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Two-particle bound and scattering states calculations

Introduction

Codes provided that solve the (non-relativistic) radial Schrödinger equation(
d2

dr2
− ℓ(ℓ+ 1)

r2
+

2µ

h̄2 [Ecm − V (r)]

)
uℓ(r) = 0 , (1)

for bound (Ecm < 0) and scattering (Ecm > 0) solutions for a system of two particles of
masses A1 (projectile) and A2 (target), and reduced mass µ, interacting via a potential
V (r), are bound and scatter. The potential V (r) will, in general, consist of short ranged
interactions VN(r) plus the Coulomb interaction VC(r) when the projectile (Z1) and
target (Z2) are charged. For bound states VN(r) is simply assumed to be a real central
interaction with a Woods-Saxon shape. For scattering states VN(r) will in general be
assumed to be an arbitrary complex central interaction based on the usual volume and
surface Woods-Saxon shapes, as follows

V (r) = VN(r) + VC(r) =

{
− V0

(1 + eX0)
− i

Wv

(1 + eXv)
− i

4Wse
Xs

(1 + eXs)2

}
+ VC(r). (2)

So, for an attractive (negative) real potential and an absorptive (negative) imaginary
potential the strengths V0, Wv and Ws are each defined to be positive. In the above
equation the factors Xi are

Xi = (r −Ri)/ai , Ri = riA
1/3
2 , (3)

with ri and ai the usual radius and diffuseness parameters (typically of order 1.2 and
0.6 fm, respectively). The Coulomb interaction VC(r) for charged particles is assumed
to be that of a uniformly charged sphere with a radius RC , taken here to be equal to
that assigned to the real central interaction RC = R0 = r0A

1/3
2 , and is then

VC(r) =
Z1Z2e

2

r
, r > RC (4)

=
Z1Z2e

2

2RC

[
3−

(
r

Rc

)2
]
. r ≤ RC . (5)

Spin-orbit interactions are not necessary for the currently required outcomes and the
strengths can be set to zero if programs prompt for them for the time being.
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Outputs from scatter are the radial wave functions uℓ(r) (see Eq. 14), the phase shifts
δℓ and the partial wave T- and S-matrices, Tℓ(Ecm) = eiδℓ sin δℓ and Sℓ(Ecm) = e2iδℓ . The
integrated elastic scattering cross section is

σ(Ecm) =
∞∑
ℓ=0

σℓ(Ecm) =
4π

k2

∞∑
ℓ=0

(2ℓ+ 1)|Tℓ(Ecm)|2 . (6)

The contributions from each partial wave ℓ, are

σℓ(Ecm) =
4π

k2
(2ℓ+ 1)|Tℓ(Ecm)|2 (7)

and are also output. For real VN(r), δℓ is also real and then |Tℓ(Ecm)|2 = sin2 δℓ.

Program bound

This program works in terms of the positive separation energy Scm of the bound particles
rather than the negative energy eigenvalue Ecm, with Scm = −Ecm. The program can
find either

(a) the bound states in a specified fixed potential, or

(b) the potential that will produce a bound state with a particular separation energy.

The program is self documenting, asking for the required input parameters. If used
without spin-orbit forces, respond in any way to the spin- and j-value requests and
return zero for the spin-orbit potential strength. The real radial wave functions uℓ(r)
for the bound states are defined such that∫ ∞

0
drr2[uℓ(r)/r]

2 =
∫ ∞

0
dr[uℓ(r)]

2 = 1, (8)

and thus behave as rℓ+1 near the origin. The wave functions are written as (r, uℓ(r))
pairs to the file bound.xxx for graphical use and as uℓ(r)/r values to the file bd.xxx for
further computation and interface with other codes. The distinguishing trailer xxx is
user-specified.

The wave functions are calculated for the range of radii 0 ≤ r ≤ 30 fm.

The number of nodes in the radial wave function starts with n = 0 for the lowest energy
state of a given ℓ, so the zeroes of the wave function at the origin and at infinity are not
counted in the node count.

Program scatter

A specimen data set scatter.one contains the specification of the required inputs.

projectile: mass charge

target: mass charge

2



matching radius (fm) (typically 15. fm)

integration step length (typically 0.1 fm)

centre of mass energies: e_min e_max

number of energies: nener

partial waves: l_min l_max

Real Woods-Saxon (volume) V_0 r_0 a_0

Imag Woods-Saxon (volume) W_v r_v a_v

Imag Woods-Saxon (surface) W_s r_s a_s

The user-specified filename trailer of the data set (here one) will then label all output
files from this data set, phases.one, etc. and can be used to identify output from
different runs.

The suggested matching radius of 15.0 fm, beyond which VN(r) is assumed to vanish
(see Appendix), and integration step of 0.1 fm should be adequate for all of the cases
needed here.

The output files produced for a data set scatter.xxx are as follows. The phase shifts,
etc. are ordered by the scattering energy for each value of ℓ, with an xmgr recognised
separator.

phases.xxx phase shifts in degrees (real V_N): Ecm delta

potent.xxx the potential V_N(r): r Re.V_N Im.V_N V_C

smatrix.xxx partial wave S-matrix elements: ell Re.S Im.S |S|

tmatrix.xxx partial wave T-matrix elements: ell Re.T Im.T

wavefun.xxx radial wave functions: r Re.u Im.u

sigmas.xxx partial cross sections of Eq.(7) Ecm sigma (fm**2)

The routines scatter and bound are intended to provide a foundation from which to
understand the behaviours of outputs from a set for potential scattering and bound
states problems. The intention is to understand those aspects of scattering that guide
intuition and that are needed as input to larger-scale reaction calculations. We can use
these programs later to test approximate scattering theories by comparison with the
exact results and also to examine and fine-tune input we put into reaction codes and so
test individual inputs.
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Appendix A: Outline of solution

(1) The codes calculate numerically the solutions of the radial differential equations in
the presence of the potentials V (r), for each relative orbital angular momentum (or
partial wave) ℓ, (

d2

dr2
− ℓ(ℓ+ 1)

r2
+

2µ

h̄2 [Ecm − V (r)]

)
uℓ(r) = 0 . (9)

(2) The required (physical) solutions are regular (i.e. uℓ(r) = 0) at the origin. Here, µ
is the projectile-target reduced mass.

(3) Outside of the range of the nuclear (Woods Saxon) interactions, where V (r) → VC(r),
the radial equation can be written(

d2

dr2
− ℓ(ℓ+ 1)

r2
− 2ηk

r
+ k2

)
uℓ(r) = 0 (10)

where η is the Sommerfeld (Coulomb) parameter and k is the wavenumber, k2 =
2µEcm/h̄

2.

(4) The regular, Fℓ(η, kr), and irregular, Gℓ(η, kr), (Coulomb function) solutions of this
equation are well known and standard functions.

To outline the solution, consider the scattering of uncharged particles, for which η = 0.
Numerical integration is performed away from the origin using the Numerov algorithm
(outlined in the following section) using an integration step length h (to be specified).

The numerical solution is then matched to the required physical solution at a radius
Rmatch (to be specified), outside of the ranges R of the Woods Saxon potentials, i.e. for
which V (r) = VN(r) = 0, r ≥ R. For these radii

uℓ(r) = AℓFℓ(0, kr) +BℓGℓ(0, kr) , (r > R) , (11)

→ Cℓ sin(kr − ℓπ/2 + δℓ) , (r → ∞) , (12)

where Fℓ(0, kr) and Gℓ(0, kr) are the solutions of Eq. 10 for η = 0 – the free particle
(no potential) radial equation.

These have very simple forms for small ℓ,

F0(0, kr) = sin(kr) , G0(0, kr) = cos(kr) ,

F1(0, kr) =
sin(kr)

kr
− cos(kr) , G1(0, kr) =

cos(kr)

kr
+ sin(kr) ,

and for other ℓ satisfy the recurrence formula

Fℓ+1(0, kr) =
2ℓ+ 1

kr
Fℓ(0, kr)− Fℓ−1(0, kr) ,

and similarly for the Gℓ. They have the asymptotic forms

Fℓ(0, kr) → sin(kr − ℓπ/2) ,

Gℓ(0, kr) → cos(kr − ℓπ/2) .
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The matching to the physical solution at radii r > R is carried out at two radii r1 and
r2. That is the simultaneous equations

uℓ(r1) = AℓFℓ(0, kr1) +BℓGℓ(0, kr1) ,

uℓ(r2) = AℓFℓ(0, kr2) +BℓGℓ(0, kr2) ,

are solved for Aℓ, Bℓ.

These constants of solution Aℓ and Bℓ determine the scattering phase shift, according

to Aℓ = Cℓ cos δℓ, Bℓ = Cℓ sin δℓ, with Cℓ =
√
A2

ℓ +B2
ℓ , and hence δℓ = arctan(Bℓ/Aℓ).

The partial wave T- and S-matrix elements Tℓ(Ecm) and Sℓ(Ecm) are

Tℓ(Ecm) = eiδℓ sin δℓ, Sℓ(Ecm) = e2iδℓ . (13)

The radial wave function defined by Eq. 12 is useful as it real for the case that V (r) is
real. The wave function printed from scatter.f is defined such that

uℓ(r) → cos δℓFℓ(η, kr) + sin δℓGℓ(η, kr) , (r > R) . (14)

Appendix B: Numerical outline

The Numerov algorithm for the solution of a homogeneous second order ordinary differ-
ential equation of the general form

u′′(r) = K(r)u(r) ,

using a constant step/interval h, is based on the relationship[
1− h2

12
K(r + h)

]
u(r + h) =

[
2 +

5h2

6
K(r)

]
u(r)−

[
1− h2

12
K(r − h)

]
u(r − h) .

The error involved is of order h6 and is thus rather accurate for reasonably small h. In
the context of the radial Schrödinger equation we must associate

K(r) ≡ Kℓ(r) =
ℓ(ℓ+ 1)

r2
+

2µ

h̄2 [V (r)− Ecm] .

The solution is computed iteratively, from a knowledge of the behaviour of the regular
solution at r = 0 and r = h, ∝ (kr)ℓ+1. Inspection will show that some care needed in
specifying these starting conditions for the case that ℓ = 1. This special case is taken
care of in the program scatter.f.

J.A. Tostevin June 17, 2013
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