u&{c\g{koﬁg}de/r\&tl}»n is even-even, i.e. it possesses even
numbers of both protons and neutrons, is spherical, and in its ground state

has a spin and parity assignment of J™ = 0%,

S/)H\ "S‘H',\IC)LLT
e The two neutrons are transferred simultaneously, in one step, as a single/ di-

neutron object,/ V\,\)r/i/\ j 28" -Q =) j/ -

h

In later ffctions we will explore the validity of these assumptions and also de-
AT W AuwsS
scribe thefrequifefgsents for incorporating additional physics into our model.

2.1 The Nuclear Shell Model
\ / St {jﬁkw’vv\m\ ¢ Hro .

A O ] The nuclear shell model shares m7’ny analogies with the atomic shell model. As
oy
¥ 0 in the case of electrons, nucleons ‘sequentially fill discrete orbits around a central
ek
\\” potential. The filling of these orbits, or shell model states, follows simple rules,

in particula7§e}ﬁPauli exclusion principle. The exclusion principle states that two

'R’Vuua/'& \'vwwk ht.
ANV A e

Corn V.
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fermions (particles with an intrinsic spin of s = 1/2 such as neutrons and protons)
cannot occupy the same space whilst having the same set of quantum numbers.

The quantum numbers of the sh‘lell model are n, [, s, 7 and m. The principal
quantum number 7 is related to the number of radial nodes in a nucleon’s wavefunc-
tion, [ is the orbital angular momentum, s the intrinsic spin angular momentum,
and j the total angular momentum of the nucleon. m is the magnetic substate of
the nucleon which is the projection of j onto an arbitrary z-axis.

Protons and neutrons occupy the shell model orbitals independently of each
other as the two particle types differ by an additional quantum number, referred to

as isospin projection ¢. The maximum occupancy of an orbi\té}is equal to 2(21+1). <

i R /"/"::';'?’ T : - R
o (L)t ‘) « o0
- ( 0 \OWJ
Quantum number Values CU‘}“ s J _
. n n=0,12 ... >\ o bhen )
\)\’L\ Q0 \ ol - ] y Ly Ay e .
\J\\} (,‘V\\'\y\:’)v \,\CV") S _— /2, S. = :1:1/2 )‘ V C/ "‘ -) //,’
\J YA U ¥ g&(/\ 7 i :l:ts.) ‘)>U ( " LS) , _
x \OW 20 K m —j<m<+j R B ,
W W 2 g spw ¥ Mand P,
Table 2.1: The rules governing the allowed values of the shell model quantum num-
bers.

In the zttomic shell model case, the central potential is due to the electromagnetic
aur ko
force emanatingfrom the positively charged nucleus. However)jn the nuclear shell

C

nos er

model the potential is instead an average potential generated by the strong nuclear
force of the other nucleons present in the nucleus. In the development of the nuclear

shell model a number of different models for the potential were explored. Nucleons

AN To| f~ (l

) which populate states in the same nucleus, but with differing quantum numbers, will

[ DaS(S I

have wavefunctions of differing energies. The greater the energy of a nucleon’s orbit,

the smaller its binding energy in the nucleus. It is found that there are significant

L A \_Q/

P

energy gaps between groups of orbitals. Groupings of orbitals between energy gaps

Lo

are referred to as shells.

These shells correspond to physical observables in the chart of the nuclides. It

is found that nuclei with numbers of protons and neutrons which correspond to
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. 2.1 The Nuclear Shell Model 11
|

\

complete fillings of shells are more stable than nuclei with oq“ly partially filled shells.

N 2 The numbers of protons and neutrons which correspond to lﬁlled shells are referred
§ to as magic numbers. These magic numbers are found emplrlcally to be: 2, 8, 20,

28, 50, 82, 126 with 40 also sometimes referred to as@ mag\c

The potential used for calculations of the shell/model orbitals must reproduce

these magic numbers (along with other observed quanti ies). The simplest potential

to apply is that of a square well,/,wh/éffér the nucleons [experience a potential V()

described by ,\/\/\51\} j),( 1L LLL h/ % b

%/\l’\/\’\ 2 "\'\LL’) — e Smf)u PC&A”\LK,\,(} 2L ZL(

Pb‘v\v\/\(/\,&, Sl/ U 'r"\Ozb» " - H\,Q,f H\L‘\/‘“(ngl\i(-’ Mo g
Virj=0 7> R.“‘)

< hall m(,m‘ 5
‘Lh\vb\i\/};ta)(i&(j“\“"k wa bt e (C\/\/(CW\,L) (7,) 7)L\ /AN

This square well however is an obvious oversimplification and also does not re-

produce the expected magic numbers []. The harmonic oscillator is another simple

. . . 7
class of potential which may be applied. It has the form of \ : Sh\ he ( M

Vir)= %mwzrz , L (2.2)
pes | o -
<——where m is the mass of the nucleon, r its radial distance ‘and w the angular
frequency of the oscillator []. Solutions for nucleon wavefunctions orbiting within
7 - an oscillator potential perform much better than those of the square well. However,

7/: (4O "/ the calculated magic numbers, or shell closures, do not match the physical data
a0 4 abové\ Z = 40. /In addition, many orbitals are now degenerate in energy ﬁu,tﬁ,oﬁe

= ] S
X \ o anobhér which was not the case for the squaft)e well potential. = )
\/\S o Most ofHem weed ARV ¢ cu)\_/p
kt\v o - The n@3et potential applied is eften referred to as a Woods-Sazon potential and X g—«tm
y1 2 Lot
W/ 48 an extension of the harmonic oscillator case, but—with the bottom of the well

Flodfared by 2 N
WS -smoothed-eut Vi'érthe introduction of an attractive 12 term []. This syx\i/elie\%&uvﬂ% of the
bottom of the well serves to lift the degeneracy of the calculated levels. The form

of the Woods-Saxon potential is

(/ . :6<—/V0 ‘ _,__/ /““

g (Ised) , (pof), - Tre’
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<§;/Where a is th? Smwkne&s of the potential, or the radial distance over which

the potential falls from 90% Strength to 10%. Unfortunately, levels calculated using

j thls potential form do not completely match the experimentally measured shell gaps
-

and occupancies. An additional spin-orbit term is therefore added to the Woods-

Saxon potential. This spin-o

t term is a predominately surface effect and has the

L hod
form o C\/\—\«o‘z\ (/L\,\jb@ g ' OV\\' NLL (j\ PO\\ Y, V\%UJOLQ
o, Ahexig Aoy e Ve
8V(r
Vie=—Vis or l.s \\ \J ec\uy o Q‘ S (2.4)

.
\_— where V() is a Wood-Saxon' ép’gm}ﬁhl and Vj, is the strength of the spin-orbit

interaction. The [.s factor is dépendent upon how [ and s couple to form the total

angular momentum j of the nucleon. l.s is given by

o

[rerdodr (noveq 2.3)
S AadrY (NO ey 2.\C
) .\J(\ () ( ! ls — % (- 12— 8 (2.5)

e

<~ and so its value will differ depending upon whether j =l +sor j=1—s. The

en«e,L\é-;L—Z})e Is of states calculated using a potential which includes this spin-orbit

term will therefore depend on j and so single orbitals predicted previously are now

split in energy. The maximum occupancy of each of these split levels is equal to

25 + 1. Figure 2.1 gives the shell model level structure and occupancies predicted
il s

by this mntlal

States are labelled according to their values of n, [ and j, with the [ values

pﬁ@ﬂy given by their historicabspectroscopic letter notations. Table 77 gives the

corresonding letter for each value of [.

[ letter

s p d
lvalue |0 1 2

f g h i
3 4 5 6

g\f(/@v\ ;

V\O
] A b\.‘é

)

et

Table 2.2: Spectroscopic notation for different values of I. - & w
nW\ -SuA

Sinale ?c:u"ﬂ SNy / de WOV Hag T
These shell-model levels and associated quantum numbers are considered to be
i
a good representation of reality for f/Spherical nuclei, close to the line of nuclear

stability. For deformed or very unstable nuclei the validity of the shell-medel %ﬁ?
5 ( I\‘) P «

Ao g NG~

v
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3 2d 1g 0F —— e
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L2 , 126
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2s 1d Op 25 . 58
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(40)
lp Ip : 12
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Figure 2.1: states and shell occupancies predicted using different forms

for the central}p ential. Figure taken and adapted from {].
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P

/t&breakg down and new level/é schemes and good quantum numbers are required [].

If our model is ap#med to non-spherical nuclei, we must take these differences/into

account. odended . W\j\t ?LU&\C&Q
2

K Qv v
2.041 Optical Model Potentials

A relatively simple compound nucleus reaction model is that of the optical model. i
s IS, codomlikad assumwag
this model a wavefunction representlng a nucleon 1n01den§Zon a nucleus/experiences e
W K absevp hon H’\C‘&“\&

a mean field potentlalidue to the other nucleons present and experiences scattering (s
similar to that of light incident on a partially opaque sphere. This potential includes

both real ancyimaginary terms 5
(,\,‘V'\.D\ \"A,Q‘PNM/\L“' C\j

VW m“)‘ AL walagt\we damminnads
AU V(r)=U(r)+iW(r).

the
The imaginary term simulates /aa\’f absorption of particles into the compound {

doRo nof
Cvmigpnw e
P oA C/kf»

In this study we are not concerned with calculating compound nucleus reac- fwx 7
/

tions, but in the Distorted WaveSBorn Approxmlatlon) to be described, the effect of 4= g‘S ?w’t S

nucleus formed in the reaction. In other WOI‘dS) the potential is not conservative. o/

competing compound nucleus reaction channels is taken into account v1a}é optical
e S
model potent1a1§ . relag \\ (@) ond
The real term of the potentiaLU (T)J is generally a sum of a Wood-Saxon volume
potential, a spin-orbit term, an(} if the incident particle is charge(}j an additional
Coulomb term. The imaginary potential generally consists of a Wood-Saxon volume

potential and a surface term of the form []

e s N
\\5\’“&\”\;;' WV,L( WS(T@,——a’W‘;ﬂ(T) .oNn or ])(JV\ nadsS (2.6)
%} \5(S “
/\{\&‘
2. 2 Spectroscopy

AV.V % Lo on n \‘ PC\,\/{/\(;LQ i‘\x\()d_{f_/{
The single-particle states /@’f a nucleus, as understood in terms of the shell-model,

may be experimentally investigated via-the-use-of single particle transfer reactions,
U SINg

e achuns Hat ox L\,E, odd v romioves
A S) nc)u YU (;LJUY\/) SL\( h ao
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A deat /

oHn ‘

e.g. (p,d) or (d,p), in—a—precess referred to as

/

Z.
timescales of direct transfer reactions, combined

pectroscopy []. The short reaction
ith the interaction of the incident

particle with only one, or possibly twogi nucleon ‘ in the target nucleus allows for

J
the excitation of sirgle particle, or hole, states in\*phe residual nucleus. The single

\ S.pouthde
particle, or hole, states can be assumed to be that Sf pure-shell model states [].

The orbital angular momentum [ of the excited st\/ate, 9513/01;; can be determined
by an analysis of the angular distribution of the outgoing light particle,as this is

o3

determined by the angular momentum transferred by the stripped, or picked up,

'\f\,\j\g\,uﬂ@s%ng'}e-partie}/ﬂg_@alysis of direct transfer reactions is usually carried out via

tamaly have e
{\1» v\,ov\ S \‘owu QN U"zﬁ' »)

(C\S A Yo’ (?,ﬂ ol o&a) oongl NO LR

the Distorted Wa\{eSBorn Approximation (DWBA) method. In an example case: a
target A+1 body nucleus is bombarded by a beam of protons which pickup neutrons
from the valence orbitals (or more deeply bound orbitals if the proton energy is high
enough) via the (p,d) reaction. The angular distribution of the outgoing deuterons,
within a small energy range, is measured and matched against DWBA calculations to
determine from which shell=model orbital the neutron has been taken. The residual

Mo ke
nucleus }s‘ left in an excited state due to the hole created/and will subsequentally

o
decay, generally via the emission of y-rays. The decay of this excited hole state can
be measured and the energy of an excited state of the residual A body nucleus can
be determined.

So}via the study of the energies and angular distributions of these excited states,

it isﬁpossible to buildup a complete picture of the excited level structure of /the
1 with &

“\JU\JQ
\7 (Ve

residual _{mcleus. U\u:&\ \'\O\'\)J» O g‘lyzy\p) gj? OV J;,-.“Uq 3. holt t/‘/\(fs't 5\‘6&&/9 L_S

'(\5\/\3 G WU,
Two/nucleon transfer reactions can also be studied using the same framework.

A NSO
The study of these reactions is typically performed to/investigate the strength of the

) L. "‘(\\)\L\,E;LW;’\/) A% _ .
correlations and pairings between/\!Jhe sm%le particle-shell model states in a target

oo A+Z
nucleus []. However, two nucleon transferS/imay also be used to study the excited
U NG AT VNS HMrose

level structure of & nucleus, especiallyétates which may only be weakly populated

.

via singleLparticle transfer reactions. [y Hae A4 Sy T -
' | I i ] \Q
"ijkj’\_s%/\ \mD QKSLV/(UV\‘V\/\,@/ M |

N o o Sual <s

| T« L A
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2.3 The Distorted Wave| Born Approximation

2.3.1
Mot

The Plane Wave Born Approximation

The quantities of /interest to be calculated for a transfer reaction are the angle-

~
integrated cross sectlog o1 and the differential cross section 42 ¢& (0)) for populating
o

a specific final state. Due to the kinematics of a transfer reaction, the differential

AL )()\,h/&

cross section, that determines the angular distribution of the light-particle following

the collision, will depend upon which state of the

target nucleus has been popu-

lated. Therefore, this allows theoretlcally calculated angular distributions to be

used to determine which stateg\ha been populatec}in

dlstrlbutlonJof the measured fragments.

—

an experunent via the angular

ond wddn dhot 3\\¢Mﬁ\

By considering a simplified model of smgle[\paltlcle transfer, in which the wave-

functions of the projectile in the incident and outgoing stages are assumed to have

the form of plane waves, we may quahtatlvely derive this relation between the dif-

V&d \‘\/\/\(\1\ VI oA \(\Lv\kk N \)

two

ferential cross section and the state of t? tar get nucleus which becomes populated.

9
The differential cross section for the transition

related to the T' matrix element T o by,

do

< -where G is a term containing various phase space parameters. These are/unnec-

from a state o to a state f is

@ L\Cud (z\ HL‘\L

L(.\,\L\,\/Un \L (.\ \Y ](,.\ V\/\,\/ V\LLK

Y‘
/ kj\\\& L\C Sbgu.’w
l)\‘\j (\,\-\.

essary for the present qualitative discussion.( \ M angw M L\/\S\v\h\»\f\,\,

Before performing any transfer calculations, it
derstanding of the co-ordinate system to be used.

single particle transfer, (p,d) or (d,p), reaction is

is beneficial to gain a clear un-

The co-ordinate system for a

gl%ni\bél@% in figure 2.2. The

AN

coordinates of the proton and the deuteron may be-seen-frem-figure2:2-tobe given

by, 7
/ f=
* P — n )
%) c}g \v»S A+1
) L7
\NY Ta=Tn =7

g

(2.7)

(2.8)
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where A is the mass number of the target nucleus in the (d,p) case. The factor of \

A’_?_l will appear frequently in the coming sections and as such will be referred to as

i in order to simplify the various expressions derived.

Figure 2.2: A+1(p,d)A or A(d,p)A+1 single particle transfer coordinate system.
¢

A

The Born Approximation[?] (referred to in the rest of this work as the Plane Wave
Born Approximation (PWBA), in order to distinguish it from the Distorted Wave

Born Approximation) gives the T matrix element, in Dirac’s bra(é)ket notation, as, 19
/7 (X /
4 M) OL v
MO U v\\ LM u . . g i EV\JT‘\S : YARAVAY
<Fs 4P O Tpo = (kp®p|Vaplka®a) ,

$<_—=—where Vg is the potential coupling state o to state ﬁ , ko and k/g are the wavenum-

bers of the incident and outgoing waves respectively, and ®, and ®z are the wave-
C\P\b\h-’-7[(}b\,u \ y\

functions of the targethucleus in the channels o and ﬁ respectively. — l""”t
, g
In the PWBA, we assume the relative motion of the projectile and target nuclei NTI 1)
in the initial and final states are g{é;één/iy simplified versions of the actual physical ~ |obe)
o) I\\/ o)

system. For simplicity we will also 1gnore the presence of 1ntr1n81o spin during the

. \b —— )\)\_(/\,v“’)
’\}\U ) _ following discussion. Here, we shalLassn/me a (d,p) reaction, but the same results PN
Lk AND
\JW\’ hold for other transfer reactions.
: \«\y_, N i aSSUw w_d
v OJ‘\}V‘A The initial state is tfn,ﬁ'f@f a plane wave describing the motion of the incident
l
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deuteron, multiplied by-a-term-deseribing-the internal wavefunction of the deuteron,

and -a-term describing the nuclear wavefunction of the mass A target nucleus. The

mbination-of a plane wave describing the motion of the outgoing

final state is

and
proton)ag;dagggm.deseﬂbiag the nuclear wavefunction of the final mass A+1 nucleus/l’ LP": ‘("'_S\\‘\

So, this includes a wavefunction describing the behaviour of the transferred neutron S’)\/N’v"\/ )
3 which is assumed to now be bound in a single particle wavefuntion in the target
d nucleus. Our initial and final states are therefore, ‘
[l B " y <l
OUWA O\ AN ~y » WGy -
Cosdhont |\ o sy [rohavun dgd
h | Fa h(mu 4\7 \S‘“
and
1 \\\;\/ P’ IL\L/ b\ \(;4 T_;,; l')(
g WO ?\(ﬁ\’ 1) = [ @4+ 1) - e
I e If we assume that the A nucleons which make up the target nucleus occupy only
—)_©C
fﬁﬁyjj closed shells, i.e. that the nucleus is magic, and that the transferred neutron is
"l 4 o
" J‘T’ deposited into the next available she\z-l—n;@del orbital, we may simplify the overlap of
j;) 7. the A and A + 1 nuclear wavefunctions; Eey)
< O, MLONS
AT S 0ng. .7 ) N
b - = R [ nowymws
had 4 " AW - \ (P(A +1)[D(A Ltb ) s / b “;
O (nww \wkw>

\
N~

{

<~ where ¢, is the wavefunction of the transferred nucleon bound to the A nucleon
core. (| ) is integrated over A nucleoni This simplification allows the initial and

final states to be written as, (‘(}@sz\/m,iia

i) = |, da) = €4 Ti6y(7)
i PYND SJL/\/V\

) = ) = e n(r).

Transfer reactions are generally found to occur near the surface of the target

Lodaeh S

and, e

nucleus and involve only one interaction. The potential coupling the initial and

final states may be approximated as due to the potential between the proton and

neutron comprising the deuteron @f‘) C\\'Ld < ‘K
not np (ater but Mp
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‘\
\

When the bracket notation is written in integral form, the expression foy‘ Tﬁ,a\\is

now,

| | / B L . %4 g wap —

(c\(\us 4 Tp,(i‘a-;(/ e 0Tk (7) Vi (F) pa (F)e 4 T4 d g o
- ap pLaINg

<—We may reduce the number of different coordinates over-which-to-integrate, by

first rewriting e**»™ and e**¢7¢ in terms of the coordinates of the transferred neutron -

%Qecaﬂing expressions (2.7) and (2.8); asnd v \J[_{; de/ (
Qe ot LJ H

— eikn-FneiQ-F . (210)

—

L m T ey 2 e R
ezk:d-'rde—zkp-rp — kg Ta—ikpTp _ ezrn(kd—kp/.t)-i-zr(kp——zd)
. 5 o _ . vecks
<,,¢_,We may then introduce k, and @ which are, respectively, the ‘wavenumber’ of
the neutron and a wavenumber related to the relative motion of the neutron and

proton;

En:]zd_:pﬂ,
3=k, — =2 .
G=ky—

% Following the introduction of k, and @, the integral for T' thus becomes the
product,

T = / A {5 (7)) / dF{ eV V(P $a()} . (2.11)

éw—We have changed the basis of integration from 7, to 7, however the Jacobian
determinant for this change vg{il\li%"é unity, as may be seen from expression (2.7). For
the case of our qualitative discussion % we introduce a zer(;ZEange approximation
for the potential Vp,(7), i.e. we assume that Vp,(7)¢q(7) is a short range object
and that the potential acts over approximately zero range, ¥ ~ 0. We make the

replacement Vi, (7)¢a(7) &~ Dod(r) where Do is a constant equal to the volume

integral of the potential and the if\temal deuteron wavefunction.
%“ v In the zerg.;ange limit,
% L

,
-
™
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Do = / Vi (F)ha ()

and %@

/ (£97Y, (Mol }di* ~ 90Dy = Dy . (2.12)
ol nas
< For a (d,p) or (p,d) reaction, Do 4§ typically assumred to-have a value of —122.5
3/2 ¢ ( b 3
MeV B [F] — and aresmone Uy P ownd J)J ( i")

<< Qur expression for 7' is now,

T,, 4%, Do / {¢5(7)e™ ™ Ydr o (2.13)

<— Thus, k, represents the linear momentum transfer between the initial and final
states kn = Ed s Epu, which will depend upon the angle between ky and E It may
be seen from (2.13) that the value of T' (and hence &) for each angle between kq and
kp is simply related to the Fourier transform of the bound neutron’s wavefunction.
Therefore, the observed angular distribution of the outgoing projectile may be used
to determine Whlc?l /?:;jc\e&hof the nucleus the transferred particle has been deposited
into or removed fl“(;;l These features are expected to persist in the presence of
distorting interactions between the pro jectile(s) and target. Q)

-
( e bmme) 6@ S \\Lci(: ‘H')i“ : )L"&W-';

2.3.2 Distorted waves ]BLYY\ o yg,zx “phad donwang- |

\/\ ( The PWBA method treats the transfer reaction as a weak 111teract1on perturbatlon) o
(I() ?\ to the incident wavefunctlon and is therefore only valid when the optical model
DV
\ - potential (OMP) is ignored. -
a0 ~ Unmvp sV 0o
5 The Distorted Wave Born Approximation (DWBA)-extends the approach of the
N7
/\\\/ ¥ PWBA by replacing the ingoing and outgoing plane waves with distorted waves;

solutions to the Schrodinger equation in which the particles are scattered by an
OMP appropriate for the target nucleus. This has the effect of taking into account

‘ the non-elastic and elastic scattering reactions which the incident particles implicitly
\ ) ( ) " "

; undergo, un u\&,\o\/»/s oo romovad ot )g) wx Yot unadaent o

\

\/ e O \/ v 4 | § ¢ /L‘
i | s e A oond ? B \FCVZS‘Q
Te— \>\/ hf/\ /\BS W) N u&, \Y ‘\/\ L\IWV\UL o A d
V \,V\XUL I\ (_/‘\"/\UL/)
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In calculations of nucleon-nucleus collisions, a mean-field complex optical poten-

-
11

()

tial is used to simulate the complicated many—body interaction, which the nucleon

wﬂ& experlencg due to the A nucleons of the nu(?leus Thegeaizpaa%ﬁﬁm potential

simulates the elastic scattering of the incident nucleons ;énej%e— the nuclear peten-

o uash c

bc ) M.;,\,/ ownd
/quﬁ A)(/E
\LTL.L

O
L\\\g’@‘\ zt-;ta:l:vreﬂ The imaginary component simulates the absorption of incoming nucleons
3 we_ Yo

~into non-elastic channels which include all reactions which occur via a compound

S co

nucleus. o 0 ’\"\'k\‘q” Lv \,Q,LG\S‘\/\»C, 'P YU Tusa L

The T matrix element for the transfer reaction from channel a to f is now given

N — P . 5 _ .A ~/
by, e 8 ) ]’))@a«o\/\lk 7 —w A 7
Tpo = <X(ﬁ\)®6|vaﬁ|q)ﬁ(a+)> - (2.14)
V4

<;,Here the x~ and x™* are ingoing and outgoing distorted waves, respectively, and
®,, s are the nuclear wavefunctions of the target nucleus in each channel.
The use of the standard DWBA method continues to assume that the reaction

takes place in a single step (Born Approximation), With the transferred nucleon (or
S \V\c Ponde
cluster) being added to/removed from a specific shell‘model state.

s xmé,/\ NNV

/ f o e
2.3.3 Two/neutronLDWBA % X

p—

Here we extend the methods developed above to derive the two, partlcle transfer
W dsunss

DWBA formalism, for the case of the (p,t) reactlon/for a 0" spin, A + 2 mass target
nucleus.

The differential cross section for a specific J transfer is given by (2.15). In
an experiment, the incident beam of particles will typically be unpolarised and
the orientation of the spin of the target nucleus will /a%o be” unk gwﬁ@,a,e:f;vﬁll (the
spm projections of the final particles (without measurement) Thr\efme the cross

i e v .
- { ind Sk Spun
sectlon includes a summation of transitions over all of the final possible/projections,

/ AN o AVER L
~averaged over all the possible spin projections of the initial state [?];

) . . kol I CoA
N e =\ do

& % — (0t 5 J") = > | Trrtono 2.15

SV oS = i ) 28 +1) mM\ Tty (2.15)

The coordinate system for (p,t) or (t,p) two Eleutron transfer is illustrated in
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figure 2.3. As can be seen, the position vectors for the proton and triton are;
7y = T — g , (2.16)
A
= ———Tp — 0 (2.17)

Tp = Tn— P .
A+2 -
+ Jmot: as
For simplicity, from this point onwards, we will replaee A i with p.

%sz/m !
- Z XEFUU) XF\*,

(‘ [
P

Figure 2.3: (p,t) or (t,p) two neutron transfey coordinate system.

Haio nolahuns

< MCS ,S(, )F’S o

o O c\,U ow
218 ¢ S e

~ e orix

e >0, no- C)&V\,L;K‘.A
1f) = |‘I’(A)JMth¢w,) (2. 19)

The initial and final states of the (p,t) syster7are

where X%, and xj, are distorted wavefunctions for the proton and triton respec-

Pty
< Fluwo

tively, describing elastic scattering from appropriate OMPs. For simplicity it will

be assumed that the OMPs for thls example contain no spin-orbit terms. ¢y, (p, 7).

S

is the internal wavefunction of the triton (1nclud1ng a component accounting for its

77%&0@) Shodd

N & )\‘ Sim

4 \./bl

o
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|

J
intrinsic spin), Xe, is an intrinsic spin wavefunction of the proton, and ®(A + 2)o+

and ®(A),p are the internal wavefunctions of the target nucleus before and after
the transfer respectively. \ ‘ o dd. B
i d LWy \\;LJ as e

The internal triton wavefunction ¢y, (7, 7) will be-decomposed.into & product of

a 0" di-neutron wavefunction ¢, (7), a wavefunction representing the motion of the

proton relative to the di-neutron (assumed to be s state) f(p), and a triton (proton)

spin wavefunction Xpq,;

Qstm(ﬁaf‘) = ¢2n(f‘)f(mXpUt ‘ (2'20)

- The overlap integral of the wavefunctions of the nucleus in its initial and final
states, (P(A)su|P(A+2)o+), may be simplified by assuming that a core of A nucleons
is unchanged following the removal of the 2 neutrons from the A + 2 initial state.
We start by assuming that the wavefunction of the initial A + 2 nucleus may be
decomposed into a product of the wavefunction for the A nucleon core ®(A) sy, a
bound state wavefunction for the di-neutron ¢4 , (7,,) and a wavefunction describing

the motion of the two neutrons in the di-neutron relative to one another ¢o, (). The

Yhen Su b v )

gL

product of these two wavefunctions will be weighted by a Clebsh-Gordon coefficient,
which is determined by the angular momenta of the two states.

The bound di-neutron has 0 intrinsic spin, an orbital angular momentum L and
an orbital angular momentum projection A. The intrinsic spin J and spin projection
M of the A nucleon core couple with the L and A of the bound di-neutron to give

a total angular momentum of 0% for the initial A + 2 nucleus.

O M)\)/’JJ\J/«/‘

The coupling of these angular momenta states is illustrated in figure 2.4.

O(A+2or = S (TMLAIOO)SHA (72)an (F)2(A) 1 (221)
MA

_ . —1)r—m
(]1m1]2m2|00) = 5j1j25m1—m2 (( ) (222)

3
<)
<
$
| S , % Systems which couple to |00) states are a special case and may be simplified, e.g.
¢ 2+ )2
3
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07 T
LA >_ o
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Figure 2.4: Illustration of the various angular momentum states which are coupled

together in the A+2 system.

Our expression for coupling to |00) therefore becomes

A
N
J 67100 —-APR 1A (Tn) B2n (F) s (A) (2.23)
J
= )
'v\/‘\\’ </ The overlap integral between initial and final states is therefore
L M (=)7+A
@W(Mzm) = GJ+ 1P Naa (Tn) don(T) - (2.24)
We may also see that our sum over the proton and triton spins is trivially given P
by; , + » Ml QA hae
Xpoi Xpop = Oapor - (2.25)
pOt
The expression for T' is now given by, i ;
\/k 0, 4\‘(, o

| B30 ()02 (7 Vion (9) £ (B) S (P ) dFedpds . (2.26)

_)HA
T= (2] —I— 1)1/2 / ﬁt 7t kP»TP
[ ¢5,(7) p2n(F)d = 1 and so we may reduce the number of dimensions over which

to integrate;
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(=) »
I'= m \Ilkt Tt\Ilkp p PQn(ﬁ)f (P) NJA(Tn)thd,O . (2.27)
The bound state wavefunction of the di-neutron may be separated into radial

and angular components;

Uns(rn)

Y () (2:28)

daga(Fn) =

where Uy s(r,) is a solution of the radial Schrédinger equation and Y (7,) is
a spherical harmonic, a function of the angular coordinates of 7, (i.e. YA(7,) =
Y0,9)).

As was the case in section 2.3.1, the calculation of T' will be simplified if we
assume that Vye,(9)f*(0) is a zero range object; Vian(p) f*(5) o 6(p). We may again

introduce a constant Dy which represents the strength of the zero range vertex;

[ Vamlrs* )5 =01 (2.20)

For a (p,t) or (t,p) reaction, Dy, typically, has a value of —469 MeV fm%/?2 [7].

Using the zero range approximation, the integral for T' becomes,

(_)J+A i
T:D(’m/‘l’%t,ﬁqjﬁp,r} NJA( )d’)"t . (230)

It is now convenient to again move from a DWBA to a PWBA description as this
will allow the physics of the problem to be more readily understood. The distorted

waves for the proton and triton are replaced with plane waves independent of any

OMP;
b, = V() = ™ (2.31)
\I’:m‘t - z/)*(k’ta 'Ft) = e—ikt'ﬁ ' (232)

In the zero range limit we may rewrite the product of these two plane waves as



