Hands-on session on capture cross sections

Excel program talent_cap.xlsm

The excel programme contains two sheets

- 1. Coul: computes Coulomb and Whittaker functions
- 2. *Potential*: computes (numerically, with the Numerov algorithm) the wave functions from the Schrödinger equation

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} \right) u_{\ell} + (V_C(r) + V_N(r)) u_{\ell} = E u_{\ell}$$

The nuclear potential is parametrized by a Gaussian form factor

$$V_N(r) = V_0 \exp(-(r/r_0)^2)$$
.

The capture cross sections are determined from the wave functions of bound and of scattering states.

Inputs:

- masses, charges (B1, D1, B2, D2).
- rmax and step (G1 and G2) are used to compute the wave functions by the Numerov algorithm.

Typical values: rmax=20 fm, step=0.1 fm.

- Angular momentum ℓ (row 5), range r_0 (row 7) and depth V_0 (row 6).
- For bound states: the number of radial nodes (B8).
 For scattering states: energies (G8,H8,I8, etc). Several energies can be considered simultaneously (row 8, from column G).
- For radiative capture: order of the multipole λ (J1).

Outputs

For bound states:

- Energy (negative) in B10.
- Total potential (nuclear + Coulomb + centrifugal) and wave functions $u_\ell(r)$ from B15 and C15.

For scattering states

- Phase shifts in radians (G10, H10, etc).
- Capture cross section in fm²(G11,H11, etc).
- S factor in MeV-b (G12, H12, etc).
- Potential and wave functions $u_{\ell}(r)$ (from F15 and G15).

Questions

Consider the ${}^3\text{He}(\alpha,\gamma)^7\text{Be}$ reaction. The ground state is $J_f=3/2^-,\ell_f=1$, and is bound by -1.59 MeV (see spectrum).

- 1. By using the sheet "Potential" and $r_0=2.5$ fm (Nradial=1), determine the depth V_0 to reproduce the experimental binding energy. Plot the corresponding wave function, and check (by a numerical integration) the normalization $\int_0^\infty u_\ell(r)^2 dr=1$.
- 2. The Asymptotic Normalization Constant (ANC) of a bound state is defined by

$$u_f(r) \to CW_{-\eta_B,\ell+1/2}(2k_B r)$$

where $W_{-\eta_B,\ell+1/2}(x)$ is the Whittaker function, and where k_B and η_B refer to the bound state.

With the exact wave function and the Whittaker function given by sheet "Coul", determine the ANC of the ⁷Be ground state.

- 3. What is the expected dominant multipolarity λ ? Which partial wave is expected to be the most important? Check that the electromagnetic selection rules are satisfied.
- 4. Using the same potential, determine the scattering wave function at E=0.1 MeV (for $\ell=0$), and plot the integrant $u_i(r)u_f(r)r^{\lambda}$. Give an estimate (in %) of the external contribution.

Increase and decrease the binding energy (by modifying the depth of the potential), and see how this maximum moves.

5. Compute and plot the S factor up to 1 MeV. Compare with experiment (see figure below, the data are given in sheet he3ag). Use different discretizations for the initial and final wave functions, and check the stability of the S factor.

