
TALENT Course 6: Theory for exploring nuclear reaction experiments

Exercises 1: Monday Week 1

Jeff Tostevin

Analytical/Mathematical exercises

1. Scattering boundary conditions:

The scattering phase shift, for an orbital angular momentum ℓ between a projectile
and a target nucleus, δℓ ≡ δℓ(Ecm), is a function of the collision energy in their
centre-of-mass Ecm. Its effects can also be be summarised in terms of the partial
wave transition matrix or S-matrix elements, defined as

Tℓ = exp(iδℓ) sin δℓ , Sℓ = exp(2iδℓ)

The asymptotic forms of the scattering wave functions, i.e. for Ecm > 0, out-
side of the range of the nuclear potentials, are expressed in terms of the known
regular (sine-like) and irregular (cosine-like) solutions of the radial Schrödinger
equation, Fℓ(k, r) and Gℓ(k, r) and their outgoing-waves (H+

ℓ ) and ingoing-waves
(H−

ℓ ) combinations
H±

ℓ (k, r) = Gℓ(k, r)± iFℓ(k, r) .

Show that the following three alternative asymptotic forms for the scattering wave
function are equivalent:

uℓ(k, r) = eiδℓ [cos δℓFℓ(k, r) + sin δℓGℓ(k, r)]

=
[
Fℓ(k, r) + TℓH

+
ℓ (k, r)

]
=

i

2

[
H−

ℓ (k, r)− SℓH
+
ℓ (k, r)

]
.

2. Resonance descriptions:
For projectile-target scattering at centre-of-mass energies Ecm near to a single,
isolated and narrow (Γ small) resonance (of angular momentum ℓ at energy Er) in
the colliding system, the phase shift is often written:

δℓ(Ecm) = arctan

(
Γ/2

Er − Ecm

)
(modulo π) .

Note that as as Ecm is increased from below to above Er then δℓ increases, passing
through π/2 (modulo π).

The contribution to the total elastic scattering cross section from this partial wave
for energies near the resonance, Ecm ≈ Er, is

σℓ(Ecm) =
4π

k2
(2ℓ+ 1)|Tℓ(Ecm)|2
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where Tℓ is the partial wave transition matrix element of Question 1. Show that
the cross section exhibits a Briet-Wigner–like resonance peak

σℓ(Ecm) =
4π

k2
(2ℓ+ 1)

(Γ/2)2

(Ecm − Er)2 + (Γ/2)2
.

Show also that corresponding partial wave S-matrix element has the form

Sℓ(Ecm) =
Ecm − Er − iΓ/2

Ecm − Er + iΓ/2

and hence has a mathematical pole at the complex energy Er − iΓ/2.

3. Continuum bins definitions:
Plane wave (momentum) eigenstates in three dimensions, ⟨r|k⟩ = exp(ik · r), have
normalisation

⟨k|k′⟩ =
∫

dr exp(−ik · r) exp(ik′ · r) = (2π)3δ(k− k′) .

Scattering states ϕ
(+)
k (r) can be shown to share the same normalisation condition,

that is
⟨ϕ(+)

k |ϕ(+)
k′ ⟩ = (2π)3δ(k− k′) .

It can be shown, using the partial wave expansions of these scattering wave func-
tions, that the radial parts of these wave functions uℓ(k, r) satisfy the condition∫ ∞

0
dr u∗

ℓ(k, r)uℓ(k
′, r) =

π

2
δ(k − k′) .

Assuming this property of the radial wave functions, show that continuum bin wave
functions ûi(r) constructed as linear superpositions of these radial wave functions
over different, non overlapping, ranges of momenta ∆ki (or energies) with some
optional weight function g(k),

ûi(r) = Ci

∫
∆ki

dk g(k)uℓ(k, r) , ∆ki = ki − ki−1

are orthogonal. That is, ∫ ∞

0
dr û∗

i (r)ûj(r) = 0 if i ̸= j .

Find also the correct choices of the constants Ci so that the ûi(r) are orthonormal,
that is they behave like bound state wave functions:∫ ∞

0
dr û∗

i (r)ûj(r) = δij .

This means that excitations to and between different bin states can be treated using
the same mathematical and numerical techniques as were developed for inelastic
excitations of bound excited states.
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4. Continuum bins example: Using the results of the previous question, or other-
wise, show that, for s-wave scattering states u0(k, r), if these are replaced by plane
wave states, i.e.

u0(k, r) = sin kr

then the corresponding bin states, for g(k) = 1, are

ûi(r) = Ci

∫ ki

ki−1

dk u0(k, r) =

√
2

π∆ki

[
cos ki−1r

r
− cos kir

r

]
.

The spreadsheet bins.xls on the Exercises web-page calculates the form of these
ûi(r) for two pairs of values of ki and ki−1 of your choosing, and also shows the
calculated norms and the orthogonality integral for the ûi(r) for the two chosen
bin ranges.

Introductory computational exercises

1. Find the separation energies and graph the radial wave functions of all the states
of a neutron that are bound in a mass A = 40 nucleus. Assume that the real
central Woods-Saxon binding potential is fixed and is (V, r, a) = (30.0 MeV, 1.25
fm, 0.65 fm). You should first assume that Vso = 0.0 and then that Vso = 6.0 MeV.
What are the differences? Use the program bound. Is this potential depth realistic
for say 40Ca?

2. Calculate and plot the phase shifts in the s, p, d and f -partial waves (ℓ =0, 1, 2
and 3) for a neutron scattering in the same real potential (V, r, a) = (30.0 MeV,
1.25 fm, 0.65 fm) for 0 < Ecm < 8 MeV. Interpret their behaviour in terms of the
number of bound states present in each partial wave that were found in Question
1 above. Use the program scatter with no spin-orbit force.

3. Calculate and plot the phase shifts δℓ and the partial wave elastic cross sections
σℓ(Ecm) in the f -partial wave (ℓ = 3) for this same problem, for 0 < Ecm < 8
MeV, starting with the real potential (V, r, a) = (30.0 MeV, 1.25 fm, 0.65 fm).

Deduce the Ecm value at which δ3 = 90 degrees. Find and plot the corresponding
positions Ecm at which δ3 = 90 degrees as a function of increasing V (i.e. as the
well is made deeper). Eventually the f -wave neutron state will also become bound.
Extend your plot to negative (bound) Ecm values versus V to include these bound
state eigenvalues of the f -wave state. Use programs scatter and bound.

4. Run the programs bound and scatter for any system of two particles/nuclei of
your choice (e.g. that in Question 1). Assume the particles interact with a fixed
real potential. scatter does not include spin so assume the valence particle also
has spin zero in bound also. Graph the bound and a scattering wave function for
the same chosen ℓ value and show that these radial wave functions are orthogonal.
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5. The separation energy of a neutron from 40Ca to form the ground state of 39Ca
is (see e.g. http://ie.lbl.gov/toi2003/MassSearch.asp) 15.641 MeV and the 39Ca
ground state has spin and parity 3/2+.

Assuming a potential geometry of r = 1.25 fm and a = 0.7 fm and a spin orbit
force of 6.0 MeV, find the potential depths V needed to describe the least bound
neutron and proton states in 40Ca. Are they equal? Should they be? Calculate
the eigenenergies of all of the bound neutron and proton eigenstates in these (now
fixed depth) potential wells.

6. How well is the experimental splitting of the 1f7/2 and 1f5/2 states in 41Ca repro-
duced when using the standard potential geometry (1.25, 0.65) and Vso = 6 MeV
and when using radius parameters deduced from a Skx Skyrme interaction Hartree
Fock calculation, i.e. use geometry (r0, 0.70) and Vso = 6 MeV.

7. Find the real potential strengths that are needed in the ℓ = 0 and ℓ = 2 states of
the deuteron + alpha-particle system to give a reasonable description of the low-
lying (both bound and resonant) isospin T=0 states of 6Li (you will need to use
bound and scat). You should assume that the potential geometry has R = 1.90
fm (note R not r0), a = 0.65 fm and that the spin orbit force is Vso = 2.05 MeV.

(see e.g. http://www.tunl.duke.edu/nucldata/ourpubs/ourpubs.shtml)

Use the program scat one (which prints the radial wave function at a single scat-
tering energy) to look at the deuteron + alpha-particle relative motion wave func-
tions at the resonance positions of your potentials.

8. Calculate and plot the partial wave S-matrix elements Sℓ, i.e. the real and imagi-
nary parts and |Sℓ| for neutron scattering from a mass 28 target in the following
complex potentials with real part (V, r, a) = (50.0 MeV, 1.25 fm, 0.65 fm). As-
sume volume Woods-Saxon shaped absorptive (imaginary) terms with (Wv, rv, av)
= (10.0 MeV, 1.20 fm, 0.60 fm), (15.0 MeV, 1.20 fm, 0.60 fm) and (20.0 MeV, 1.20
fm, 0.60 fm) at Ecm = 10, 40 and 100 MeV, respectively.

Compare the values of ℓ for which |Sℓ| ≈ 0.5 with the values that might be expected
based on the radii of the optical potentials and the neutron wave numbers k at
these three energies.

9. Calculate and plot the Hartree-Fock densities for neutrons and protons in neutron-
deficient 31Ar and neutron-rich 25Ne. Use the program dens and the SkX Skyrme
interaction.
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