TALENT Course 6: Theory for exploring nuclear reaction experiments Exercises: One- and two-particle overlaps

Jeff Tostevin

Analytical/Mathematical exercises

1. Assuming the coefficients of fractional parentage for the lowest seniority states, that neutrons occupy the $\nu 1f_{7/2}$ orbital, that we have closed N, Z = 20 shells of neutrons and protons, i.e. the neutron-rich calcium isotopes, calculate the expected spectroscopic factors for the (p,d) neutron transfer or nucleon knockout reactions from the $^{48,47,46,\dots41}$ Ca systems based on the independent particle model (IPM).

The coefficients of fractional parentage are, for a seniority = 1 final state

$$((j^{n-1})j, j; 0| \{(j^n) 0\}) = 1, \quad n = \text{even},$$

for a seniority = 0 final state

$$((j^{n-1})0, j; j|)(j^n)j) = \left(\frac{2j+2-n}{n(2j+1)}\right)^{\frac{1}{2}}, \ n = \text{odd},$$

and for a seniority = 2 final state

$$((j^{n-1})J, j; j|)(j^n)j) = -\left(\frac{2(n-1)(2J+1)}{n(2j-1)(2j+1)}\right)^{\frac{1}{2}}, \ n = \text{odd}, \ J \neq 0 \text{ and even}.$$

- 2. The very neutron-rich carbon isotope 20 C has N=14 and is assumed to have a closed core of neutrons, with N=8, and of protons with Z=6. We will assume that the configurations of the six least bound sd-shell neutrons are either:
 - (a) $| \dots \nu (1d_{5/2})^6; 0^+ \rangle$,
 - (b) $|\dots \nu(1d_{5/2})^4, (2s_{1/2})^2; 0^+\rangle$,

and that the $1d_{5/2}$ and $2s_{1/2}$ levels are essentially degenerate, $E(1d_{5/2}) \approx E(2s_{1/2})$.

Calculate the relative cross sections expected for the population of the 0^+ ground state of $^{18}\mathrm{C}$ in the (p,t) two-neutron pick-up reaction. You should use the independent particle model and the two-particle coefficients of fractional parentage for the nuclear structure amplitudes.

You should calculate these relative cross sections for:

- (i) case (a) above, with the removal of a $(1d_{5/2})^2$ neutron pair,
- (ii) case (b) above, and the removal of a $(1d_{5/2})^2$ neutron pair,
- (iii) case (b) above, and the removal of a $(2s_{1/2})^2$ neutron pair, assuming the nucleon single-particle wave functions are described by 3D harmonic oscillator states.

The two-particle coefficients of fractional parentage for the lowest seniority states, for removal of two neutrons from a single j shell are:

$$((j^{n-2})v = 0 \, 0, (j^2)0|(j^n)0) = \left[\frac{2j+3-n}{(n-1)(2j+1)}\right]^{1/2},$$

and for $J \neq 0$ (and even),

$$((j^{n-2})v = 2 J, (j^2)J|(j^n)0) = \left[\frac{2(n-2)}{(n-1)} \times \frac{(2J+1)}{(2j-1)(2j+1)}\right]^{1/2},$$

where n is even and v is the seniority of the final state.

You can compute 9-j angular momentum coefficients (if needed) using the tool at http://personal.ph.surrey.ac.uk/ \sim phs3ps/cleb.html