Hands-on session on the R-matrix method:

Excel program talent_rmatrix_calc.xlsm

- 1. R-matrix formulae
- 2. Calculable R-matrix: general definitions
- 3. Writeup of the program rmatrix_calc.xlsm
- 4. Questions about the calculable R-matrix

1. R-matrix formulae

Note: all quantities depend on the angular momentum ℓ (not written)

Collision (or scattering) matrix :
$$U(E) = \frac{I(ka)}{O(ka)} \frac{1 - L^*R(E)}{1 - LR(E)} = \exp(2i\delta) = \exp(2i\delta_{HS}) \exp(2i\delta_R)$$

Hard-sphere phase shift:
$$\delta_{HS} = -\arctan \frac{F(ka)}{G(ka)}$$

R-matrix phase shift:
$$\delta_R = \operatorname{atan} \frac{P(E)R(E)}{1 - S(E)R(E)}$$

Incoming, outgoing Coulomb functions I(x) = F(x) - G(x), O(x) = F(x) + iG(x), where F(x) and G(x) are the Coulomb functions

Penetration factor, shift factor defined from
$$L(E) = ka \frac{O'(ka)}{O(ka)} = S(E) + iP(E)$$

Resonance energy E_r

In the R-matrix theory, the resonance energy E_r is a solution of $1 - S(E_r)R(E_r) = 0$

In the literature, the resonance energy E_r is also defined in different ways:

- 1) $\delta_R(Er)=90^\circ$ (corresponds to the definition above)
- 2) $\delta(Er)=90^{\circ}$
- 3) $dsin\delta/dE)_{E=Er}=0$

For narrow resonances, these definitions provide similar results.

2. Calculable R-matrix: general definitions

The program solves the radial Schrödinger equation (positive or negative energies)

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} \right) u_{\ell} + (V_C(r) + V_N(r)) u_{\ell} = E u_{\ell}$$

with the R matrix method. The coulomb $V_C(r)$ and nuclear $V_N(r)$ potentials are defined as (units are fm and MeV):

$$V_C(r) = \frac{Z_1 Z_2 e^2}{r}$$

$$V_N(r) = V_0 \exp(-(r/r_0)^2)$$

The wave function $u_{\ell}(r)$ is expanded over a set of ng basis functions as

$$u_{\ell}(r) = \sum_{i=1}^{ng} c_{\ell,i} \phi_i(r),$$

where $c_{\ell,i}$ are linear coefficients. Here we use Gaussian functions

$$\phi_i(r) = r^{\ell} \exp(-(r/a_i)^2),$$

with parameters $a_i = x_0 \times a_0^{i-1}$. Typical values are: x_0 =0.6 fm, a_0 =1.4. The matrix elements of the Hamiltonian are computed analytically. Parameters (x_0 , a_0) can be changed by the user (cells F7 and F8). The phase shifts are compared with the exact solutions.

The R-matrix is defined by

$$\begin{split} R(E) &= \frac{\hbar^2 a}{2\mu} \sum_{ij} \phi_i(a) \, (C^{-1})_{ij} \phi_j(a) \\ C_{ij}(E) &= <\phi_j | H - E + \mathcal{L}(0) | \phi_i >_{int} \\ &= \int_0^a \phi_j(r) [-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right) + V(r) + \mathcal{L}(0) - E] \phi_i(r) dr, \end{split}$$

where V(r) is the total potential (nuclear + Coulomb) and $\mathcal{L}(0)$ is the Bloch operator.

3. Writeup of the program rmatrix_calc.xlsm

Inputs

- Masses (B1,D1), charges (B2,D2)
- Parameters of the potential V_0 (B5), r_0 (D5), ℓ (F5)
- Number of basis functions ng (B6)
- Channel radius rmax (B7)
- Number of energies ne (B8), initial energy E0 (B9), energy step EP (B10)

Outputs

• Phase shifts

column A: energy

column B: "exact" phase shift (computed with the Numerov algorithm)

column C: R-matrix phase shift

column D: R matrix

column E: exact derivative of the wave function $u_{\ell}(r)$ at r=rmax

column F: left derivative of the R-matrix wave function $u_{\ell}(r)$ at r=rmax column G: right derivative of the R-matrix wave function $u_{\ell}(r)$ at r=rmax

column H: $1/S_{\ell}(E)$, where $S_{\ell}(E)$ =shift function

column I: hard-sphere phase shift column J: penetration factor $P_{\ell}(E)$

• Wave functions

Computed at the energy given in cell M11, and displayed in columns:

column L: exact wave function

column M: internal R-matrix wave function column N: external R-matrix wave function

• Basis wave functions

Displayed in sheet "Wave func."

Potential

Displayed in sheet "Potential"

4. Questions about the calculable R-matrix

We consider the ¹²C+p system (see Fig.1)

 $\ell=0$: V₀=-73,8, r₀=2.7 (reproduce the ¹²C+p resonance (1/2⁺) energy 0.42 MeV)

 $\ell = 1$: $V_0 = -55.3$ (reproduce the ¹³N ground state (1/2) energy -1.94 MeV)

- a) Take $x_0=0.6$ fm and $a_0=1.4$, and choose a realistic R-matrix radius rmax (tabulate the potential).
- b) Compute the phase shifts up to 2 MeV for different numbers of basis functions (ng). Check out the left and right derivatives.
- c) Increase and decrease rmax. Adapt ng accordingly.
- d) Choose an energy, and compute (and plot) the wave function in appropriate (ng large enough) and poor (ng too small) conditions.
- e) Verify the Thomas approximation (shift function *S(E)* linear near the resonance energy)
- f) Determine approximately (by graphic) the resonance energy E_r by using the R-matrix definition above (plot R(E) and 1/S(E))
- g) Choose an appropriate set (rmax, ng) and compute the phase shifts with the pole expansion. Verify that the phase shifts are identical.
- h) With the pole energies E_{λ} and reduced widths γ_{λ}^2 , determine (plot) both terms of

$$R(E) = \frac{\gamma_0^2}{E_0 - E} + R_0(E)$$

and verify that the background term $R_0(E)$ is approximately constant.

Perform the same analysis for another *R*-matrix radius, and verify that both terms are sensitive to rmax (although the phase shift is not).

i) Compute the phase shifts with the first tem only (use *P(E)* and *S(E)* given in columns H and J). Evaluate the importance of the background term.