III.

Iv.

VL
VIL

Most experiments on particle transfer reactions are analyzed by means of the
distorted wave Born approximation (DWBA) treatment of the reaction
mechanism. The way in which this analysis is carried out, in practice, to obtain
information on the structure of nuclei is discussed by Macfarlane and Schiffer in
Chapter IV.B.2. This chapter is intended to describe the physical content as well
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as the assumptions underlying this treatment of the reaction. It is not intended
to be a review of the theory, nor does it provide derivations except when needed
to support its purpose. /

In recent years, alternative treatments of the reaction mechanism have been
proposed. They are intended to deal with one of the shortcomings of the DWBA,
and some applications of these theories have been made (Pearson and Coz, 1966;
Butler et al., 1967). However, it is probably fair to say that further evaluation of
these alternatives is needed (Nagarajan, 1972).

The plan of this article is to describe first the simplest form of the DWBA
theory for (d,p) reactions together with a discussion of the basic assumptions.
The DWBA itself is undergoing constant refinements, the precise merit of which
in some cases is yet to be decided. Improvements to the simple DWBA theory
consist of two kinds. There are certain improvements which can or have been
incorporated straightforwardly into existing computer programs and thus are
readily accessible to the experimenter interested in analyzing his data for its
nuclear structure information. These are discussed in Sections I11 and IV. The
other type of improvements are those that are so intimately bound up with the
nuclear structure and reaction mechanism (Sections V and VI) that a large
theoretical and computational effort is first required before one can proceed to
an analysis of experimental data. This class of improvements is therefore beyond
the scope of routine analysis at the present time.

The two-nucleon transfer reaction is treated in Section VII. The discussion is
brief since in many cases it would otherwise parallel that given for the (d,p)
reaction.

1. Simplest Form of DWBA for (d,p) Reactions

A. BASIC ASSUMPTIONS UNDERLYING DWBA

For definiteness we shall consider the (d,p) reaction, since it is the most
extensively studied of the one-nucleon transfer reactions. An exact expression
for the transition amplitude for the reaction A(d,p)B may be written down as
the starting point for our discussion

r= (%”"(rp)«DB(A DIV AV oa U G0, x rpdr, drg (D

The matrix element denotes integration over the coordinates of the 4 nucleons
of the target. In this expression, Wy, denotes an exact solution to the problem
involving an incident deuteron on the target nucleus 4, and as such, it contains
information on all the processes that can be involved, such as elastic and inelastic
scattering, breakup of the deuteron, the (d,p) reaction itself, as well as all other
reactions and the distortion of the deuteron as it moves close to or in the
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nucleus. Of course, this ideal wave function is not available, but its presence in
the exact amplitude gives us some insight into possible deficiencies in the
approximations that are introduced to obtam a tractible expression,

The distorted wave Born approximation is obtained when the exact function
Yaalr,, rp) is replaced by a product of wave functions of the target ground
state @A(A), the deuteron ground state @¢o(r), and a function xpd(*)(R)
describing the elastic scattering of the deuteron by an optical potential
representing its interaction with the target nucleus

T= jw;—)' (rp) (@ (4 + DI Von T Voa —Up|q>A(A)¢,0(r)>

X Wff) (R) dr drp )

Here r and R are the relative and center-of-mass coordinates of the deuteron and
are illustrated later. The other ingredients are dzp("), a wave function describing
the elastic scattering of the outgoing proton by an optical potential U,, Qa4+
1), a wave function describing the residual nuclear state, and the interactions
Von .bgtween the proton and neutron and V,a between the proton and the
remaining 4 nucleons.

It is customarily argued that V), and U, approximately cancel each other in
(2). The starting point for DWBA calculations is then

T= fd/;“)‘ (l'p) <(I)B(A + Dl Vpn(r)l (DA(A Yo (T wd(+) (R) drn d"p (3)

The expression is intuitively pleasing because it has the form of a matrix element
between unperturbed initial and final states of the system. However, there are
three basic assumptions underlying this expression.

First, it assumes that the transfer takes place directly from the target state to
the final state by the simple deposit of the neutron. Since V', does not depend
on the 4 coordinates of the target, according to this expression the reaction can
take place only to the extent that they are in the same state of motion in the
final nucleus; otherwise the matrix element would vanish. Thus, processes_in
which some of the 4 nucleons are excited through inelastic scatteri_gg of the
deuteron or proton are excluded from (3) although as remarked earlier, theif are
present in the original expression (1). Intuitively one feels that such processes
should not be too important when &(4 + 1) is a state in which the A4 nucleons
are predominantly in the same arrangement as in ¢, (4), as one expects would
be the case for low-lying states in (4 + 1). For weakly populated states as well as
higher lying states, such higher order processes are likely to be much more
important. Second order effects are discussed in Chapter 1V.B.2 and the:
theoretical treatment of such processes is discussed later in this chapter.
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A second assumption underlying (3) concerns the distorted waves v, and Y.
In practice, they are chosen to be wave functions of optical potentials whose.
parameters are chosen to reproduce the elastic cross sections. (For a discussion
of the optical potential refer to Perey, Chapter 1V.B.1.) The essential point here
is that the elastic scattering data determine the wave function in that channel
outside the region of the nucleus. Any wave function which has the same phase
shifts at large distance yields the same elastic cross section. Since there are
ambiguities and uncertainties in the optical model parameters, there are
corresponding uncertainties in the wave functions in the nuclear region, just
where they are needed in (3). Aside from this point, the meaning of the wave
function inside the nucleus is open to question, especially for composite
particles which may be distorted or broken up by the nuclear field yet still
contribute to the reaction (Pearson and Coz, 1966; Butler e a/., 1967; Johnson
and Soper, 1970).

A third essumption is that the (d,p) reaction is weak so that it may be treated
in first order. While this assumption may usually be valid, Rawitscher and
Mukherjee (1969) have pointed out that some (d,p) cross sections are unusually
large. This implies that after the neutron is stripped it can be picked up again to
form a deuteron. Thus there is coupling between the deuteron channels and the
{d,p) channel which may not always have negligible effect. Usually, however, the
(d,p) cross sections are smaller than enhanced inelastic scattering cross sections.
Thus, the inelastic processes, especially those involving collective states, are
likely to be generally the more important of the higher order corrections to the
DWBA.

B. ZERO-RANGE APPROXIMATION

The DWBA expression for the transition amplitude involves a 6-fold
integration over r, and r after the integration of the nuclear coordinates 4.
How the 6-fold integration can be handled has been discussed by Austern er al.
(1964) and Sawaguri and Tobocman (1967). However, it is usually reduced to a
3-fold integration by assuming that the product

D)=V, (1) )

has zero range. In almost all applications, the zero-range approximation is made,
although in some few cases the 6-fold integration has been performed (Drisko

and Satchler, 1964). Generally speaking, the ot i

“inite-range interaction is slightly smaller than that computed in zero range, but
the angular distribution is little modified. An approximate way of accounting for
the finite range of D(r), which is a simple modification of the zero-range
expression for 7', has been found and is discussed in Section 111,
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So if D(r) is chosen to have zero range,
D) =V, (D,(x) = Dy5(r) (5)

An appropriate value of D, can be found by integrating this equation over r and

using a Hulthén function for ¢y and the corresponding potential ¥ _. This
yields (see Lee er al., 1964) b

Dy =fdr r? Vpn(r)qbo(r) =(1.5X 10° (MeV? fm?)1/2 (6)

An alternate approach using effective range theory yields about the same value
(Austern, 1962).

We may note at this point that the deuteron has been assumed to exist purely
in the S state. The D state contribution is under investigation by several authors
(Johnson and Santos, 1967; Delic and Robson, 1970) and probably does not
alter the cross section greatly, but it does appear to be more important for
stripping into states of higher angular momentum.

For other single-nucleon transfer reactions, such as (3 He,d), a formulation
analogous to the above is used. The normalization, Dy, has been calculated by
Bassel (1966) but it is sometimes determined from experiment by comparison
of this reaction with the (d,p) reaction, or by studying levels whose
spectroscopic factors (discussed later) one feels confident are known.

Figure 1 shows the coordinates that occur naturally in the problem. In
particular, the proton distorted wave coordinate r, is measured from the center

Fig. 1. Natural coordinates for (d,p) reaction.

of mass of A+ n, in the nucleus B. When the Zero-range approximation is made
one sees that

r >R, - Ar /(4 +1) (7)

Recalling that the matrix element in (3) denotes integration over the
coordinates of the 4 nucleons of the target, it remains a function of the neutron

T
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coordinate which we denote by

bir,) = Gy A+ Db, (D= []A, 7)0 (1) dA (8)
Thus (3) becomes, after use of the zero-range approximation,
- -+ _AR_ (+)
r=0u[ 4, <(A : 1)> SR)Y,(R) dR ©)

This is the form of the integral evaluated in computer programs that are used in
calculating direct reaction cross sections in the DWBA. The same general form,
containing a distorted wave for the incident and outgoing particle and a form
facror ®(R) depending on the reaction and nuclear structure, is encountered in
all single-step direct reactions.

Although (9) is a three-dimensional integral, two of the integrations, the
angles of R, are trivially done when the distorted waves are expanded in partial
waves. Then the amplitude (9) is a linear combination of one-dimensional radial
integrals.

In applications of this theory, it is often found that better agreement with
experimental angular distributions is obtained if the integration on R is started
not at the origin but at a ‘“‘cutoff” radius, so that contributions to the integral
from the nuclear interior are rejected. This cutoff radius is, of course, an
arbitrary quantity having no definite physical meaning. Fortunately there are
several physical effects which tend to reduce the contribution from the nuclear
interior as seems to be often required, and these are discussed in Sections IIT and
V.

C. SprecTroscoriC FACTOR

In case the target nucleus is a closed shell nucleus, it is customarily as§L_1_n}£¢_d
that the overlap of the A nucleons in (8) is perfect and that the neutron is
deposited into a single-particle state nlj, with wave function__lpmj, say a product
of space and spin functions. Then the nuclear overlap integral is trivial and yields

O*(r )= U7 (1) = R, (r )Y, 6, 0)X, ()] (10)

with j = J;. The correct asymptotic behavior for the radial function R in (10)
should be e~ where « is determined from the separation energy of the
neutron. Although nuclear structure calculations are often carried out with
harmonic oscillator radial functions — because of their convenience when it
comes to evaluating the matrix elements that occur in shell model calculations —
their asymptotic behavior, which is ~e—¥r* 12 g incorrect. While this is of little
importance in shell-model calculations, since the main contribution to the
matrix clements comes from the interior region, it is of great importance for the
(d,p) reaction because a large, if not the main, contribution to (9) comes from
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the,‘ﬂsugf,agq region. The weight which is given to (9) from various radii is quite
ditferentin the two cases, ‘
There are two ways in which the correct asymptotic behavior of Eq. (10) can
be guaranteed. One is to use an oscillator function in the interior which is
matched to a Hankel function tail which decays according to the separation
energy of the neutron. The other, and more common method nowadays, is to
use a wave function corresponding to a Woods—Saxon potential \’vhose
parame.ters are adjusted so that the binding energy in the well is equal to the
separation energy.
. The notion that the neutron is deposited into a pure single-particle state is an
idealization which is approached in only a few cases in real nuclei. Usually only a
part of the wave function can be so described, the remaining part having some of

the 4 nucleons in excited states. This could be expressed by writing a parentage
expansion

P+ D=F T 5, (4, B, (4,5, (11)

A nlj
' . )
yvhere A" is used to denote the various states of the target nucleus. The
integration over the A coordinates in (8) picks out only the terms with 4’ = 4
yielding, for even targets 4, ,

X(r,) = B,,(4, B)wnll.(rn)é;NB (12)

Again, there is an assumption here that the neutron goes into a single-particle
§tate nlj. While the parity of B limits / to one value when 4 is even, there could
in principle be a sum on the radial quantum number 7 in (12). In case ¢ has the
value of Eq. (12), Eq. (9) becomes

- 1/2 (__ * AR » (+)
T=S,17(4,8) D, fw,, ) <A~——+ 1>w,,,,(R)wd (R) dR (13)
where we have written

S, (A, B) = g2 ;4. B) (14)

This is called the spectroscopic factor and its interpretation is clear from the
foregoing. It measures the probability that the nuclear state ® produced in the
(d,p) reaction has its parentage based on the ground state of the ‘tar&gt»Lwith‘aA
single particle in the shell-model state n/j (Macfarlane and French, 19_60). -

Of course, it is the interaction between the stripped neutron and the other
nucleons in the nucleus which destroys the simple single-particle picture first
discussed above and causes the single-particle strength to be distributed over
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several, or many, levels. When § in Eq. (12) is less than unity it implies that there
are a whole group of states of the form (11), which lie in the vicinity of where
the single-particle state would lie if the odd neutron did not interact with the
others. From the orthogonality properties of the coefficients in (10) a sum rule
exists for the fragments of this idealized single-particle state for a closed-shell
target

an,j(A,B)= 1 (15)
B

As described in Chapter IV.B.2, the integral in (13) is computed typically for
a pure single-particle state, and the resulting computed cross section is
compared with experiment. The discrepancy is ascribed to the value of S, There,
also, applications of sum rules are discussed. In more typical cases, 4 is not a
closed-shell nucleus. The general definition of the spectroscopic factor and its
calculation for various situations, as well as sum rules, are covered by Macfarlane
and French (1960). The main purpose of (d,p) experiments is spectroscopic: the
determination of the position, spin and parity of nuclear levels, their
spectroscopic factors, and the spreading of the single-particle strength.

I1I. Nonlocal and Finite-Range Effects

A. EFrFECT OF NONLOCALITY OF THE OPTICAL POTENTIAL

In most analyses of elastic scattering a phenomenological optical potential is
sought which yields agreement with the data (see Chapter IV.B.1). This optical
potential, U (r), is usually taken to have a simple local form. By local it is meant
that at the point r the particle feels the potential only at that same point. The
Shroedinger equation then reads

(w—h—2 v2+U (r)—E) Y(ry=0 (16)
2u L

The situation in a real scattering problem is always more complicated than
encompassed by this equation. For example, the incident particle can excite the
nucleus. The true state vector for the system therefore has many components
describing the many things that can happen, and these are coupled to each other
(see the coupled equations for scattering) by virtue of the mutual interactions
that can connect the various components or channels, Nonetheless, fundamental
theory shows that the complicated problem involving many channels can be
reduced to a simpler one containing few, or even only the elastic channel,
provided that the interaction between the scattered particle and the nucleus is
suitably modified. This modified, or effective, interaction is, however, a very
complicated object. No really satisfactory calculation of it can be made, and
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gertainly not an exact one. However, its formal structure is instructive since
from it we can learn what properties the optical potential oupht ta liave, Beaides,
bemng complex valued (the assumption always carried over to phenomenological
optical potentials), the optical potential should depend explicitly on the energy
of the system and it should also be nonlocal. The nonlocality means that the
term Uy (r)y(r) above must be replaced by

fU(r, W) dr’ (17

where U(r, r') is the nonlocal potential. Thus the wave function at point r
depends on conditions at all other points in the range of the nonlocal potential.
The consequences of a particular separable form of nonlocality have been
explored by Perey and Buck (1962). Their result is
L=Vt e 1) e =) (18)

e
where, in numerical applications, the function H is taken to be Gaussian. While it
should be stressed that this simple form does not follow from the formal theory,
the general effects and conclusions based on its use are probably sound. After
the scattering problem was solved by means of nonlocal interaction [Eq. (18)],
the computed cross section was fitted with a conventional local potential U, .
Two interesting facts were noted: first, that the equivalent local potential that
yielded the same scattering as the nonlocal potential was weaker, WU I< U, 1
and second, that in_the interior region the wave function of the nonlocal
potential, Y (r), was smaller than that of the local potential Y(r) (the so-called
“Perey effect”). In fact, when the form of the nonlocality H(r —r') in (18) is
taken to be a Gaussian of range (3, then a relationship between these two wave
functions can be found such that

Yy () = F(OY () (19)

where F(r) goes to unity in the exterior region (both functions reproduce the
same scattering cross sections) but in the internal region £ is less than unity and
is (see Austern, general references)

F(r) = {1 —ug? /20U, () } 1/ (20)

where u is the reduced mass. The value of 8 which Perey and Buck found for
nucleons to yield a best fit to the data over the energy range studied (up to
24 MeV) and $ == 0.85 fm. With this, and U, ~—40 MeV, one finds £(0) ~ 0.75.
Thus the conventional local optical potential yields a wave function which
should be decreased by about 25% in the nuclear interior. [Generally only the
real part of U is used in (19).] Together with a similar factor for the deuteron
function, with B4 = 0.54 fm, the contribution of the interior to the stripping
amplitude is reduced by about 40%.
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The bound neutron’s wave function is usually taken from a local potential
also. but in principle it should be the solution to a Hartree—~Fock problem which
again has a nonlocal potential. Since the overall wave function in the second case
must retain its unit normalization, the interior damping must be compensated
for by an increase in the magnitude of the wave function in the tail. This could
be compensated for by an adjustment in radius of the bound state potential;
however, and in general, the correction is not applied to the neutron.

We recognize that the suppression of the interior contribution due to the
nonlocality of the optical potential alleviates the problems that are often
handled by introducing the cutoff radius mentioned in Section I1.B. However for
light nuclei the suppression is usually still not sufficient (McAllen eral., 1971).
We must keep in mind however that the actual nonlocality of the effective
interaction is more complicated than the one [Eq. (18)] on which these results
are based. Indced in another investigation (Schenter, 1967) a much greater
damping of the interior wave function was found for nucleon—alpha scattering
in which the nature of the nonlocality was closer to what we believe to be
implicit in the formal theory. However in this case a simple connection between
the ordinary optical model wave function and the nonlocal one, as expressed in
Egs. (19) and (20), does not exist.

At the present stage it appears most attractive to use the damping that can be
incorporated in such a simple way into the DWBA integrals by introduction of a
damping factor [Eq. (20)] for each of the particle wave functions. It is
unfortunate but not surprising, as discussed above, that it may be necessary to
introduce a stronger damping than would be implied by use of the Perey—Buck
values of the nonlocal range parameter § in (20). This is sometimes achieved by
using an ad hoc greater range for the nonlocality. However, this undesirable
arbitrary procedure seems to have been solved by the recent development
discussed in Section 1V.

Inasmuch as the effect of the nonlocality is to reduce the contribution to
stripping that comes from the nuclear interior, the main change produced in the
cross section is to reduce the large angle scattering while leaving the forward or
peak cross section little changed (Philpott er al, 1968) (grazing or distant
collisions lead mostly to forward scattering while close ones, to large angle
scattering).

B. FINITE RANGE

As discussed in Section 11, almost all transfer reaction calculations are based
on the use of a zero-range interaction which very much simplifies the numerical
work in evaluating the cross section. Two schemes for evaluating the amplitude
for u finite-range interaction have been devised (Austern et a/., 1964; Sawaguri
and Tobocman, 1967). A comparison in several instances with the zero-range
approximation has been made (Drisko and Satchler, 1964). The zero-range
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approximation _was found generally to overemphasize contributions coming
from _the nuclear interior and thus, to overesumate the cross section. The
{inite-range calculations are much more costly in computer time, and a means
has been found of approximating the finite-range theory so that it reduces to the
form of the zero-range theory, except that a new radially dependent factor

appears in the zero-range integral (9) just as for the nonlocal effects discussed
above (Buttle and Goldfarb 1964). This factor is

PO

AR) = 1= (afB)* (1/BIUR) = V,(R) = U (R) — B,] (21)
corresponding to a Hulthen wave function for the deuteron
9o(r) & (1/r)(e ™" — ™) (22)

In these equations By is the deuteron binding energy, U, and U, are the
deuteron and proton optical potentials, and V. is the potential that bmds the
neutron. The last potential is real but the first two are complex so that the.
correction factor A(R) is complex.

Since it is now generally believed that the deuteron optical potential should
be about equal in depth to twice the nucleon optical potential, the square
bracket should be small near the origin. The departure of A(R) from unity then
comes mainly in the surface because the potentials for different particles tend to
have different geometrical parameters. Unfortunately, however, because of_the
well known ambiguities in optical model parameters, a corresponding ambiguity
in A(R) exists. Whether this ambiguity is compensated for in the cross section by
the distorted waves and bound neutron wave function has not been investigated.

The above approximate method of incorporating finite-range effects has been
tested in several cases and found to agree very well with the full calculatiog
when a deep deuteron potential is used (Dickens et al., 1965). Generally this
correction factor, along with those accounting for nonlocal effects of the optical
potential, are used in modern analyses of (d,p) reactions.

IV. Adiabatic Model for the Deuteron Optical Potential

It is always possible to find an optical potential that reproduces an elastic
cross section, as needed in the original formulation of the DWBA approach to
transfer reactions. This fact is most critical for composite particles. In the (d,p)
reaction, for example, the effect of distortion and break up of the deuteron in
the field of the nucleus is neglected in the usual treatment. Several attempts to
remedy this defect have been made (Pearson and Coz, 1966; Butler eral., 1967).
The one which fits into the old framework most readily is the adiabatic model
for the deuteron optical potential introduced by Johnson and Soper (1970).
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They define the deuteron optical potential to be
/
0,0 =(1Ipy) [0, 419+ U= 191V, s ()

where U, and U, are the nucleon optical potentials corresponding to energigs of
half the deuteron bombarding energy and ¢o is the deuteron wave function.
They show that the distorted waves generated by this potential contain, in an
approximate way, outgoing waves associated with the breakup of the deuteron
into low-energy relative > S states as well as elastic scattering.

This model has been applied so far to selected light, medium, and heavy
nuclei and apparently has a distinct advantage over the elastic deuteron optical
potential (Harvey and Johnson, 1971; McAllen et al., 1971; Satchler, 1971). The
effect produced on the stripping or pickup cross section is to cause a.faster fall
off with angle and to create stronger oscillations. In each of the cases cited, these
results were achieved in earlier analyses by the introduction of a sharp cutoff.
Indeed for the heavy nucleus (lead), the cutoff was larger than the nuclear
radius, tentatively suggesting that the breakup process is most important for
heavy nuglej, This can be understood in terms of the greater Coulomb field
experienced by the proton. ) .

The question comes immediately to mind as to how the potential of (23)
differs from the usual elastic deuteron optical potential. Since the nucleon
potentials are averaged over the short-range function

D(s)=V,,(5)90(5) (24)

the adiabatic_potential U, differs from the sum U, + (:]p mainly in hav.ing.L
greater_diffuseness (assuming the same geometry for U, .and U,). Its radlus. is
about the same as U, and U,,. Perhaps this is the key pgmt, because th.e radius
of the imaginary part of the elastic deuteron potential is usually considerably
larger (sometimes 30—40%) than that of the real part, whereas for nucleon
potentials they are close to each other. As emphasized b}./ Hz.irve.y and Johnson
(1971), the adiabatic potential produces a stronger localization in [ space.: than
the conventional potential. That is to say, the main contribution to the stripping
comes from a narrow band of partial waves. Convenient formulae' for
approximating (23) have been given in the literature qugted above. il“he validity
of the approximations on which the adiabatic theory is founded improves at
high deuteron energies, and this should be kept in mind. The model appears to
be very promising and attractive in that the artificial radial cutoff problem
appears to be solved. It deserves a great deal of further investigation.

V. Form Factors Related to Nuclear Structure

In most analyses of single-nucleon transfer reactions it is assumed that the
nucleon is picked up or deposited into a shell-model state. The corresponding
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wave function is usually taken to be an cigenfunction of a Woods  Saxon
potential whose depth is adjusted so that the elgenvalue equals the separation
energy. This assumption permits DWBA theory to be applied to the analysis of
data in a routine manner. Having made the assumption, one then regards the
data and its analysis through the DWBA as a means of picking apart the single-
particle structure of the nucleus and determining the spectroscopic amplitudes
with which the single-particle strength occurs in the various nuclear states.
Without it, the practitioner is caught up immediately in rather difficult and
detailed questions concerning the structure of the nuclei involved that go beyond
the scope of routine analysis. Indeed, in principle, one needs to know the.
detailed nuclear_wave functions in order to calculate the appropriate form
factor. From this angle the emphasis is shifted to testing a model of the nucleus.
We recall that the transition amplitude contains the overlap

B(x) = f\yB(A,x)\yA(A)dA (25)

If A is a closed shell nucleus one feels intuitively that the lowest few levels in B
should correspond very closely to single-particle states. What we mean by this is
that the A nucleons occupy the closed shells and the odd neutron occupies one
or another of the shell-mode! levels above the closed shells. This cannot be so in
general simply because the states of an odd nucleus are eigenstates of a many-
body system and are not in general the states of a potential well. In other words,
®(x) is not the eigenfunction of a potential well but satisfies a much more
complicated differential equation (Pinkston and Satchler, 1965; Berggren,
1965). It is true, however, that the tail of ®(x) is determined by the separation
energy, provided this energy is not too big. If the separation energy is so large
that the tail decays more rapidly than the nuclear forces, then not even this is
true. In any case, the magnitude of the tail, of ®(x), as compared to a Woods—
Saxon eigenfunction can be different, which would lead to an incorrect
spectroscopic factor in the latter case. It has been argued that the difference is
greatest for light nuclei. Further, one feels intuitively that it would be greater for
weakly populated levels than for strong ones.

An accurate calculation of ®(x) is a very difficult problem, as in_its entirety it
is tantamount to solving the many-body problem. Various approximate methods
and schematic models have been tried, sometimes yielding differences with cross
sections computed in the usual way by a factor of 2 or 3 (Philpott er al., 1968;
Pinkston et al., 1969; McAllen et al., 1971). However the angular distributions
are usually very similar. It is difficult to judge therefore whether the large
difference in magnitude is real, coming from the many-body effects, or whether
it is a result of the approximations made in trying to incorporate them. The
situation at present is quite unsatisfactory and a great deal of work has yet to be
done on this difficult problem.

At this point the reader may wonder how it was made so plausible in Section
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I1 that the form factor reduces to a single-particle wave function. The point is
that the parentage expansion (11) is formally correct, but is really unknown in
any_practical situation. Even if conventional shell-model calculations were
performed for nuclei 4 and B they would not provide an accurate enough
representation of the wave function for the computation of ®(x) except for
those few states that have a strong single-particle character. Recall that the
starting point of a shell-model calculation is the choice of a set of single-particle
wave functions which are used as the basis on which the nuclear wave functions
are expanded. Since this choice is made in the beginning, the asymptotic region
of the wave functions is never correct. This can be seen already for a simple j
configuration. The residual interaction splits the various states of different
angular momentum j*(J),J = 0, 2, ... yet the radial forms of the wave functions
are identical.

Finally we add that, if the radial shape of ®(x) is strongly altered from the
single-particle wave function, then the concept of a spectroscopic factor loses its
meaning.

VL. Higher Order Processes -

Recall from our discussion in Section [ that the DWBA amplitude is based on
the assumption that the only important process is the simple direct deposit of a
particle which does not disturb the other nucleons in the target ground state. In
general, the states of the nucleus 4 + 1 will each have several or many states of
A as parent, but the DWBA takes into account only transitions to the
components of the wave function of 4 + 1 which have the ground state of 4 as
parent. It had been believed for a long time that even if the parentage of a state
were not pure, the direct single step process leading to the component having the
target ground state as parent would account for the cross section. Recent
investigations indicate that this assumption is not always true (Glendenning and
Mackintosh, 1971). For example, some states in odd nuclei can be described
approximately as a single-particle state coupled to a core-vibrational state. Since
these latter states have enhanced inelastic cross sections, they are prime
examples of that kind of state which may be produced in a several step process.
This is illustrated in Fig. 2 for the idealized case in which two states have pure
parentage based on the ground statc, and are produced in the normal single step
process, while one has parentage based on an excited state and can be produced
only by means of an intermediate step. In practical situations in which nuclear
states have mixed parentage, whether indirect modes compete with the direct
will depend both on the fraction of parentage based on excited states of the
core, and on the strength with which these states are produced in inelastic
collisions. Generally, we expect that low-lying states of A + 1 will have a larger
portion of their parentage based on the ground state of A than higher-lying ones.
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Fig. 2. An idealized situation showing states of pure parentage. Two are based on the
ground state, which therefore can be reached by the direct transfer of a neutron, and one is
based on an excited state, which can be reached, therefore, only in second order.

There are two available methods for incorporating higher order processes
which pass through intermediate states produced in inelastic collisions. Both_
involve solving the coupled channel equations for inelastic scattering, and (bqoth
are equivalent in their final outcome though they are different in their
computational execution. One method is a generalization of the DWBA
amplitude, Eq. (3), in which the elastic distorted waves, which refer to the
elastic channel only, are replaced by wave functions which ¢ontain, in addition,

components referring to excited states (Penny and Satchler 1964). Thus in Eq.
(3) the following replacement is made

) - =
v, b+ 1)»% P g 4+ D=V (26)
with a similar replacement for ¥4(*) Whereas \,bp(") is the solution of an
optical potential equation
- —) —
(T+U, —E W) =0 (27

the Yy p- (=) satisfy coupled equations which account for the possibility of
exciting the nucleus through inelastic collisions. We write the total Hamiltonian

in terms of (a) a nuclear Hamiltonian H,,, of which the &g  are
eigenfunctions:
(H,,, —Eg )Py (A4+1)=0 (28)

(b) the kinetic energy T of relative motion p — (4 + 1); and (c) an interaction
v (p,A + 1) between proton and nucleus

H=H,  +T+V 29)
Then inserting the expression for \I’p of Eq. (26) into

(H—Ey =0 (30)
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steps may be important. The two-nucleon transfer reaction including such
processes has been formulated (Ascuitto and Glendenning, 1970a). However, the
calculation of such effects is not yet routine in the analysis of experiments.

The effect of higher order processes on the (p,t) reaction in spherical
vibrational nuclei has been calculated to affect relative cross sections by up toa
factor of 2 (Ascuitto and Glendenning, 1970b). However in the example studied,
the angular distributions were unchanged. This, however, was not the case in
deformed nuclei, where even angular distributions were in some cases strongly
altered (Ascuitto et al., 1971). In the deformed nuclei the effect of the higher
order processes was corroborated by comparison with experiment.

F. OTHER TWO-NUCLEON TRANSFER REACTIONS

Other reactions like (*He,p) and (a,d) and their inverses can be treated in a
similar manner to the (p,t) reaction. The relative motion again is s state. The spin
state of like nucleons is therefore singlet but for unlike nucleons it is a mixture
of singlet and triplet. The state of the deuteron, however, allows only the triplet
spin state to contribute in the (a,d) reaction. The structure amplitudes defined
before as G, need now to be generalized to include the orbital and spin
transfer L and S in addition to the total angular momentum transfer J, Tables
exist for these as well (Glendenning, 1968a). In the absence of spin—orbit
interactions in the optical potentials there is no interference between different
L’s or S’s, and never between different J ’s.

In such a reaction as (*He,p) where both § =0 and 1 are allowed, there is
evidence that the interaction V depends on S and this should be taken into
account in calculations of the cross section (Fleming et al., 1971).

The selection rules for these reactions as well as (p,t) have been detailed
elsewhere (Chapter [V.B.2 and Glendenning, 1965). ‘
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