
Chapter 1
Microscopic Cluster Models

P. Descouvemont and M. Dufour

Abstract We present an overview of microscopic cluster models, by focusing on
the Resonating Group Method (RGM) and on the Generator Coordinate Method
(GCM). The wave functions of a nuclear system are defined from cluster wave func-
tions, with an exact account of antisymmetrization between all nucleons. For the
sake of pedagogy, the formalism is mostly presented in simple conditions, i.e. we
essentially assume spinless clusters, and single-channel calculations. Generalizations
going beyond these limitations are outlined. We present the GCM in more detail, and
show how to compute matrix elements between Slater determinants. Specific exam-
ples dealing with α+nucleus systems are presented. We also discuss some approxima-
tions of the RGM, and in particular, the renormalized RGM which has been recently
developed. We show that the GCM can be complemented by the microscopic variant
of the R-matrix method, which provides a microscopic description of unbound states.
Finally, extensions of the GCM to multicluster and multichannel calculations are
discussed, and illustrated by typical examples. In particular we compare different
three-α descriptions of 12C.

1.1 Introduction

Clustering is a well-known effect in light nuclei [1]. Historically, the observation
of clustering started with the α particle, which presents a large binding energy and
therefore tends to keep its own identity in light nuclei. A description of nuclear states
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based on a cluster structure was first suggested by Wheeler [2] and by Margenau [3],
and then extended by Brink [4]. This formulation is known as the α-cluster model,
and has been widely used in the literature (see for example Ref. [5]). A typical
example of α cluster states is the second 0+ level in 12C, known as the Hoyle state
[6], which presents a strong α +8 Be cluster structure, and plays a crucial role in
stellar evolution.

The cluster structure in α nuclei (i.e. with nucleon numbers A = 4n) was clarified
by Ikeda [7] who proposed a diagram which identifies situations where a cluster
structure can be observed. The α model and its extensions were utilized by many
authors to investigate the properties of α-particle nuclei such as 8Be, 12C, 16O, etc.
In particular, the interest for α-cluster models was recently revived by the hypothesis
of a new form of nuclear matter, in analogy with the Bose–Einstein condensates [8].

If the α particle, owing to its large binding energy, plays a central role in clus-
tering phenomena, it soon became clear that other cluster structures can be observed.
Reviews of recent developments in cluster physics can be found in Refs. [9, 10].
In many nuclei, some states present an α +nucleus structure. A well known example
is 7Li, well described by an α + t model [11]. In recent years, clustering phenomena
have been observed in several nuclei such as 16O, 18O, 19F, etc. More exotic states
were suggested by Freer et al. [12] who found evidence for an 6He+6He rotational
band in 12Be. This unusual structure was subsequently supported by various calcu-
lations (see, for example [13, 14]).

An important property of clustering is that it may change from level to level in the
same nucleus [15]. There are many examples: in 5He, the ground state present an α+n
structure, whereas the 3/2+ excited state is better described by a t+d configuration
[16]. More generally, many nuclei exhibit α-cluster bands in their high-energy region.
Recently “extreme” α-clustering has been reported in the 18O nucleus [17].

The observation of clustering effects is the basis of cluster models, which are
essentially divided into two categories: (i) non-microscopic models, where the
internal structure of the clusters is neglected [18, 19], and (ii) microscopic theo-
ries where the clusters are described by shell-model wave functions [20, 21]. The
Schrödinger equation is written as

HΨ = ET Ψ, (1.1.1)

where H is the Hamiltonian, PΨ the wave function, and ET the total energy.
In non-microscopic approaches, the Hamiltonian of a system involving A nucleons

distributed over N clusters is given by

H =
N∑

i=1

P2
i

2Mi
+

N∑

i>j=1

Vij(Ri − Rj), (1.1.2)

where the N clusters with masses Mi have a space coordinate Ri and a momentum
Pi. In this definition, Vij is a nucleus–nucleus interaction which can be local or
non local. It may also depend on other cluster coordinates such as the spin or the
velocity. Of course, the simplest variant is a two-cluster model (N = 2) where, after
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removal of the c.m. motion, the Hamiltonian only depends on the relative coordinate
r = R1 − R2. An important issue in non-microscopic models is the choice of the
potentials Vij. In general, these potentials are fitted on some properties of the system,
such as binding energies or nucleus–nucleus phase shifts. In most cases they depend
on the angular momentum between the clusters. It is well known that, to simulate the
Pauli principle, this potential must satisfy some requirements. Deep potentials [19]
or their supersymmetric partners [22] can partially account for antisymmetrization
effects, although the associated wave functions neglect the structure of the clusters.

Non-microscopic theories can be extended to more than two clusters. For three-
body models, the hyperspherical method [23] or the Faddeev approach [24] are
efficient techniques. Because of their relative simplicity, at least for two-cluster
variants, non-microscopic models can be directly extended to scattering states, i.e. to
solutions of (1.1.2) at positive energies. This raises difficulties to properly include the
asymptotic behaviour of the wave function, but is now well mastered for two-body
and three-body scattering states.

The present work is devoted to microscopic cluster theories [20]. In a microscopic
model, the Hamiltonian of the A-nucleon system is written as

H =
A∑

i=1

p2
i

2mN
+

A∑

i>j=1

vij(ri − rj), (1.1.3)

where mN is the nucleon mass (assumed to be equal for neutrons and protons), ri

and pi are the space coordinate and momentum of nucleon i, and vij a nucleon–
nucleon interaction. We explicitly mention the dependence on space coordinates,
but vij may also depend on other nucleon coordinates. Until now, most microscopic
cluster calculations neglect three-body forces (see however Ref. [25]).

Hamiltonian (1.1.3) is common to all microscopic theories, which explicitly treat
all nucleons of the system. Examples are the shell model [26] and its “No-Core”
extensions [27], the Antisymmetric Molecular Dynamics (AMD, see Ref. [28]), or
the Fermionic Molecular Dynamics (FMD, see Ref. [29]). For small nucleon numbers
(i.e. A ≤ 4), efficient techniques are available to solve the Schrödinger equation
with realistic nucleon–nucleon interactions (see Ref. [30] and references therein).
These methods can be applied to bound as well as to continuum states. When the
nucleon number is larger, some approximation must be used. The specificity of cluster
models is that the wave function of the A-nucleon system, solution of the Schrödinger
equation associated with (1.1.3), is described within the cluster approximation. In
other words, the A nucleons are assumed to be divided in clusters, described by
shell-model wave functions, and the total wave function is fully antisymmetric. For
a two-cluster system with internal wave functions φ1 and φ2, the total wave function
is written as

Ψ = A φ1φ2g(ρ), (1.1.4)

where A is the A-nucleon antisymmetrizor, and the radial function g(ρ) depends on
the relative coordinate ρ. The cluster approximation is at the origin of the Resonating
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Group Method (RGM) proposed by Wheeler [2] and widely used and developed by
many groups (see for example [16, 20, 31]).

A significant breakthrough in microscopic cluster theories was achieved by the
introduction of the Generator Coordinate Method (GCM), equivalent to the RGM,
but allowing simpler and more systematic calculations [32]. The principle of the
GCM is to expand the radial wave function g(ρ) in a Gaussian basis. Under some
restrictions, the total wave function (1.4) can then be rewritten as a combination of
Slater determinants, well adapted to numerical calculations. Over the last decades,
the GCM was developed in various directions: multi-cluster extensions [33–35],
improved shell-model descriptions of the cluster wave functions [36], monopole
distortion of the clusters [37], etc.

In nuclear spectroscopy, microscopic cluster models present a wide range of appli-
cations. They are remarkably well suited to molecular states, which are known to be
strongly deformed, and present a marked cluster structure (see, for example, Refs.
[13, 38–40]). The physics of exotic nuclei, and in particular of halo nuclei, is rather
recent [41], and is also well described by cluster models. These nuclei are regarded
as a core surrounded by external nucleons moving at large distances [42], and can
be considered as cluster systems (see, for example, Refs. [43–45]). Unbound nuclei
are extreme applications of cluster models, well adapted to resonances [46]. Several
other applications, such as β decay [47] or charge symmetry in the Asymptotic
Normalization Constant [48], have also been analyzed within microscopic cluster
theories.

Microscopic cluster models have been also applied to various types of reactions:
elastic, inelastic, transfer, etc. At low energies, the wavelength associated with the
relative motion is large with respect to the typical dimensions of the system, and
antisymmetrization effects are expected to be important. Microscopic theories have
been widely applied in nuclear astrophysics (see e.g. [49, 50]), where measurements
in laboratories are in general impossible at stellar energies [51–53]. This includes
low-energy capture and transfer processes. Other nuclear reactions, such as nucleus–
nucleus bremsstrahlung [54], have been studied in microscopic approaches. Being
restricted to a limited number of cluster configurations (in general one), a microscopic
cluster model is well adapted to the spectroscopy of low-lying states, and to low-
energy reactions, where the level density and the number of open channels are limited.

It is of course impossible to provide an exhaustive bibliography of microscopic
cluster theories. Excellent reviews can be found, for example, in Refs. [16, 20, 32,
55–57]. The paper is organized as follows. In Sect. 1.2, we discuss effective nucleon–
nucleon interactions used in microscopic theories. In Sect. 1.3, we present the RGM
in simple conditions: we consider systems made of two spinless clusters. We present
an illustrative example with the α + n system. Section 1.4 is devoted to the GCM
and to its link with the RGM. In Sect. 1.5 we give more specific information on the
calculation of GCM matrix elements. In Sect. 1.6, we discuss some approximations
and reformulations of the RGM equations. Section 1.7 is devoted to extensions of
the model to multicluster and multichannel approaches. The treatment of scattering
states in the GCM framework is outlined in Sect. 1.8. We discuss some applications
of the RGM in Sect. 1.9. Concluding remarks are presented in Sect. 1.10.
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1.2 Choice of the Nucleon–Nucleon Interaction

In the A-body Hamiltonian (1.1.3), the nucleon–nucleon interaction vij must account
for the cluster approximation of the wave function. This leads to effective interactions,
adapted to harmonic-oscillator orbitals. For example, using 0s orbitals for the α

particle makes all matrix elements of non-central forces equal to zero. The effect of
non-central components is simulated by an appropriate choice of the central effective
interaction.

The nucleon–nucleon interaction contains Coulomb and nuclear terms and is
written as

vij(r) = vC
ij (r) + vN

ij (r), (1.2.1)

where the Coulomb term

vC
ij (r) = e2

r

(
1

2
− tiz

)(
1

2
− tjz

)
, (1.2.2)

is defined in the isospin formalism. For the nuclear term, most calculations performed
with the RGM use central vN,c

ij (r) and spin–orbit vN,so
ij (r) interactions with

vN
ij (r) = vN,c

ij (r) + vN,so
ij (r). (1.2.3)

In general, the central part is written as a combination of Ng Gaussian form factors

vN,c
ij (r) =

Ng∑

k=1

V0kexp(−(r/ak)
2)(wk − mkPσ

ij Pτ
ij + bkPσ

ij − hkPτ
ij). (1.2.4)

Other potentials, such as the M3Y force [58] are defined from Yukawa form factors.
However, the use of Gaussian form factors is well adapted to harmonic-oscillator
orbitals. Parameters V0k and ak are given in Table 1.1 for the Volkov V2 [59] and
Minnesota [60] interactions. Both forces contain one adjustable parameter (M and
u, respectively). The standard values are M = 0.6 and u = 1, but these parameters
can be slightly modified in order to reproduce an important property of the system.
A typical example is the energy of a resonance or of a bound state.

The Volkov interaction involves two Gaussian functions and does not depend
on spin and isospin (bk = hk = 0). With this force the deuteron binding energy
is underestimated and the dineutron system is bound with the same energy. The
Minnesota interaction [60] is defined by three different Gaussian functions. This force
reproduces the deuteron binding energy and some properties of nucleon–nucleon
scattering. It simulates the missing tensor force in the binding energy, as well as
possible three-body effects, through the central term. Of course, the quadrupole
moment of the deuteron, which is determined by the tensor force, is exactly zero
with the Minnesota interaction.
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Table 1.1 Amplitudes V0k (in MeV) and ranges ak (in fm) of the Volkov V2 and Minnesota inter-
actions

Interaction k V0k ak wk mk bk hk

Volkov V2 1 −60.65 1.80 1 − M M 0 0
2 61.14 1.01 1 − M M 0 0

Minnesota 1 200 1/
√

1.487 u/2 1 − u/2 0 0
2 −178 1/

√
0.639 u/4 1/2 − u/4 u/4 1/2 − u/4

3 −91.85 1/
√

0.465 u/4 1/2 − u/4 −u/4 u/4 − 1/2

In Ref. [40], we have extended the Volkov V2 interaction by introducing Bartlett
and Heisenberg components. This development was motivated by the need for more
flexible interactions, able to reproduce thresholds in transfer reactions. This force is
referred to as the EVI (Extended Volkov Interaction) interaction.

In most calculations a spin–orbit term is included. We take it as defined in
Ref. [61] (see also [60]),

vN,so
ij (r) = − S0

�2r5
0

(
(ri − rj) × (pi − pj)

) · (si + sj)exp
(−(r/r0)

2), (1.2.5)

where S0 is the amplitude (expressed in MeV.fm5), and si is the spin of nucleon i.
Standard values of S0 are S0 ≈ 30 MeV.fm5, which provides a fair approximation
of the 1/2− − 3/2− energy splitting in 15N. We use a range r0 = 0.1 fm, which is
equivalent to a zero-range force.

As mentioned earlier, cluster models make use of effective nucleon–nucleon
forces. In contrast, ab initio models [29, 62] aim at determining exact solutions
of the Schrödinger equation (1.1.1), without the cluster approximation. For instance,
the No-Core Shell Model (NCSM) is based on very large one-center harmonic-
oscillator (HO) bases and effective interactions [63], derived from realistic forces
such as Argonne [64] or CD-Bonn [65]. These interactions are adapted for finite
model spaces through a particular unitary transformation. Wave functions are then
expected to be accurate, but states presenting a strong clustering remain difficult
to describe with this model. Indeed, in spite of considerable advances in computer
facilities, the calculations remain limited by the size of the model space. Realistic
interactions are adjusted to reproduce properties of the nucleon–nucleon system with
a high precision. The necessity to introduce a 3N force or more (4N, ...) is now estab-
lished in order to get highly accurate spectra [66]. However, genuine expressions of
these potentials remain under study [66].
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1.3 The Resonating Group Method

1.3.1 The RGM Equation

Let us consider A nucleons with coordinates ri, assumed to be divided in two clusters
with A1 and A2 nucleons. The center of mass (c.m.) of each cluster is given by

Rcm,1 = 1

A1

A1∑

i=1

ri,

Rcm,2 = 1

A2

A∑

i=A1+1

ri,

(1.3.1)

which define the c.m. of the system Rcm, and the relative coordinate ρ as

Rcm = 1

A

(
A1Rcm,1 + A2Rcm,2

)
,

ρ = Rcm,2 − Rcm,1.

(1.3.2)

For each cluster, we define a set of translation-invariant coordinates

ξ1i = ri − Rcm,1 for i = 1, . . . , A1,

ξ2i = ri − Rcm,2 for i = A1 + 1, . . . , A.
(1.3.3)

The A1 and A2 sets of coordinates ξ1i and ξ2i are not independent since we have,
according to the definitions of Rcm,1 and Rcm,2,

A1∑

i=1

ξ1i =
A∑

i=A1+1

ξ2i = 0. (1.3.4)

In the RGM, the total wave function is based on internal cluster wave functions
φ1(ξ1i) and φ2(ξ2i). These internal wave functions are defined in the harmonic-
oscillator model with oscillator parameter b. Here, we always assume that the oscil-
lator parameter is common to all clusters. Going beyond this approximation intro-
duces serious technical problems due to spurious c.m. components (see for example
[16, 37, 67]). The RGM wave function is written, for two-cluster systems, as

Ψ (ξ1i, ξ2i, ρ) = A φ1(ξ1i)φ2(ξ2i)g(ρ), (1.3.5)

where g(ρ) is the relative wave function, to be determined from the Schrödinger
equation (1.1.1), and A the antisymmetrization operator

A =
A!∑

p=1

εpPp, (1.3.6)



8 P. Descouvemont and M. Dufour

where Pp is a permutation over the A nucleons and εp = ±1 is the sign of this permu-
tation. This operator not only acts inside the clusters, but also contains exchange terms
between them. With this definition, the antisymmetrization operator is not exactly a
projector since we have

A 2 = A!A . (1.3.7)

In Eq. (1.3.5), we do not include the spins of the clusters, neither the relative
angular momentum between the clusters. Definition (1.3.5) only contains one cluster
configuration or, in other words, a single arrangement of the nucleons. More gener-
ally, several cluster wave functions (1.3.5) can be combined to improve the total wave
function of the system. Here we limit ourselves to this simple case, for the sake of
clarity. Various extensions will be developed in Sect. 1.7.

At first glance, the RGM wave function may appear as suitable for cluster states
only, where the cluster approximation is obvious. However, owing to the antisym-
metrization operator A , the RGM (and the equivalent GCM described in Sect. 1.4)
can be also applied to non-cluster states, such as shell-model or single-particle states
[56].

Another remarkable advantage of the RGM wave function (1.3.5) is its direct
applicability to scattering states. The main issue for scattering is to treat the asymp-
totic behaviour of the wave functions. At large relative distances between the colliding
nuclei, antisymmetrization effects are negligible and the factorization (1.3.5) is exact
without the antisymmetrization operator. This property is one of the main advantages
of the RGM with respect to other microscopic approaches, such as the shell model or
the FMD, where the treatment of scattering states is a serious problem, in particular
to go beyond nucleon+nucleus scattering [68].

To derive the relative wave function g(ρ), let us rewrite Eq. (1.3.5) as

Ψ = A φ1φ2g(ρ) =
∫

A φ1φ2δ(ρ − r)g(r)dr, (1.3.8)

where r is a parameter on which operator A does not act, and where the internal
coordinates are implied. Then, using (1.3.8) in the Schrödinger equation (1.1.1)
provides the RGM equation

∫ [
H (ρ, ρ′) − ET N (ρ, ρ′)

]
g(ρ′)dρ′ = 0. (1.3.9)

In this equation, N and H are the (non-local) overlap and Hamiltonian kernels
defined as

{
N (ρ, ρ′)
H (ρ, ρ′)

}
= 〈φ1φ2δ(ρ − r)|

{
1
H

}
|A φ1φ2δ(ρ

′ − r)〉, (1.3.10)

where the integrals are performed over the internal coordinates and over the relative
coordinate r. In the Hamiltonian operator H, the kinetic energy of the center of mass
(c.m.) has been subtracted. Accordingly ET is defined with respect to the c.m. energy.
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The RGM equation (1.3.9) can be simplified further by rewriting A and H as

A = 1 + A ′

H = H1 + H2 + H ′,
(1.3.11)

where A ′ only contains exchange terms, H1 and H2 are the internal Hamiltonians
of the clusters, and H ′ is given by

H ′ = − �
2

2μ
�ρ +

A1∑

i=1

A∑

j=A1+1

vij, (1.3.12)

μ being the reduced mass μ = μ0mN with μ0 = A1A2/(A1 + A2). The internal
energies E1 and E2 are given by

Ei = 〈φi|Hi|φi〉, (1.3.13)

and the relative energy E is

E = ET − E1 − E2. (1.3.14)

In these conditions, kernels (1.3.10) can be expressed as

N (ρ, ρ′) = δ(ρ − ρ′) + NE(ρ, ρ′)

H (ρ, ρ′) =
(

− �
2

2μ
�ρ + VD(ρ) + E1 + E2

)
δ(ρ − ρ′) + HE(ρ, ρ′)

(1.3.15)

where NE and HE are the exchange kernels, and where the direct potential VD is
given by

VD(ρ) = 〈φ1φ2|
A1∑

i=1

A2∑

j=1

vij|φ1φ2〉. (1.3.16)

The RGM equation (1.3.9) is finally written as
(

− �
2

2μ
�ρ + VD(ρ)

)
g(ρ) +

∫
K(ρ, ρ′)g(ρ′)dρ′ = Eg(ρ), (1.3.17)

with

K(ρ, ρ′) = HE(ρ, ρ′) − ET NE(ρ, ρ′). (1.3.18)

Equation (1.3.17) is the standard form of the RGM equation. It can be solved by
different techniques (see for example [69]). The non-local term (1.3.18) is energy
dependent and arises from exchange effects in the antisymmetrization operator
(1.3.11). If A ′ = 0, i.e. if antisymmetrization is neglected, the kernels NE and
HE are equal to zero. In this simple approximation, the RGM equation is local and
only involves the direct potential VD.
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1.3.2 Example: Overlap Kernel of the α+n System

This simple example illustrates the calculation of the overlap kernel. The extension
to the Hamiltonian kernels is given in [70]. Let us consider the α and neutron internal
wave functions

φ1 = Φα(ξ1, ξ2, ξ3)|n1 ↓ n1 ↑ p1 ↓ p1 ↑>

φ2 = |n2 ↓>,
(1.3.19)

where we have factorized the space and spin/isospin components. The spatial compo-
nent Φα of the α-particle wave function is built from 0s oscillator orbitals with
parameter ν = 1/2b2. In the coordinate system (1.3.3) it is given as

Φα(ξ1, ξ2, ξ3) = 1

N
exp(−ν

4∑

i=1

ξ2
i ), (1.3.20)

with the normalization factor defined by

〈Φα | Φα〉 = 1

= 1

N2

∫ ∫ ∫
exp
(
−2ν

(
ξ2

1+ξ2
2+ξ2

3 + (ξ1 + ξ2 + ξ3)
2)) dξ1dξ2dξ3

= 1

N2

(
π3

32ν3

)3/2

.

(1.3.21)
Notice that the internal wave function (1.3.20) only depends on three independent
coordinates [see Eqs. (1.3.3, 1.3.4)]. Coordinate ξ4 is defined from (1.3.4).

Since we assume that the external neutron has a spin down, only the exchange
operator P15 between nucleons 1 and 5 contributes in the antisymmetrization operator
(1.3.6). Applying P15 on the internal and relative coordinates provides

P15ξ1 = 3

4
ρ + 1

4
ξ1,

P15ξ2 = −1

4
ρ + 1

4
ξ1 + ξ2,

P15ξ3 = −1

4
ρ + 1

4
ξ1 + ξ3,

P15ρ = −1

4
ρ + 5

4
ξ1. (1.3.22)

A simple calculation leads to

P15Φαδ(ρ − r) = Φαexp

[
−4ν

5

(
r2 − (P15ρ)2)

]
δ(P15ρ − r), (1.3.23)

and the exchange overlap kernel is deduced from (1.3.15) as
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NE(ρ, ρ′) = −
∫ ∫ ∫ ∫

drdξ1dξ2dξ3Φα(ξ1, ξ2, ξ3)

× δ(ρ − r)P15Φα(ξ1, ξ2, ξ3)δ(ρ
′ − r).

(1.3.24)

The integral is first performed over r. Then, integration over ξ2 and ξ3 provides

∫
|Φα(ξ1, ξ2, ξ3)|2dξ2dξ3 =

(√
3π

6ν

)3

exp

(
−8ν

3
ξ2

1

)
. (1.3.25)

This gives, by integrating over ξ1 and using the delta function in (1.3.23),

NE(ρ, ρ′) = −
(

4

5

)3 ( 8ν

3π

)3/2

exp

[
−4ν

75
(17ρ2 + 17ρ′2 + 16ρ · ρ′)

]
. (1.3.26)

This result can be also found in Refs. [70, 71] for example (see also Ref. [72]). Of
course it does not depend on the spin and isospin of the external nucleon.

1.4 The Generator Coordinate Method

1.4.1 Introduction

The main problem associated with the RGM is not to solve the integro-differential
equation (1.3.17). This can be done, for example, by using finite-difference methods
[73], or the Lagrange-mesh technique [69, 74]. In contrast, the determination of the
overlap and Hamiltonian kernels (1.3.10) requires heavy analytical calculations, in
particular for systems involving p-shell clusters. The non-systematic character of the
RGM makes it quite difficult to apply in multicluster systems or in multichannel
problems.

This limitation received an efficient solution with the introduction of the Generator
Coordinate Method [16, 32, 75]. The idea underlying the GCM is to expand the radial
function g(ρ) (1.3.5) over Gaussian functions, centered at different locations, called
the generator coordinates. This expansion allows to express the total wave function
(1.3.5) as a superposition of Slater determinants. The RGM and the GCM methods
are therefore equivalent, but the use of Slater determinants makes the GCM better
adapted to numerical calculations. The GCM has been applied, in the last decades,
to many nuclei or reactions. In particular the spectroscopy of exotic nuclei [45, 76],
and reactions of astrophysical interest [77] have been investigated.
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1.4.2 Slater Determinants and GCM Basis Functions

Let us consider a one-center Slater determinant Φ1(S) built from A1 orbitals. All
orbitals are centered at a common location S as

Φ1(S) = 1√
A1!

det
{
ϕ̂1(S) . . . ϕ̂A1(S)

} = 1√
A1!

A ϕ̂1(S) . . . ϕ̂A1(S), (1.4.1)

where the individual orbitals ϕ̂i(S) are factorized in space, spin and isospin compo-
nents. Each function ϕ̂i(S) is therefore defined as

ϕ̂i(S) = ϕi(r, S)|msi 〉|mti〉, (1.4.2)

where |msi 〉 is a spinor and |mti〉 the isospin function. In this definition, the space, spin
and isospin coordinates are implied. The radial part ϕi(r, S) is an harmonic-oscillator
function, normalized to unity [78]. For s waves, it reads

ϕi(r, S) = ϕ0s(r, S) = (πb2)−3/4exp

(
− (r − S)2

2b2

)
. (1.4.3)

The parameter v and oscillator energy �ω are related to the oscillator parameter b as

v =1/2b2

�ω = �
2

mN b2 .
(1.4.4)

For p waves, the radial functions are

ϕi(r, S) = ϕ1pμ(r, S) =
√

2

b
(rμ − Sμ)ϕ0s(r, S), (1.4.5)

where index μ corresponds to the Cartesian coordinates (x,y,z). In the following we
do not explicitly write the labels 0s or 1pμ to the nucleon orbitals. We assume that
all orbitals have a common oscillator parameter and are all centered at the same
location. This is different from the AMD or FMD, where the oscillator parameters
are optimized individually for each nucleon.

A drawback of the internal wave function (1.4.1) is that it is not invariant under
translation. However, the Slater determinant (1.4.1) can be rewritten as

Φ1(S) = exp

(
− A1

2b2 (Rcm,1 − S)2
)

φ1, (1.4.6)

where φ1 is the translation-invariant function defined in Sect. 1.3.1, and where Rcm,1
is the c.m. coordinate (1.3.1) of the system. The factorization (1.4.6) is known as the
Bethe and Rose theorem [79], and assumes that all shells below some maximum are
included in the Slater determinant (1.4.1).
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Let us now consider a two-center wave function defined from two cluster functions
(1.4.1) located at S1 and S2. The generator coordinate is defined as R = S2 − S1.

We choose the origin of the system along the axis between S1 and S2. The location
of the origin is therefore defined by a parameter λ (with 0 ≤ λ ≤ 1). Typical values
are λ = 0 which corresponds to the center of cluster 1, and λ = A2/A, where the
origin is located at the center of mass. We define the two-cluster Slater determinant
as

Φ(R) = 1√
A! det

{
ϕ̂(−λR) . . . ϕ̂A1(−λR)ϕ̂A1+1((1 − λ)R) . . . ϕ̂A((1 − λ)R)

}
,

= 1√
N0

A Φ1(−λR)Φ2((1 − λ)R), (1.4.7)

where the nucleon coordinates are implied. The normalization factor N0 = A!
A1!A2!

stems from property (1.3.7). This Slater determinant is built with A1 orbitals at
−λR and A2 orbitals at (1 − λ)R. Definition (1.4.7) can be directly extended to
more than two clusters [21, 32, 80]. Obviously this basis function is not invariant
under translation. However, by using the factorization (1.4.6) for both clusters, and
assuming a common oscillator parameter b, Eq. (1.4.7) can be rewritten as

Φ(R) = 1√
N0

ΦcmA φ1φ2Γ (ρ, R), (1.4.8)

which involves the translation-invariant functions φ1 and φ2. The c.m. and radial
wave functions read

Φcm(Rcm) =
(

A

πb2

)3/4

exp

(
− A

2b2

[
Rcm + R(λ − A2/A)

]2
)

,

Γ (ρ, R) =
( μ0

πb2

)3/4
exp
(
− μ0

2b2 (ρ − R)2
)

. (1.4.9)

The c.m. and radial coordinates are therefore uncoupled. The associated func-
tions are simple Gaussian functions with oscillator parameters b/

√
A and b/

√
μ0,

respectively. This factorization of the c.m. motion greatly simplifies the calculation
of GCM matrix elements. Let us express the Slater determinant (1.4.7) as

Φ(R) = ΦcmΦ̄(R), (1.4.10)

where Φ̄(R) is a physical basis function, independent of the c.m. coordinate. Func-
tions Φ(R), on the contrary, contain spurious c.m. components, but are well adapted
to a numerical calculation since they are Slater determinants. Using (1.4.10), we have

〈Φ(R)|Φ(R′)〉 = 〈Φcm|Φcm〉〈Φ̄(R)|Φ̄(R′)〉, (1.4.11)
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with

〈Φcm|Φcm〉 = exp

(
−A(λ − A2/A)2

4b2 (R − R′)2
)

. (1.4.12)

The overlap between basis functions Φ̄(R) is therefore obtained from a matrix
elements between Slater determinants, corrected by a simple c.m. factor. Notice that
both c.m. functions in the matrix elements (1.4.12) may involve different generator
coordinates.

Matrix elements between GCM basis states Φ̄(R) should not depend on λ. This
provides a strong test of the calculations. The choice λ = A2/A, i.e. taking the origin
at the center of mass, is commonly used since c.m. correction factors are trivial.
Another choice adopted in the literature is λ = 0, where all orbitals are centred at
the origin of cluster 1. If the orbitals of the external clusters are orthogonalized to the
core orbitals [32, 81], the calculation of matrix elements is strongly simplified (see
Sect. 1.5). This technique is quite efficient when the core is a closed-shell nucleus
(α,16 O, 40Ca, etc.) and is surrounded by 0s orbitals (see for example Ref. [82] for
the 16O+3He+p three-cluster system).

Matrix elements of other operators should account for the spurious c.m. contribu-
tion. Garthenaus and Schwartz [83] have shown that the removal of the c.m. compo-
nent of the wave function can be achieved by using transformed operators, obtained
by a modification of the space and momentum coordinates as

ri −→ ri − Rcm

pi −→ pi − 1

A
Pcm, (1.4.13)

where Pcm is the c.m. momentum. The transformation-invariant forms of the kinetic
energy and of the r.m.s. radius are therefore

T −→ T − Tcm =
∑

i

p2
i

2mN
− Tcm,

< r2 >−→< r2 > −R2
cm = 1

A

∑

i

r2
i − R2

cm, (1.4.14)

and the c.m. matrix elements take the simple forms

〈Φcm |Tcm| Φcm〉 = 1

4
�ω

(
3 − A(λ − A2/A)2

2b2 (R − R′)2
)

〈Φcm|Φcm〉

〈Φcm

∣∣∣R2
cm

∣∣∣Φcm〉 =
(

3

2
b2 + (λ − A2/A)2

4
(R + R′)2

)
〈Φcm|Φcm〉. (1.4.15)

A similar calculation can be performed for the electric operators of rank L [84].
At the long-wavelength approximation, the translation-invariant form is defined as
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M E
LM = e

∑

i

(
1

2
− tiz

)
|ri − Rcm|LYM

L (Ωri−Rcm). (1.4.16)

This operator can be expanded as [78]

M E
LM =

∑

k

(
4π(2L + 1)!

(2k + 1)!(2L − 2k + 1)!
)1/2 [

M E
L−k(ri) ⊗ M E

k (Rcm)
]LM

,

(1.4.17)
where M E

L−k(ri) is defined from (1.4.16) and where the c.m. contributions read

M E
km(Rcm) = Rk

cmYm
k (ΩRcm). (1.4.18)

Matrix elements can be obtained as in (1.4.15). However, the calculation of additional
multipoles (k < L) can be avoided by choosing λ = A2/A or, in other words, by
taking the c.m. as origin of the coordinate system. In that case, only k=0 contributes in
the matrix elements of (1.4.17) and the c.m. correction is trivial. Similar developments
can be performed for magnetic multipoles [85].

The factorization of the internal wave functions and of the radial part makes GCM
basis functions (1.4.8) well adapted to collisions (see Sect. 1.8). If the oscillator
parameters of the clusters are different, the removal of the spurious c.m. components
is however a delicate problem [16, 86]. This can be tackled by using the Complex
GCM [16]. In this variant the generator coordinate R is complex. The calculation of
matrix elements is very similar, but the imaginary part provides an efficient tool to
deal with different oscillator parameters of the clusters.

1.4.3 Equivalence Between RGM and GCM

In the two-cluster approximation, the total wave function of a system is defined as a
superposition of GCM basis functions

Ψ = Φ−1
cm

∫
f (R)Φ(R)dR, (1.4.19)

where f (R) is the generator function, to be determined from the microscopic Hamil-
tonian (1.1.3) According to Eq. (1.4.8), wave functionΨ is invariant under translation.
Using (1.4.8), wave function (1.4.19) reads

Ψ = A φ1φ2g(ρ), (1.4.20)

with

g(ρ) =
∫

f (R)Γ (ρ, R)dR, (1.4.21)

which shows the equivalent between the RGM and the GCM. The generator function
is obtained from the Hill–Wheeler equation [87]
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∫ [
H(R, R′) − ET N(R, R′)

]
f (R′)dR′ = 0, (1.4.22)

where the GCM kernels are given by

{
N(R, R′)
H(R, R′)

}
= 〈Φ̄(R)|

{
1
H

}
|Φ̄(R′)〉, (1.4.23)

and where c.m. components have been removed. In practice the integral in (1.4.21)
is discretized over a finite set of Rn values as

g(ρ) ≈
∑

n

f (Rn)Γ (ρ, Rn). (1.4.24)

For bound states, the integral equation (1.4.22) is therefore replaced by the diago-
nalization of a matrix (typically 10 Rn values are used). The treatment of scattering
states requires an additional tool to correct for the Gaussian asymptotic behaviour of
the relative function (1.4.24). This will be developed in Sect. 1.8.

The calculation of matrix elements between Slater determinants is well known
[4] and will be discussed in Sect. 1.5 (see also Refs. [32, 67] for further detail). The
RGM and GCM kernels [(1.3.10) and (1.4.23), respectively] can be linked to each
other by integral transforms [32, 67, 88].

1.4.4 Two-Cluster Angular-Momentum Projection

Let us consider the partial-wave expansion of the GCM basis states (1.4.7)

Φ(R) = 4π
∑

�m

Φ�m(R)Ym∗
� (ΩR). (1.4.25)

Notice that the overall normalization does not play a role, and can be chosen freely
as long as it is consistently used in the calculation of the matrix elements. We use
the expansion of (1.4.9)

Γ (ρ, R) = 4π
∑

�m

Γ�(ρ, R)Ym
� (Ωρ)Ym∗

� (ΩR),

Γ�(ρ, R) =
( μ0

πb2

)3/4
exp
[
− μ0

2b2 (ρ2 + R2)
]

i�

(
μ0ρR

b2

)
, (1.4.26)

where i�(x) is a spherical Bessel function [89]. Then Eqs. (1.4.8) and (1.4.25) provide

Φ�m(R) = 1√
N0

A φ1φ2Γ�(ρ, R)Ym
� (Ωρ) (1.4.27)
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and the total wave function reads

Ψ �m =
∫

f�(R)Φ�m(R)dR. (1.4.28)

The generator function f�(R) is obtained from the Hill–Wheeler equation involving
projected GCM kernels

∫ [
H�(R, R′) − ET N�(R, R′)

]
f�(R

′)dR′ = 0. (1.4.29)

The projected overlap kernel N�(R, R′) is derived from the expansion

N(R, R′) = 〈Φ(R)|Φ(R′)〉
= (4π)2

∑

�m

〈Φ�(R)|Φ�(R
′)〉Ym

� (ΩR)Ym∗
� (ΩR′)

= 4π
∑

�

(2� + 1)〈Φ�(R)|Φ�(R
′)〉P�(cos θ),

(1.4.30)

where θ is the angle between R and R′. Then, by inverting (1.4.30), we find

N�(R, R′) = 〈Φ�(R)|Φ�(R
′)〉 = 1

8π

∫ π

0
N(R, R′)P�(cos θ)d cos θ, (1.4.31)

and a similar equation holds for the Hamiltonian kernel H�(R, R′). Since N(R, R′)
and H(R, R′) only depend on the relative angle θ, the orientation of one generator
coordinate can be chosen arbitrarily. A common choice is to take R along the z axis,
and R′ in the xz plane. The integration over θ can be performed numerically with a
Gauss–Legendre quadrature, or analytically in some simple cases.

For two-clusters systems, the projection over parity is automatic since the angular-
momentum projection provides

π = (−1)�. (1.4.32)

1.5 Matrix Elements Between Slater Determinants

1.5.1 General Presentation

Let us consider a system of A orbitals ϕ̂i(Sn) distributed among N clusters. The set of
cluster locations is denoted as S{N}. As mentioned in (1.4.2) the individual orbitals
involve space, spin and isospin components as

ϕ̂i(Sn) = |ϕi(r, Sn)〉|msi〉|mti〉, (1.5.1)
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Fig. 1.1 Typical two-cluster
(α + n) and three-cluster
(16O+3He+p)

configurations. The crosses
indicate the c.m. location
within the generator
coordinates

where ϕi(r, Sn) is an harmonic-oscillator function. Most calculations are performed
with 0s orbitals, but the presentation is more general; explicit definitions of s and p
orbitals are given by (1.4.3) and (1.4.5). The A-nucleon Slater determinant reads

Φ(S{N}) = 1√
A! det{ϕ̂1(S1) . . . ϕ̂A(SN )}. (1.5.2)

For example, the α + n system involves four s orbitals at S1 = −R/5, and one 0s
orbital at S2 = 4R/5. The 19Ne+p system, with 19Ne described as 16O+3He [82],
involves four 0s and twelve 1p orbitals at S1 = −R1/20 − 3R2/19, three 0s orbitals
at S2 = −R1/20 + 16R2/19, and one 0s orbital at S3 = 19R1/20 (see Fig. 1.1).

The calculation of matrix elements between Slater determinants (1.5.2) is rather
simple and systematic. We present here a short overview of the method, but more
detail can be found in Refs. [4, 32]. The overlap is given by

〈Φ(S{N})|Φ(S′{N})〉 = 1

A! 〈A ϕ̂1(S1) . . . ϕ̂A(SN ) | A ϕ̂1(S′
1) . . . ϕ̂A(S′

N )〉
= 〈ϕ̂1(S1) . . . ϕ̂A(SN ) | A ϕ̂1(S′

1) . . . ϕ̂A(S′
N )〉

= 〈ϕ̂1(S1) . . . ϕ̂A(SN ) | det ϕ̂1(S′
1) . . . ϕ̂A(S′

N )〉
= det B, (1.5.3)

where we have used (1.3.7), and where matrix B is given by the individual overlaps
as

Bij = 〈ϕ̂i(Si)|ϕ̂j(S′
j)〉. (1.5.4)

For one-body operators O1 written as

O1 =
A∑

i=1

o1(ri), (1.5.5)

a matrix element between Slater determinants reads
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〈O1〉 = 〈Φ(S{N})|O1|Φ(S′{N})〉

=
A∑

ij=1

Mij〈ϕ̂i(Si)|o1|ϕ̂j(S′
j)〉

= det B
A∑

ij=1

(
B−1

)

ji
〈ϕ̂i(Si)|o1|ϕ̂j(S′

j)〉 if det B 
= 0, (1.5.6)

where Mij is a cofactor of matrix B. It is obtained from the determinant of B after
removal of column i and line j, and multiplication by a phase factor (−1)i+j. If
det B 
= 0, we have

Mij = det B
(

B−1
)

ji
. (1.5.7)

One-body matrix elements therefore involve a double sum over the individual
orbitals. Here and in the following, we assume det B 
= 0, but the generalization
is straightforward. Typical examples of one-body operators are the kinetic energy,
the r.m.s. radius, and the electromagnetic operators.

For a two-body operators O2 such as the nucleon–nucleon interaction

O2 =
A∑

i>j=1

o2(ri, rj) = 1

2

A∑

i 
=j=1

o2(ri, rj), (1.5.8)

a matrix element reads

〈O2〉 = 〈Φ(S{N})|O2|Φ(S′{N})〉

= 1

2

A∑

ijkl=1

Mij,kl〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂k(S′
k)ϕ̂l(S′

l)〉, (1.5.9)

where Mij,kl is a second-order cofactor of matrix B. For det B 
= 0, we have

Mij,kl = det B
[(

B−1
)

ki

(
B−1

)

lj
−
(

B−1
)

kj

(
B−1

)

li

]
. (1.5.10)

In addition since the individual matrix elements satisfy the symmetry property

〈ϕi(Si)ϕj(Sj)|o2|ϕk(S′
k)ϕl(S′

l)〉 = 〈ϕj(Sj)ϕi(Si)|o2|ϕl(S′
l)ϕk(S′

k)〉, (1.5.11)

the following definitions are equivalent:



20 P. Descouvemont and M. Dufour

〈O2〉 =1

2
det B

A∑

ijkl=1

[(
B−1

)

ki

(
B−1

)

lj
−
(

B−1
)

kj

(
B−1

)

li

]

× 〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂k(S′
k)ϕ̂l(S′

l)〉

=1

2
det B

A∑

ijkl=1

(
B−1

)

ki

(
B−1

)

lj

[〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂k(S′
k)ϕ̂l(S′

l)〉

− 〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂l(S′
l)ϕ̂k(S′

k)〉 ] . (1.5.12)

They involve a quadruple sum over the individual orbitals. In practice the two-body
matrix elements represent the main part of the computer time. Further extensions
to three-body forces can be done, but the corresponding matrix elements involve
sextuple sums overs the individual orbitals.

1.5.2 Spin and Isospin Factorization

In Eq. (1.5.1) it is assumed that the individual orbitals are characterized by spin and
isposin projections (ms = ±1/2, mt = ±1/2). In that case, the overlap matrix B
takes the simpler form

B =

⎛

⎜⎜⎝

Bn↓
Bn↑

Bp↓
Bp↑

⎞

⎟⎟⎠ , (1.5.13)

involving (smaller) submatrices corresponding to the nucleon types. The individual
orbitals have been reordered in four groups corresponding to the spin and isospin
values (notice that a phase factor (−1) may appear in the wave function when
reordering the orbitals). The overlap (1.5.3) is then factorized as

det B =
4∏

k=1

det Bk,

Bk
ij = 〈ϕi(Si)|ϕj(S′

j)〉, (1.5.14)

where only the spatial parts of the wave functions are involved [see Eq. (1.5.1)]. In
this definition, index k corresponds to the four spin/isospin projections. This means
that the calculation is much faster than by using the full matrix. In many cases some
of the matrices Bk are identical (for example in nα systems such as 8Be or 12C, the
four matrices Bk are identical), which still simplifies the calculations.

If the one-body operator O1 does not depend on spin and isospin (as for the kinetic
energy for example), its matrix element (1.5.6) is simplified to
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Table 1.2 Direct and exchange coefficients (k1 ≥ k2) for the nuclear (central), Coulomb and spin–
orbit interactions

k1 k2 Ak1k2
D Ck1k2

D Sk1k2
D Ak1k2

E Ck1k2
E Sk1k2

E
1 Pσ Pτ Pσ Pτ 1 Pσ Pτ Pσ Pτ

n ↓ n ↓ 1 1 1 1 0 −1 1 1 1 1 0 −1
n ↓ n ↑ 1 0 0 1 0 0 0 1 1 0 0 0
n ↓ p ↓ 1 0 1 0 0 −1 0 1 0 1 0 0
n ↓ p ↑ 1 0 0 0 0 0 0 1 0 0 0 0
n ↑ n ↑ 1 1 1 1 0 1 1 1 1 1 0 1
n ↑ p ↓ 1 0 0 0 0 0 0 1 0 0 0 0
n ↑ p ↑ 1 0 1 0 0 1 0 1 0 1 0 0
p ↓ p ↓ 1 1 1 1 1 −1 1 1 1 1 1 −1
p ↓ p ↑ 1 0 0 1 1 0 0 1 1 0 0 0
p ↑ p ↑ 1 1 1 1 1 1 1 1 1 1 1 1

〈O1〉 = det B
4∑

k=1

∑

ij

(
Bk)−1

ji 〈ϕi(Si)|o1|ϕj(S′
j)〉, (1.5.15)

where the spin and isospin components of the individual orbitals have been taken out.
The number of terms in the summations over ij of course depends on the spin/isposin
index k.

Two-body operators in general depend on spin and isospin, but Eq. (1.5.9) can
also be simplified. Let us consider a central nucleon–nucleon interaction defined by
Eq. (1.2.4). The matrix elements (1.5.9) and (1.5.12) can be written as

〈VN,c〉 = 1

2
det B

4∑

k1,k2=1

∑

ijkl

(
Bk1
)−1

ki

(
Bk2
)−1

lj

×
[
Ak1k2

D 〈ϕi(Si)ϕj(Sj)|v|ϕk(S′
k)ϕl(S′

l)〉
− Ak1k2

E 〈ϕi(Si)ϕj(Sj)|v|ϕl(S′
l)ϕk(S′

k)〉 ] , (1.5.16)

where v is a Gaussian form factor, and where the direct and exchange coefficients
Ak1k2

D and Ak1k2
E are defined for each operator in (1.2.4). They are given in Table 1.2,

as well as the corresponding coefficients Ck1,k2
D and Ck1,k2

E arising from the Coulomb
interaction (1.2.2). Notice that these coefficients satisfy the symmetry properties

Ak2k1
D = Ak1k2

D , Ak2k1
E = Ak1k2

E , (1.5.17)

and equivalent relations hold for the Coulomb potential. Summations (1.5.16) can
therefore be simplified.
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1.5.3 The Spin–Orbit Interaction

Potentials considered in the previous section are scalar operators with respect to the
spin. For two nucleons coupled to spin S = 0 or 1 and projection MS, the application
of the Wigner–Eckart theorem gives

〈SMS|VN,c|S′M ′
S〉 = 〈S||VN,c||S′〉δSS′δMSM ′

S
, (1.5.18)

where the reduced matrix element 〈S||VN,c||S′〉 does not depend on the spin projec-
tions. The spin–orbit potential is a rank-1 operator, and the previous property does not
hold anymore. The calculation of the matrix elements is therefore more complicated
since the overlap between wave functions with different spins is zero.

Let us consider the scalar product involved in the spin–orbit potential (1.2.5)

L · S = LzSz + (S+L− + S−L+)/2. (1.5.19)

Since Sz does not change the spin of the a nucleon pair, the contribution of LzSz can
be determined as in (1.5.16)

〈LzSzexp(−(
r

r0
)2)〉 = 1

2
det B

∑

k1,k2

∑

ijkl

(
Bk1
)−1

ki

(
Bk2
)−1

lj

×
[

Sk1k2
D 〈ϕi(Ri)ϕj(Rj)|Lzexp(−(

r

r0
)2)|ϕk(Rk)ϕl(Rl)〉

−Sk1k2
E 〈ϕi(Ri)ϕj(Rj)|Lzexp(−(

r

r0
)2)|ϕl(Rl)ϕk(Rk)〉

]
,

(1.5.20)
where coefficients Sk1k2

D and Sk1k2
E are given in Table 1.1. The matrix elements of

S+L− and S−L+ must be computed with the more general formula (1.5.9).

1.5.4 Matrix Elements Between Individual Orbitals

We give here matrix elements for 0s orbitals [32], and then discuss how to derive
matrix elements involving higher shells. As mentioned previously we assume that all
orbitals have the same oscillator parameter b. Notation ϕi corresponds to a 0s orbital
centred at Ri.

The overlap, kinetic energy and r.m.s radius are given by

〈ϕi|ϕj〉 = Bij = exp

(
− (Ri − Rj)

2

4b2

)
,

〈ϕi| − �
2

2mN
�|ϕj〉 = �ω

[
3

4
− (Ri − Rj)

2

8b2

]
Bij,

〈ϕi|r2|ϕj〉 =
[

3

2
b2 + (Ri + Rj)

2

4

]
Bij. (1.5.21)
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For a Gaussian form factor and for the Coulomb interaction we have

〈ϕiϕj|exp(− (r1 − r2)
2

a2 )|ϕkϕl〉 =
(

a2

a2 + 2b2

)3/2

exp

(
− 2b2

a2 + 2b2 P2
)

BikBjl,

(1.5.22)
and

〈ϕiϕj| 1

|r1 − r2| |ϕkϕl〉 = 1√
2b

erf(P)

P
BikBjl, (1.5.23)

where vector P is defined as

P = 1

2
√

2b
(Ri − Rj + Rk − Rl). (1.5.24)

For the spin–orbit potential, we need the matrix elements

〈ϕiϕj|exp(− (r1 − r2)
2

r2
0

)Lμ|ϕkϕl〉 = − i

4b2

r2
0

r2
0 + 2b2

[
(Ri − Rj) × (Rk − Rl)

]
μ

× 〈ϕiϕj|exp(− (r1 − r2)
2

r2
0

)|ϕkϕl〉,
(1.5.25)

where μ = −1, 0, 1. The combination of (1.2.5), (1.5.22) and (1.5.25) shows that
the factors involving r0 cancel out in the final matrix element of the spin–orbit
interaction.Matrix elements involving p orbitals can be obtained by rewriting (1.4.5)
as

ϕpμ(r, R) = √
2b

d

dRμ

ϕs(r, R). (1.5.26)

The corresponding matrix elements are therefore obtained by differentiation of 0s
matrix elements with respect to the generator coordinate R. Another approach is
to expand harmonic-oscillator orbitals in a Cartesian basis. Matrix elements in this
basis can be computed by recurrence relations [90]. In practice the latter technique
is the most efficient to include orbitals beyond the p shell.

1.5.5 Example: α + n Overlap Kernel

In this section we present an illustrative example with the α + n system, treated in a
way which is adopted in numerical calculations. Similar developments are presented
in Ref. [31] for the α+α system. More general results, obtained for systems involving
an α particle and an s-shell cluster will be given in the next subsection. The α particle
is built with four 0s orbitals, whereas the external neutron can have a spin up or
down. As long as the interaction does not depend on the spin, both projections are
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not coupled.As in Sect. 1.3.2, we define a Slater determinant with ms = −1/2 for
the external neutron. The GCM basis function (1.4.7) is explicitly written as

Φ(R) = 1√
5! × det{ϕ0s(−R

5
)n ↓ ϕ0s(−R

5
)n ↑

ϕ0s(−R
5

)p ↓ ϕ0s(−R
5

)p ↑ ϕ0s(
4R
5

)n ↓}, (1.5.27)

where we use λ = 1/5, which makes the c.m. factor (1.4.12) equal to unity. The
overlap between two Slater determinants (1.5.27) is therefore given by

N(R, R′) = 〈Φ(R)|Φ(R′)〉 =

∣∣∣∣∣∣∣∣∣∣

B11 B12 0 0 0
B21 B22 0 0 0
0 0 B11 0 0
0 0 0 B11 0
0 0 0 0 B11

∣∣∣∣∣∣∣∣∣∣

= B3
11(B11B22 − B12B21), (1.5.28)

with

B11 = 〈ϕ0s(−1

5
R)|ϕ0s(−1

5
R′)〉

B12 = 〈ϕ0s(−1

5
R)|ϕ0s(

4

5
R′)〉

B21 = 〈ϕ0s(
4

5
R)|ϕ0s(−1

5
R′)〉

B22 = 〈ϕ0s(
4

5
R)|ϕ0s(

4

5
R′)〉. (1.5.29)

Using the single-particle overlap (1.5.21), we find

N(R, R′) = exp

(
− (R − R′)2

5b2

)[
1 − exp

(
−R · R′

2b2

)]
. (1.5.30)

The first term is the direct contribution, which stems from the diagonal of the overlap
matrix. The second term is responsible for exchange effects, and is negligible at large
distances. When R (or R′) tends to zero, the Slater determinant (1.5.27) vanishes
since two rows or columns are identical. This property is a consequence of the Pauli
principle, and the total overlap (1.5.30) also vanishes.

In this simple example, projection over angular momentum is directly obtained
from definition (1.4.31) as

N�(R, R′) = 1

4π
exp

(
−R2 + R′2

5b2

)[
i�

(
2RR′

5b2

)
− (−1)�i�

(
RR′

10b2

)]
. (1.5.31)
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1.5.6 GCM Kernels of α + N Systems

In this section we present analytical expressions for α + N GCM kernels, where N
is a 0s shell nucleus (with A2 nucleons). An extension to systems involving an 16O
core is given in Ref. [81]. As shown by Horiuchi [32] (see also Ref. [88]), the overlap
kernel takes the general form

N(R, R′) =
A2∑

n=0

Nnfn(R, R′), (1.5.32)

with

fn(R, R′) = exp
(
−μ0v

2
(R − R′)2 − nvR · R′) , (1.5.33)

and v = 1/2b2. Index n in (1.5.32) can be interpreted as the number of exchanged
terms. The overlap kernel is therefore entirely determined from a set of integer
numbers Nn. They can be obtained from algebraic calculations.

For the symmetric α + α system (μ0 = 2), functions fn must be symmetrized as

fn(R, R′) → 1

2

(
fn(R, R′) + fn(R,−R′)

)
, (1.5.34)

which shows that terms corresponding to n and 4 − n are equivalent in expansion
(1.5.32). After expansion on angular momentum, the symmetrized definition (1.5.34)
involves even partial waves only.

For systems involving 0s-shell orbitals, the kinetic energy matrix element between
individual orbitals ϕi can be written as [see Eq. (1.5.21)]

〈ϕi| − �
2

2mN
�|ϕj〉 = �ω

[
3

4
〈ϕi|ϕj〉 + ν

2

d

dν
〈ϕi|ϕj〉

]
. (1.5.35)

Consequently, the kinetic-energy kernel reads, after subtraction of the c.m. contri-
bution,

T(R, R′) = �ω

[
3

4
(A − 1) + ν

2

d

dν

]
N(R, R′), (1.5.36)

and can be directly obtained from coefficients Nn. These coefficients are given in
Table 1.3 for various systems.

For the potential kernels, we assume that the nuclear interaction is given by combi-
nations of Gaussian functions and exchange operators O as

vN (r) = V0exp

(
− r2

a2

)
O, (1.5.37)
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Table 1.3 Coefficients Nn of
the overlap kernel

System n = 0 n = 1 n = 2 n = 3 n = 4

α + n, α + p 1 −1
α +3 H, α +3 He 1 −3 3 −1
α + α 1 −4 6 −4 1

where O is one of the operators 1, Pσ Pτ , Pσ , Pτ . The GCM kernel corresponding to
the two-body potential (1.5.37) is given by (see Ref. [32])

VN (R, R′) = V0

(
a2

a2 + 2b2

)3/2∑

n

fn(R, R′)
5∑

i=1

VN
ni exp[−α2F2

i (R, R′)],
(1.5.38)

where functions Fi(R, R′) are defined as

F1(R, R′) = 0,

F2(R, R′) = R/2
√

2b,

F3(R, R′) = R′/2
√

2b,

F4(R, R′) = (R + R′)/2
√

2b,

F5(R, R′) = (R − R′)/2
√

2b, (1.5.39)

and α is defined by α2 = 2b2/(a2 + 2b2).

The Coulomb kernel takes the general form

VC(R, R′) = e2

√
2b

∑

n

fn(R, R′)
5∑

i=1

VC
ni

erf[|Fi(R, R′)|]
|Fi(R, R′)| . (1.5.40)

Coefficients VN
ni and VC

ni are given in Tables 1.4 and 1.5, respectively. The projected
kernels are directly obtained by integration over the relative angle between R and R′
[see Eq. (1.4.31)].

A very simple application is the α particle with four 0s orbitals centred at the
origin. In that case all space components in (1.5.16) take the same form. For a
Gaussian potential of range a and amplitude V0, the α nuclear and Coulomb energies
are

VN (α) = 6(w + m)

(
a2

a2 + 2b2

)3/2

V0

VC(α) =
√

2

π

e2

b
. (1.5.41)
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Table 1.5 Coefficients VC
ni of the Coulomb potential (see caption of Table 1.4). VC1 and VC2 corre-

spond to the mirror systems

System VC1 VC2

α + n, α + p
n = 0 (1, 0, 0, 0, 0) (1,0,0,2,0)
n = 1 (−1, 0, 0, 0, 0) (0,−1,−1, 0,−1)

α +3 H, α +3 He
n = 0 (2, 0 ,0 ,4 ,0 ) (1, 0, 0, 2,0)
n = 1 (−2,−4,−4,−6,−2) (−2,−1,−1,−4,−1)

n = 2 (2, 4, 4 ,2, 6 ) (1, 2 ,2, 2 ,2 )
n = 3 (−2, 0, 0, 0,−4) (0,−1,−1, 0,−1)

α + α

n = 0 (2, 0 ,0 ,4 ,0 )
n = 1 (−4,−4,−4,−10,−2)

n = 2 (4, 8, 8, 8, 8 )
n = 3 (−4,−4,−4,−2,−10)

n = 4 (2, 0, 0, 0 ,4 )

1.6 Approximations of the RGM

1.6.1 Eigenvalues of the Overlap Kernel

In this Section, we consider other variants of the RGM equation. All are based on the
eigenvalues of the overlap kernel [16, 31, 32, 57, 91]. Let us consider the eigenvalue
problem

∫
N�(ρ, ρ′)χ�n(ρ

′)dρ′ = μ�nχ�n(ρ), (1.6.1)

where N�(ρ, ρ′) is the �-projected overlap kernel. In a more compact notation,
Eq. (1.6.1) is rewritten as

N�χ�n = μ�nχ�n. (1.6.2)

These orthogonal eigenstates χ�n play an important role in approximations [92]
and extensions [93] of the RGM. In particular, eigenstates χ�i(ρ) corresponding to
μ�i = 0 are called forbidden states. These functions are different from zero and
present the property

A φ1φ2χ�i(ρ) = 0, (1.6.3)

i.e. they vanish from the action of the antisymmetrizor. They are typical of calcu-
lations with identical oscillator parameters. When the oscillator parameters of both
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clusters are different, forbidden states (μ�i = 0) are replaced by “almost" forbidden
states (μ�i small) which induce spurious states in the Schrödinger equation [16, 31,
37]. On the other hand, eigenstates with μ�i ≈ 1 are weakly affected by exchange
effects of the overlap kernel. The eigenvalue distribution therefore provides some
insight on the importance of the antisymmetrization.

For some systems, involving a closed-shell nucleus (α,16 O,40 Ca, . . .) and an
s-shell cluster, the calculation of the eigenvalues is analytical, and only depends of
the quantum number [32]

N = 2� + n. (1.6.4)

For example, the α + n, α + t and α + α eigenvalues are

μN =
⎧
⎨

⎩

1 − (−1/4)N for α + n
1 − 3( 5

12 )N + 3(− 1
6 )N − (− 3

4 )N for α + t
1 − 22−N + 3δN,0 for α + α (N even)

. (1.6.5)

These eigenvalues do not depend of the oscillator parameter. The eigenfunctions
are harmonic oscillator orbitals with oscillator parameter b/

√
μ0. From the example

(1.6.5) we immediately see that the α + n system presents one forbidden state for
� = 0. The reason is that the s orbital is already occupied in the α particle, and is not
accessible to the external neutron. The α + α system presents two forbidden states
for � = 0, one for � = 2, and zero for � ≥ 4.

In general, the eigenvalue problem (1.6.1) cannot be solved analytically. A numer-
ical approach has been proposed by Varga and Lovas [91] who write (1.6.1) in an
equivalent form

A φ1φ2χ�n(ρ) = μ�nφ1φ2χ�n(ρ), (1.6.6)

which shows thatμ�n are the eigenvalues of the antisymetrization operator. Expanding
χ�n(ρ) over a finite Gaussian basis as

χ�n(ρ) =
∑

i

c�
n(Ri)Γ�(ρ, Ri) (1.6.7)

provides the equivalent eigenvalue problem
∑

i

c�
n(Ri)

(
〈Φ�(Rj)|Φ�(Ri)〉 − μ�n〈Γ�(Rj)|Γ�(Ri)〉

)
= 0. (1.6.8)

The first term is the overlap between two projected Slater determinants (1.4.27),
whereas the second term corresponds to the direct contribution, and can be calculated
analytically as [94]

〈Γ�(Rj)|Γ�(Ri)〉 = exp
[
− μ0

4b2 (R2
i + R2

j )
]

i�

(
μ0RiRj

2b2

)
. (1.6.9)

Of course, the method is approximative only, but is quite simple to apply, in particular
for multicluster problems [95], or in two-cluster systems with different oscillator
parameters [37].
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1.6.2 Reformulation of the RGM Equation

Our aim here is to reformulate the RGM equation (1.3.17) in a more transparent way.
One of the reasons is that the RGM two-cluster kernels can be used in multicluster
calculations [93, 96], and therefore provide a microscopic framework to multicluster
calculations. After projection on angular momentum �, the RGM equation (1.3.17)
can be recast as

(
T� + V� − ENE�

)
g� = Eg�, (1.6.10)

where T� is the kinetic energy in partial wave �, and V� a potential which includes
exchange contributions. Equation (1.6.10) resembles a usual two-body Schrödinger
equation, but the equivalent potential depends on energy. This is not a problem in
two-body calculations, but raises some ambiguities in multicluster models. In that
case, cluster-cluster energies are not precisely defined. An iterative procedure has
been proposed by Fujiwara et al. [97] but the method was shown to raise conceptual
problems in three-body calculations [48].

An elegant and efficient method has been proposed by Suzuki et al. [96] and is
briefly explained here. Let us define a modified radial function

ĝ� = N
1/2

� g� =
∑

n

μ
1/2
�n 〈χ�n|g�〉χ�n

= g� −
∑

n

(1 − μ
1/2
�n )〈χ�n|g�〉χ�n. (1.6.11)

Since μ�n tend to unity for large n, ĝ�(ρ) and g�(ρ) have the same asymptotic
behaviour. In addition, ĝ�(ρ) is orthogonal to the forbidden states since

〈χ�i|ĝ�〉 = 0 (1.6.12)

for μ�i = 0. Replacing g� by

g� = N
−1/2

� ĝ� (1.6.13)

in (1.6.10) provides

(T� + VRGM
� )ĝ� = Eĝ�, (1.6.14)

where VRGM
� is not local, but does not depend on energy. It is defined as

VRGM
� = N

−1/2
� (T� + V�)N�

−1/2 − T�

= V� + W�. (1.6.15)

Of course, implicit summations in (1.6.13) and (1.6.15) only include allowed states
(μ�n 
= 0). The renormalized RGM therefore contains the bare RGM potential V�,
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and an additional contribution W�. As shown in [96], this term can be computed by
an expansion over harmonic-oscillator functions [32].

In Refs. [93, 96], a detailed comparison is performed between the use of renormal-
ized RGM potentials in three-body calculations and fully microscopic calculations
with the same nucleon–nucleon interaction. This is done for three typical three-body
systems: 6He = α + n + n, 9Be = α + α + n, and 12C = α + α + α. The α + n and
α + α RGM potentials W� have been obtained numerically [96]. The binding ener-
gies of the ground states are in reasonable agreement with the microscopic energies,
but are slightly underestimated. This leads to the suggestion that three-body effects,
missing in the renormalized RGM, should be attractive.

This technique opens various possibilities in the microscopic treatment of the
nucleus–nucleus interaction. For example, three-body continuum states [98] could
be treated with these potentials. In parallel, Continuum Discretized Coupled Channel
(CDCC) calculations require a precise description of two and three-body projectiles
[99] and could be performed with non-local RGM potentials. On the other hand, the
renormalized RGM has been successfully used to compute the triton and hypertriton
binding energies from nucleon–nucleon interactions based an a quark cluster model
[100].

1.6.3 The Orthogonality Condition Model

The Orthogonality Condition Model (OCM) has been proposed by Saito [92]. The
main idea was to simplify the RGM approach, while keeping its microscopic grounds.
Let us introduce the projector

�� = 1 −
∑

i∈PFS

|χ�i〉〈χ�i|, (1.6.16)

where the sum runs over the Pauli forbidden states (PFS, μ�i = 0). This provides an
equivalent RGM equation [16, 92]

��(T� + VOCM
� − E)ĝ� = 0, (1.6.17)

where the OCM potential is implicitly defined by

H� = N�
1/2(T� + VOCM

� )N�
1/2. (1.6.18)

Equation (1.6.18) is strictly equivalent to (1.3.17). However, the potential VOCM
�

has a non-local form. The purpose of the OCM is to include antisymmetrization
effects through the operator ��, but to use approximations for the potential [57,
92]. Various methods have been proposed to solve the non-local equation (1.6.17)
(see Refs. [92, 94] and references therein).

The OCM equation can still be simplified by replacing (1.6.17) by the local
equation
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(T� + Ṽ� − E)g̃� = 0 (1.6.19)

where Ṽ� is a local potential [18, 19]. The role of the forbidden states is simulated
by additional non-physical states g̃i in the potential. Their number depends on the
system and on angular momentum [see Eq. (1.6.5) for some systems]. In this way,
the orthogonality condition (1.6.12) is replaced by

〈g̃i|g̃�〉 = 0. (1.6.20)

Deep nucleus–nucleus potentials are available in the literature, in particular for
α + n [101] and α + α [102]. The main advantage of the local approximation is its
simplicity. The calculation of bound states and phase shifts is straightforward with,
for example, the Numerov method [73, 103]. All matrix elements are obtained from
one-dimensional integrals. In nuclear astrophysics, many capture reactions have been
investigated in this framework (see for example [94, 104]).

1.7 Recent Developments of the GCM

1.7.1 Introduction

For the sake of clarity, the formalism presented in previous sections was simplified as
much as possible. In particular, we neglected the spins of the clusters, assumed single-
channel problems, and limited the discussion to two-cluster systems. However, the
GCM has been significantly extended in two directions, with the goal of improving
the description of the system: the extension to multichannel approaches, and to
multicluster calculations. We briefly review these two developments. In addition,
attention has been paid on the improvement of the cluster wave functions: large shell-
model bases [36], and mixing of several shell-model wave functions corresponding
to different oscillator parameters [37].

1.7.2 Internal Wave Functions

Microscopic cluster calculations are performed with a shell-model description for the
cluster wave functions. The standard shell-model formalism can therefore be used.
However, in contrast with shell-model calculations, the definition of the internal wave
functions is just a first step of cluster theories. As long as s clusters only are involved,
the construction of the shell-model states is trivial. In particular, the corresponding
wave functions involve a single Slater determinant (except for the deuteron, but this
nucleus is poorly described by the shell model).

Going beyond s-shell clusters strongly increases the complexity of the calcu-
lations. Analytical developments are, in most cases, very difficult and need to be
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replaced by entirely numerical approaches. In Ref. [36], we proposed a generalized
cluster model, where the cluster wave functions are defined by all p-shell configura-
tions consistent by the Pauli principle. Formally, this can be directly extended to the
sd shell or higher (see for example Refs. [105, 106] for applications involving 30Ne
and 39Ca clusters), but raises computational problems owing to the large number of
Slater determinants and of orbitals involved in the matrix elements.

In practice, cluster calculations are optimized when working in the LS coupling
scheme. As shown before, this allows to factorize a Slater determinant in four nucleon
types, according to the spin and isospin. In that case, each nucleon orbital (1.4.2) is
defined either in a Cartesian basis as

ϕ̂nxnynz,msmt (r) = ϕnx (x)ϕny(y)ϕnz (z)|ms〉|mt〉, (1.7.21)

or in a spherical basis as

ϕ̂nlm�,msmt (r) = ϕn�(r)Y
m�

� (Ωr)|ms〉|mt〉, (1.7.22)

where the space, spin and isospin components have been factorized. In (1.7.22),
ϕn�(r) is an harmonic-oscillator radial function [78]. Both bases are equivalent and
related to each other by a unitary transform.

An alternative is to use the jj coupling scheme, where the individual orbitals are
defined as

ϕ̂n�jm,mt (r) = ϕnl(r)
[
Y�(Ωr) ⊗ χs

]jm|mt〉. (1.7.23)

In this option, the overlap (1.5.3) is expressed as the product of two determinants
involving more orbitals (see Sect. 1.5). This property strongly increases the compu-
tation times for two-body matrix elements since they involve quadruple sums over
the individual orbitals [see (1.5.12)].

Let us now define a Slater determinant built from A1 individual orbitals. All
configurations, compatible with the Pauli principle, must be included up to some
excitation level Nmax. In most cluster calculations, Nmax = 0, but particle-hole
excitations Nmax > 0 are possible. A compromise should be adopted between the
quality of the internal wave functions and the feasibility of the cluster calculation.

Let us start with the most common applications, i.e. p-shell nuclei with Z1 protons
and N1 neutrons (A1 = Z1 + N1). Filling the p shell can be performed in Nc =
CZ1−2

6 ×CN1−2
6 different possibilities (Cj

i is the number of combinations of j elements
among i elements). The basis therefore involves Nc Slater determinants Φi. For
example Nc = 6 for 15N, and Nc = 225 for 12C.

In general, these shell-model states do not have a definite spin. Projection over
the total spin I1 is performed by diagonalization of the spin operators I2 and Iz which
provides

ΦI1K1 =
Nc∑

i=1

dI1K1
i Φi, (1.7.24)
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where dI1K1
i are linear coefficients obtained from the eigenvalue problems

Nc∑

j=1

dI1K1
j

[〈Φi | I2 | Φj〉 − I1(I1 + 1)δij
] = 0

Nc∑

j=1

dI1K1
j

[〈Φi | Iz | Φj〉 − K1δij
] = 0. (1.7.25)

The fact that the eigenvalues of I2 and Iz provides integer or half-integer values for
I1 and K1 is a strong test of the calculation.

In practice, further diagonalizations of the isospin T2, intrinsic spin S2 and orbital
angular momentum L2 are performed, in order to obtain a deeper analysis of the wave
functions. Basis states (1.7.24) are therefore recombined as

Φ
I1K1
S1L1T1c1

=
Nc∑

i=1

dI1K1
S1L1T1c1,i

Φi, (1.7.26)

where c1 is an additional quantum number used to distinguish between states with
identical values of (I1K1S1L1T1). The parity is simply obtained from the product of
the parities of the individual orbitals. Finally, basis states (1.7.26) are used to diag-
onalize the Hamiltonian. This is necessary in collision theories, where the internal
wave functions must be eigenstates of the internal Hamiltonian. Linear combinations
of Slater determinants are then used in multicluster calculations.

In principle, wave functions (1.7.26) could be employed for several clusters. In
practice, however, the total number of Slater determinants is given by the product of
Nc values of each cluster. Consequently calculations are currently limited to systems
involving a single cluster with generalized shell-model wave functions (1.7.26). In
Ref. [36], we give the different sets of quantum numbers for 8Li (Nc = 120) and
11B (Nc = 300) described in the p shell. These wave functions are used in that
reference for a microscopic calculation of the 8Li(α, n)11B cross section. In principle,
including excited configurations (Nmax > 0) can be performed, but strongly increases
the number of Slater determinants.

Let us briefly compare the use of the LS coupling (1.7.21) and of the jj coupling
(1.7.23). There is an orthogonal transform between them and are equivalent as long
as all orbitals of a given shell are considered. As discussed above the use of the jj
coupling increases the computer times. However it allows to keep limited numbers
of Slater determinants, even beyond the p shell.

A simple example is provided by 14C, where both coupling modes are illustrated
in Fig. 1.2. In the LS coupling mode, six neutrons fill the p shell, and four p protons
can be combined in C4

6 = 15 combinations. This provides two 0+ states, one 1+ state
and two 2+ states. Alternatively, considering the jj coupling mode only provides one
0+ state since the 1p3/2 subshell is filled. The corresponding spectra obtained with
an oscillator parameter b = 1.6 fm, and the V2 interaction (M = 0.6) complemented
by a spin–orbit force (S0 = 30 MeV.fm5) are displayed in Fig. 1.3, and compared
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Fig. 1.2 Shell-model orbitals for 14C in the LS and jj coupling modes (see text). Full and open
circles represent occupied and unoccupied orbitals, respectively
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Fig. 1.3 Energy spectrum of 14C in the LS and jj coupling modes. For the sake of clarity, the
experimental energy of the ground state has been shifted to the LS value

with experiment. Our goal here is not to optimize the interaction, but to illustrate the
problem with a typical nucleon–nucleon force. As expected the jj coupling mode,
limited to the 1p3/2 subshell, does not provide excited states and the ground state is
less bound (by 1.9 MeV) than in the LS coupling mode. The advantage of the former
conditions is that the number of Slater determinants is limited to one.

This problem is still more apparent when going to sd-shell nuclei. Let us
consider 17N, which is illustrated in Fig. 1.4. In the LS coupling mode we have
Nc = 6 × 66 = 396 Slater determinants. This gives 1/2−(12), 3/2−(19), 5/2−(18)

states, 7/2−(13), 9/2−(6), and 11/2−(2) states. The energy spectrum (limited to
the 2 first levels for each angular momentum) is shown in Fig. 1.5. Using this set
of basis functions for two or three-cluster calculations is highly time and memory
consuming. Considering the jj coupling mode (illustrated in Fig. 1.4) provides a much
smaller number of Slater determinants Nc = 30. Of course the number of 17N states
is reduced, and the binding energies are lower that in the LS coupling mode, but
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Fig. 1.5 See caption to Fig. 1.3 for 17N

a multicluster calculation (e.g. 17N + n) keeps the computer requirements within
acceptable limits. Notice that the calculations have been performed with standard
parameters in the nucleon–nucleon interaction. The comparison with experiment
can be improved by slightly tuning the parameters M and S0.

As a general statement, this problem gets more and more important when the
nucleon number is far from a closed shell. For example, 18O and 30Ne need Nc =
C2

12 = 66 in the sd shell; in contrast 24Mg would need Nc = C4
12 × C4

12 = 245025,

as 4 neutrons and 4 protons are distributed among the 12 sd orbitals. If this large
number does not raise significant problems in shell-model calculations, it makes
cluster approaches impossible owing to the additional clusters, and to the global
angular-momentum projection. The use of the jj coupling mode, in that case, is
necessary.
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1.7.3 Multicluster Angular-Momentum Projection

Cluster wave functions based on Slater determinants are not defined with a definite
spin value. In order to restore the spin, an angular-momentum projection is needed.
We start by assuming that the individual clusters have a spin zero. A projected wave
function of the system is obtained from (see Ref. [4])

ΦLM
K (S{N}) =

∫
DL∗

MK (Ω)RL(Ω)Φ(S{N})dΩ, (1.7.27)

where DL
MK (Ω) is a Wigner function depending on the Euler angles Ω = (α, β, γ ),

and Φ(S{N}) is a N-cluster Slater determinant (1.5.2). In (1.7.27), K is the projection
over the intrinsic axis, and the rotation operator RL(Ω) is defined as

RL(Ω) = eiαLz eiβLy eiγ Lz , (1.7.28)

and performs a rotation of the wave function, or an inverse rotation [107] of the
space coordinates ri of the individual orbitals. Since the orbitals are defined in the
harmonic-oscillator model, a rotation of the quantal coordinates ri is equivalent to
an inverse rotation of the generator coordinate. Consequently, we have

RL(Ω)Φ(S{N}, r1, . . . , rA) = Φ(S{N},RL(Ω−1)r1, . . . ,R
L(Ω−1)rA)

= Φ(RL(Ω)S{N}, r1, . . . , rA). (1.7.29)

The effect of the rotation operator is therefore equivalent to a rotation of the generator
coordinates. This property is typical of harmonic oscillator functions, and greatly
simplifies the calculations.

Let us consider a rotation-invariant operator O, such that

O = RL(Ω−1)ORL(Ω). (1.7.30)

A matrix element of O between projected functions (1.7.27) reads

〈ΦLM
K (S{N})|O|ΦL′M ′

K ′ (S′{N})〉

= 8π2

2L + 1
δLL′δMM ′

∫
DL�

KK ′(ω)〈Φ(S{N})|ORL(ω)|Φ(S′{N})〉dω,
(1.7.31)

and therefore reduces to a three-dimensional integral over the Euler angles. If Oλμ

is an irreducible operator of rank λ, (1.7.30) is generalized as

RL(Ω)OλμRL(Ω−1) =
∑

μ

Dλ
μ′μ(Ω)Oλμ′ , (1.7.32)

and the matrix element (1.7.31) must be extended [35].
Let us now consider clusters with spin. An N-cluster basis function (which can be a

linear combination, as in Sect. 1.7.2) therefore involves quantum numbers associated
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with the spin projection Ki and is denoted as ΦK1...KN . In that case, the rotation
operator corresponding to the total angular momentum J is factorized as

RJ(Ω) = RL(Ω)RS(Ω), (1.7.33)

where RL(Ω) rotates the space coordinates, and RS(Ω) the spin coordinates. Since,
by definition, the cluster states have good spin, the spin rotation provides

RS(Ω)ΦK1...KN =
∑

K ′
1...K

′
N

D I1
K ′

1K1
(Ω) . . . D IN

K ′
N KN

(Ω)ΦK ′
1...K

′
N
, (1.7.34)

where Ii are the spins of the N clusters (for the sake of clarity the generator coordinates
are implied). A projected basis state (1.7.27) is then generalized to

ΦJM
K,K1...KN

=
∑

K ′
1...K

′
N

∫
DJ∗

KM(Ω)D I1
K ′

1K1
(Ω) . . . D IN

K ′
N KN

(Ω)RL(Ω)ΦK ′
1...K

′
N

dΩ,

(1.7.35)
and, as in (1.7.27), only the space rotation should be explicitly performed. Matrix
elements between functions (1.7.35) are directly obtained from an extension of
(1.7.31). Specific applications to 3 and 4-cluster systems can be found in Refs. [35,
108]. An important application concerns two-cluster systems, and is explained in
more detail in the next subsection.

Finally the parity projection is performed with the operator

ΦJMπ
K,K1...KN

= 1

2

(
1 + πP

)
ΦJM

K,K1...KN
, (1.7.36)

where π = ±1 is the parity of the state, and where P reverses all nucleon coordinates
as ri → −ri. In some specific cases, this operator can be replaced by an equivalent
rotation operator (see an example in Ref. [35]). This allows to combine angular-
momentum and parity projection in a single rotation operator.

1.7.4 Multichannel Two-Cluster Systems

Until now the presentation was limited to single-channel two-cluster models. We
briefly show here how to extend the formalism to multichannel calculations, and/or
with spins different from zero. Although the notations are more complicated, the
principles of the GCM (Sect. 1.4), as well as matrix elements between basis states
(Sect. 1.5) remain unchanged.

Let us consider a channel c composed of two clusters with spins I1 and I2 (parities
π1 and π2 are implied). The internal wave functions Φ

I1K1
c and Φ

I2K2
c are defined

in (1.4.1), and are in general combinations of Slater determinants [see (1.7.24)].
A channel c is characterized by the properties of the clusters: masses and charges,
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spins, levels of excitation, etc. In transfer and inelastic reactions, the introduction of
excited channels is of course necessary. However, even in spectroscopic calculations,
additional channels may improve the total wave function of the system, according to
the variational principle. As shown in Sect. 1.7.2, calculations involving p-shell or
sd-shell clusters may contain a large number of channels.

From the internal cluster wave functions, we extend definition (1.4.7) to

ΦIK
c (R) = 1√

N0

∑

K1K2

〈I1K1I2K2|IK〉A ΦI1K1
c

(
−A2

A
R
)

ΦI2K2
c

(
A1

A
R
)

= 1√
N0

A

[
ΦI1

c

(
−A2

A
R
)

⊗ ΦI2
c

(
A1

A
R
)]IK

, (1.7.37)

where I is the channel spin, and results from the coupling of I1 and I2. This quantum
number plays an important role in reactions. In (1.7.37), we assume that the origin is
at the c.m., and we have rewritten the angular-momentum coupling in the standard,
compact, notation.

According to (1.7.34), projection of basis functions (1.7.37) provides

ΦJM
cIK (R) =

∫
DJ∗

MK (Ω)RJ(Ω)ΦIK
c (R)dΩ. (1.7.38)

This definition is well adapted to spectroscopy. However we define an equivalent
basis as

ΦJMπ
c�I (R) =

(
2� + 1

256π5

)1/2∑

K

〈IK�0|JK〉ΦJM
cIK (R), (1.7.39)

which makes use of the relative angular momentum �. The normalization factor
allows to simplify the RGM wave function (see below). This factor, however, can be
chosen arbitrarily as long as it is consistent in all matrix elements. Notice that the
projection over � directly provides the projection on parity which is related to the
individual parities of the clusters π1 and π2 as

π = π1π2(−1)�. (1.7.40)

Using Eqs. (1.7.27), (1.7.33) and (1.7.34), we have

ΦJMπ
c�I (R) = 1

4π

∫
dΩR

[
ΦI

c(R,ΩR) ⊗ Y�(ΩR)
]JM

. (1.7.41)

with

ΦIK
c (R,ΩR) = RL(ΩR)ΦIK

c (R). (1.7.42)

The overlap between two projected basis functions (1.7.41) is obtained from a gener-
alization of the single-channel result (1.7.31) as
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〈ΦJπ
c�I(R) | ΦJπ

c′�′I ′(R′)〉 =
√

(2� + 1)(2�′ + 1)

8π(2J + 1)

×
∑

K,K ′
〈I K � 0 | J K〉〈I ′ K ′ �′ K − K ′ | J K〉

×
π∫

0

d�′
K−K ′,0(β)〈ΦIK

c (R, 0) | ΦI ′K ′
c′ (R′, β)〉d cos β,

(1.7.43)
where ΦIK

c (R, β) is a Slater determinant with the generator coordinate in the xz
plane, and making an angle β with the z axis. To derive (1.7.43), we have used
the symmetry of the unprojected matrix element around the z axis. For two-cluster
calculations these matrix elements are obtained from one-dimensional integrals. This
definition is valid for any rotation–invariant operator. The extension to more general
operators can be found in Ref. [85]. Notice that the projected matrix elements (1.7.43)
must be symmetric. This is not trivial since the generator coordinates R and R′ are
not treated in the same way (R is chosen along the z axis). The symmetry of the final
result is a severe test of the calculation.

A calculation analog to those developed in Sect. 1.4 provides the equivalence
between the GCM and RGM for a multichannel system. The extension of (1.4.27) is
directly obtained from

ΦJMπ
c�I (R) = 1√

N0
ΦcmA Γ�(ρ, R)ϕJMπ

c�I (ξ1, ξ2,Ωρ), (1.7.44)

where the channel wave function reads

ϕJMπ
c�I (ξ1, ξ2,Ωρ) =

[[
φI1

c (ξ1) ⊗ φI2
c (ξ2)

]I ⊗ Y�(Ωρ)
]JM

. (1.7.45)

In this definition, φ
I1
c and φ

I2
c are the translation-invariant internal wave functions

depending on the sets ξ1 and ξ2 of internal coordinates. In multichannel problems,
the total wave function of the system is given by

Ψ JMπ =
∑

c�I

Ψ JMπ
c�I , (1.7.46)

where the contribution of each channel is defined as

Ψ JMπ
c�I =

∫
f Jπ
c�I (R)ΦJMπ

c�I (R)dR (in the GCM)

= A gJπ
c�Iϕ

JMπ
c�I (in the RGM). (1.7.47)

As for single-channel calculations, the RGM radial function is deduced from the
generator function as

gJπ
c�I(ρ) =

∫
f Jπ
c�I (R)Γ�(ρ, R)dR. (1.7.48)
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Fig. 1.6 Multicluster
configurations for two (a),
three (b, d), and five (c)
-cluster description. In
model (c) the basis of the
tetrahedron is assumed to be
defined by three α particles
in an equilateral
configuration
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1.7.5 Multicluster Models

1.7.5.1 General Discussion

Although multicluster theories have been also developed in the RGM [33], we focus
here on GCM calculations. Let us assume N clusters with internal wave functions ΦN

and centered at Si. As in Sect. 1.5, the set of cluster locations is denoted as S{N} =
(S1, . . . , SN ). From these locations, we define a set of generator coordinates R{C} =
(R1, . . . , RC) where C represents the number of independent coordinates required to
define the system (see Fig. 1.6). For example, two-cluster systems are characterized
by one generator coordinate, the distance between the clusters (Fig. 1.6a). In a three-
body model, the clusters are located at the vertices of a triangle (Fig. 1.6b). Depending
on the geometry of the triangle, the number of generator coordinates can be C = 1, 2,
or 3 (C = 1 for an equilateral triangle).

A GCM basis function is defined by a multicluster generalization of Eq. (1.4.7)
as

Φ(R{C}) =
√

A1! · · · AN !
A! Φ−1

cm A Φ1(S1) . . . ΦN (SN ), (1.7.49)

where the c.m. component has been removed. Again, for the sake of clarity, we
do not explicitly mention the spin orientations of the clusters. Equation (1.7.49) is
the starting point of all multicluster models. Matrix elements between these Slater
determinants are obtained as for two-cluster calculations (see Sect. 1.5). When N >

2, there are, however, various applications of multicluster models, which differ by
the projection technique:
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(i) Systems with a fixed geometry (Fig. 1.6b for N = 3 and Fig. 1.6c for N = 4). Wave
function (1.7.49) is projected with (1.7.35) and (1.7.36) on spin J and parity π,

respectively. Examples for three-cluster systems are 11Li or 24Mg described by
triangular 9Li+n+n or 16O+α+α configurations [109, 110]. Some four-cluster
systems have been described by a tetrahedral configuration with an equilateral
triangle for the three α particles, and an additional s cluster [35]. The use of a
symmetric structure for the three α particles allows a reduction of the computer
times for the projected matrix elements.

(ii) Two-body systems involving a cluster nucleus (Fig. 1.6d). This approach is
essentially used to describe nucleus–nucleus collisions, where one of the
colliding nuclei presents a cluster structure. Typical examples are 7Be + p,

with 7Be = α + 3He [111] and 12C + α with 12C = 3α [108]. In that case, the
angular momentum of the cluster subsystem must be restored. The projection
over angular momentum is therefore multiple.

(iii) Multicluster hyperspherical formalism. This development is recent [45] and is
currently limited to three-cluster systems. The relative motion is described in
hyperspherical coordinates [23]. This framework was recently extended to a
microscopic description of three-body scattering states [95].

1.7.5.2 Fixed Geometry

In option (i), the projections over angular momentum and parity are performed with
(1.7.35) and (1.7.36), respectively. As mentioned before, in some specific cases,
the parity P operator can be replaced by a rotation (for example, operator P in an
equilateral triangle involving three identical clusters is equivalent to a rotation by π).

When the clusters have a spin zero, a projected matrix element of a rotation-invariant
operator O between projected basis functions (1.7.27) is obtained from (1.7.31). The
integrals are in general performed numerically (see Ref. [35] for further detail).

Finally, the total wave function of the system is obtained from a superposition of
projected functions (1.7.27) as

Ψ JMπ =
∑

K

∫
f Jπ
K (R{C})ΦJMπ

K (R{C})dR1 · · · dRC,

≈
∑

K

∑

R{C}
f Jπ
K (R{C})ΦJMπ

K (R{C}). (1.7.50)

Coefficients f Jπ
K (R{C}) are obtained from the Hill–Wheeler involving the Hamiltonian

and overlap kernels
∑

R′{C},K ′

[
HJπ

KK ′(R{C}, R′{C}) − EJπ
ω NJπ

KK ′(R{C}, R′{C})
]
f Jπ
K ′ (R′{C}) = 0. (1.7.51)

When the cluster spins are different from zero, additional quantum numbers,
corresponding to the spin orientations, must be introduced. This model is well adapted
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to three-body halo nuclei, such as 6He [112] or 11Li [109]. The 3α and 4α descriptions
of 12C and 16O are also known to significantly improve the binding energies [35].

1.7.5.3 Systems Involving a Cluster Nucleus

Multicluster models mentioned in the previous subsection are well adapted to nuclear
spectroscopy. To extend these models to nucleus–nucleus reactions, a multiple
angular momentum is necessary to restore, not only the spin of the total system, but
also the spins of the colliding nuclei. Although a situation where both colliding nuclei
present a cluster structure is possible, practical applications are currently limited to
a s-shell particle with a multicluster nucleus. We therefore consider systems built
from N + 1 clusters.

Let us define nucleus 1 by N clusters with a set of generator coordinates R{C}.
The internal wave functions with spins I1 and parity π1 are therefore taken as in
Eq. (1.7.50) and read

ΦI1K1π1
ω =

∑

K,R{C}
FI1π1

K,ω (R{C})ΦI1K1π1
K (R{C}). (1.7.52)

In this definition, index ω corresponds to the level of excitation. Wave functions with
different ω values are orthogonal to each other. States with EI1π1

ω < 0 correspond to
bound states, whereas EI1π1

ω > 0 represent pseudostates. They can be interpreted as
square-integrable approximations of scattering states, and simulate the distortion of
the nucleus.

Let us now consider the total (N + 1)-cluster system. The relative motion with
nucleus 2 (assumed to be described by a single cluster) requires the additional relative
coordinate R. An unprojected wave function is written as

Φ(R{C}, R) = 1√
N0

A Φ1

(
R{C},−A2

A
R
)

Φ2

(
A1

A
R
)

, (1.7.53)

where Φ1(R{C},−A2
A R) is a Slater determinant (1.7.49) centred at −A2

A R. After
projection over the angular momentum of nucleus 1, and summation over R{C}, a
basis state is defined as

ΦIK
ω (R) = 1√

N0
A [ΦI1π1

ω (−A2

A
R) ⊗ ΦI2π2(

A1

A
R)]IK , (1.7.54)

where (1.7.52) has been used for nucleus 1. The multichannel theory presented in
Sect. 1.7.4 can therefore be applied. In particular the matrix elements (1.7.43) are
still valid, after an additional projection on I1π1. In general, these matrix elements
involve 7-dimensional integrals [80, 113] (3 dimensions for the Euler angles in the
bra and in the ket, and one additional integral for the relative motion). When the
cluster nucleus involves two clusters, this integral is reduced to 5 dimensions [110].
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Fig. 1.7 Three-cluster
configuration
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1.7.5.4 Hyperspherical Formalism

Let us consider the three-cluster system displayed in Fig. 1.7. The center of mass of
each cluster is defined as

Rcm,1 = 1

A1

A1∑

i=1

ri,

Rcm,2 = 1

A2

A1+A2∑

i=A1+1

ri,

Rcm,3 = 1

A3

A∑

i=A1+A2+1

ri. (1.7.55)

In the hyperspherical formalism [23], the scaled Jacobi coordinates are given by

x = √
μ23(Rcm,2 − Rcm,3),

y = √
μ

[
Rcm,1 − A2Rcm,2 + A3Rcm,3

A23

]
, (1.7.56)

where A23 = A2 + A3, and where the reduced masses are

μ23 = A2A3

A23

μ = A1A23

A
.

(1.7.57)

These coordinates provide the hyperradius and hyperangle

ρ2 = x2 + y2

αρ = arctan(y/x). (1.7.58)

The hyperspherical formalism is well known in non-microscopic three-body
systems [30, 114], where the structure of the nuclei is neglected. In that case, the
kinetic energy can be written as
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T = − �
2

2mN

(
∂2

∂ρ2 + 5

ρ

∂

∂ρ
− K2(Ω5)

ρ2

)
, (1.7.59)

where Ω5 = (Ωx,Ωy, α) is defined from the hyperangle α, and by the directions
of the Jacobi coordinates Ωx and Ωy. The hypermomentum operator K2 generalizes
the concept of angular momentum in two-body systems and can be diagonalized as

K2Y
�x�y

KLM (Ω5) = K(K + 4)Y
�x�y

KLM (Ω5), (1.7.60)

where K is the hypermomentum, and �x and �y are the orbital momenta associated
with x and y. The hyperspherical functions are [115]

Y
�x�y

KLM (Ω5) = φ
�x�y
K (α)

[
Y�x (Ωx) ⊗ Y�y(Ωy)

]LM
, (1.7.61)

with

φ
�x�y
K (α) = N

�x�y
K (cos α)�x (sin α)�y P

�y+1/2,�x+1/2
n (cos 2α). (1.7.62)

In these definition, Pαβ
n (x) is a Jacobi polynomial, N

lx ly
K is a normalization factor,

and n = (K − �x − �y)/2 is a positive integer. The total wave function is then
expanded over the basis (1.7.61), which provides a system of coupled differential
equations (see Ref. [114] for detail). There are three different choices for the Jacobi
coordinates (1.7.56). However, these choices are equivalent since the corresponding
hyperspherical functions (1.7.61) are related to each other by a unitary transform
involving Raynal–Revai coefficients [115]. Many applications have been performed
in the spectroscopy of light nuclei [114, 116] and, more recently, for three-body
continuum states [98, 117].

The extension of the hyperspherical theory to microscopic three-cluster systems
is recent [45]. Let us consider a three-cluster Slater determinant (1.7.49) or (1.7.53)
defined by two generator coordinates R1 and R2 (see Fig. 1.7). According to (1.7.58),
we define the hyperradius and hyperangle from the scaled generator coordinates

X = √
μ23 R2

Y = √
μ R1

(1.7.63)

as

R2 = X2 + Y2

αR = arctan(Y/X).
(1.7.64)

This Slater determinant can be factorized as in (1.4.8) for two-cluster systems. We
have

Φ(X, Y) = ΦcmA φ1φ2φ3exp

(
− (x − X)2

2b2

)
exp

(
− (y − Y)2

2b2

)
, (1.7.65)
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where Φcm is defined as in (1.4.19), and φ1, φ2, φ3 are the translation-invariant
internal wave functions of the three clusters. We take here the origin of the coor-
dinates at the center of mass. We assume that the clusters have a spin zero, but the
theory can be generalized by additional angular momentum couplings (see Ref. [45]
for detail).

To develop (1.7.65), we use the expansion [115]

exp (−(x.X + y.Y)) = (2π)3

(ρR)2

∑

�x�yLMK

IK+2(Rρ)Y
�x�y

KLM (Ω5
ρ)Y

�x�y∗
KLM (Ω5

R),

(1.7.66)
where IK+2(x) is a modified Bessel function. The Slater determinant (1.7.65) can
therefore be written as

Φ(X, Y) =
∑

�x�yLMK

ΦLM
�x�yK (R)Y

�x�y
KLM (Ω5

R), (1.7.67)

where the projected basis function reads

ΦLM
�x�yK (R) =

∫
dΩ5

RY
�x�y�

KLM (Ω5
R)Φ(X, Y)

= ΦcmA φ1φ2φ3GK (ρ, R)Y
�x�y

KLM (Ω5
ρ), (1.7.68)

with

dΩ5
R = R5 cos2 αR sin2 αRdαRdΩXdΩY , (1.7.69)

and

GK (ρ, R) =
(

b2

ρR

)2 (
4π

b2

)3/2

exp

(
−ρ2 + R2

2b2

)
IK+2

(
ρR

b2

)
. (1.7.70)

Definition (1.7.68) is a direct extension of (1.4.27), obtained for two-cluster
systems. It only depends on a single generator coordinate, the hyperradius R. As
in (1.4.27), ρ is the quantal coordinate, and R a parameter which is not affected by
antisymmetrization. The total wave function is given, as in (1.4.28) for two-cluster
systems, as

Ψ LM =
∑

�x�yK

∫
f L
�x�yK (R)ΦLM

�x�yK (R)dR, (1.7.71)

where the generator functions f L
�x�yK (R) are obtained from a three-body

Hill–Wheeler equation (1.4.32). The matrix elements involving GCM projected func-
tions are computed as in Sect. 1.7.5.3, with a further integral over the hyperangle.
This gives, for the overlap,
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〈ΦLM
�x�yK (R)|ΦLM

�′
x�

′
yK ′(R′)〉 =

∫
dαRdαR′ cos2 αR sin2 αR cos2 αR′ sin2 αR′

× φ
�x�y
K (αR)φ

�′
x�

′
y

K ′ (αR′)〈ΦL
�x�y

(X, Y)|ΦL
�′

x�
′
y
(X ′, Y ′)〉,

(1.7.72)
where the matrix elements in the integrand are obtained from five dimensional
integrals. Matrix elements in the hyperspherical framework therefore involve 7-
dimensional integrals. The advantage with respect to the fixed geometry is that
this basis involves one generator coordinate only. It has been essentially applied
to systems involving s clusters, such as 6He [45], 6Li [45], 9Be [96] or 12C [96]. In
that case, a semi-analytic treatment of the matrix elements (1.7.72) can be used. Very
recently an 16O+p+p calculation was performed [118] to investigate the diproton
radioactivity of 18Ne. The model has also been extended to a microscopic description
of three-body continuum states [95].

1.8 Scattering States With the GCM

1.8.1 Introduction

The treatment of scattering states in microscopic models is a delicate problem. Exact
solutions of the Schrödinger equation (1.1.1) for positive energies must take account
of the asymptotic boundary conditions. Extensions to scattering and resonant states
represent however a wide range of applications: elastic and inelastic scattering,
transfer, capture, etc. The two latter processes are important in nuclear astrophysics,
where the low-energy cross sections relevant to stellar models are in general too small
to be measured in laboratory. The need for a precise treatment of unbound states is
also crucial in the study of light exotic nuclei, where the ground state is close to the
particle-emission threshold, or is unbound. In that case the determination of reso-
nance properties require an extension to scattering states. At large distances, the
microscopic Hamiltonian tends to

H → H1 + H2 − �
2

2μ
�ρ + Z1Z2e2

ρ
. (1.8.1)

Consequently, the relative wave function (1.1.4) of a scattering state at energy E
tends to, in partial wave �m,

Ψ �m(ρ) −→
ρ→∞ φ1φ2Ym

� (Ω)g�
ext(ρ),

g�
ext(ρ) = I�(kρ) − U�O�(kρ), (1.8.2)

where k is the wave number, and I�(x) = O∗
�(x) are incoming and outgoing Coulomb

functions [119]. At large distances, antisymmetrization between the colliding nuclei
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is negligible. In Eq. (1.8.2), U� is the collision matrix, which determines the scattering
cross sections. In single-channel calculations, U� is parametrized as

U� = exp(2iδ�), (1.8.3)

where δ� is the phase shift. It is real in microscopic theories, since nucleon–nucleon
interactions are real. In optical models, it can be complex owing to complex optical
potentials. In a multichannel problem [120], U� is a symmetric and unitary matrix
whose size is equal to the number of open channels. Here we restrict the presentations
to single-channel calculations. An extension can be found in Refs. [85, 121].

In the RGM approach, solutions of (1.3.17) (or its angular-momentum extension)
can be derived at positive energies by using finite-difference methods, or by the
Lagrange-mesh approach [122, 123]. The GCM variant, however, cannot be directly
adapted to scattering states since any finite combination of (projected) Slater determi-
nants (1.4.27) presents a Gaussian behaviour. This problem is addressed by using the
microscopic R-matrix method [119, 124], which is briefly described in Sect. 1.8.3.

1.8.2 Cross Sections

The collision matrices U� provide the elastic cross section. As in previous sections,
we only consider systems with spinless particles (see Ref. [124] for a generalization).
At the scattering angle Ω = (θ, φ) the elastic cross section is given by

dσel.

dΩ
= |fC(Ω) + fN (Ω)|2, (1.8.4)

where the Coulomb and nuclear amplitudes read

fC(Ω) = − η

2k sin2 θ/2
e2i(σ0−η ln sin θ/2),

fN (Ω) = i

2k

∑

�

(2l + 1)e2iσl (1 − U�)P�(cos θ). (1.8.5)

In these definitions, σ� = arg Γ (� + 1 + iη) is the Coulomb phase shift, and η =
Z1Z2e2/�v is the Sommerfeld parameter (v is the relative velocity). As the Coulomb
amplitude diverges at small angles, the integrated elastic cross section is not defined
for charged-particle scattering.

Radiative capture is an electromagnetic transition from a scattering state to a
bound state. The electromagnetic aspects of this process can be studied at the first
order of the perturbation theory [119], with a scattering state at positive energy E and
a bound state in partial wave Jf πf as final state at negative energy Ef . The definition
of capture cross sections can be found in Refs. [124, 125] for example.
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1.8.3 The Microscopic R-Matrix Method

As mentioned before, GCM basis functions have a Gaussian asymptotic behaviour,
and cannot directly describe scattering states. This problem is typical of variational
calculations, where the basis functions can only reproduce the short-range part of
the wave functions. The R-matrix method provides an efficient way to use a finite
basis for the determination of scattering properties. In this approach the configuration
space is divided in two regions, separated by the channel radius a. In the internal
region, the wave function is given by the GCM expansion (1.4.28)

Ψ �m
int =

∑

n

f�(Rn)Φ
�m(Rn)

= A φ1φ2g�
int(ρ)Ym

� (Ωρ). (1.8.6)

The channel radius is chosen large enough to make the nuclear force as well as
antisymmetrization between the clusters negligible. Consequently, the external wave
function is defined as

Ψ �m
ext = φ1φ2g�

ext(ρ)Ym
� (Ωρ), (1.8.7)

where the radial function g�
ext(ρ) is given by (1.8.2).

The quantities to be determined are the collision matrix U� and the coefficients
f�(Rn). The principle of the R-matrix theory is to solve the Schrödinger equation in
the internal region, and to use the continuity condition

g�
int(a) = g�

ext(a). (1.8.8)

However, as the kinetic-energy operator is not Hermitian over a finite interval, the
Schrödinger equation is replaced by the Bloch-Schrödinger equation

(H + L − E)Ψ �m
int = L Ψ �m

ext , (1.8.9)

where the Bloch operator [126] acts at ρ = a and is defined as

L = �
2

2μ
δ(ρ − a)

d

dρ
. (1.8.10)

Using expansion (1.8.6) in (1.8.9) gives the linear system

∑

n′
C�

nn′ f�(Rn′) = 〈Φ�(Rn) | L | Ψ �
ext〉, (1.8.11)

where matrix C� is defined at energy E by

C�
nn′ = 〈Φ�(Rn)|H + L − E|Φ�(Rn′)〉int. (1.8.12)
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These matrix elements are defined over the internal region. This is achieved by
subtracting the external contributions [121]. By definition of the channel radius a,
antisymmetrization effects and the nuclear interaction are negligible in the external
region. The relevant matrix elements are therefore given by

〈Φ�(Rn)|Φ�(Rn′)〉int = 〈Φ�(Rn)|Φ�(Rn′)〉 −
∞∫

a

Γ�(ρ, Rn)Γ�(ρ, Rn′)ρ2dρ,

〈Φ�(Rn)|H|Φ�(Rn′)〉int = 〈Φ�(Rn)|H|Φ�(Rn′)〉

−
∞∫

a

Γ�(ρ, Rn)(Tρ + VC(ρ) + E1 + E2)Γ�(ρ, Rn′)ρ2dρ,

(1.8.13)
where the first terms in the r.h.s. are matrix elements over the whole space, involving
Slater determinants. The second terms represent the external contributions of the
basis functions and are computed numerically.

From matrix C�, one defines the R matrix

R� = �
2a

2μ

∑

nn′
Γ�(a, Rn)

(
C�
)−1

nn′Γ�(a, Rn′) (1.8.14)

which provides the collision matrix as

U� = I�(ka) − kaI ′
�(ka)R�

O�(ka) − kaO′
�(ka)R�

. (1.8.15)

For single-channel calculations the R-matrix and the collision matrix are of dimension
one and, strictly speaking, are therefore not matrices. However the tradition is to keep
the terminology "matrix", even for single-channel calculations. When the collision
matrix is known, coefficients f�(Rn) can be determined from the system (1.8.11).
Notice that the channel radius a is not a parameter. In practice, it stems from a
compromise: it should be large enough to satisfy the R-matrix conditions, but should
be kept as small as possible to limit the number of basis states in the internal region.
The stability of the collision matrix and of the wave function with respect to the
channel radius is a strong test of the calculation. Further detail concerning the R-
matrix method, and its application to microscopic calculations can be found in Refs.
[85, 121, 124].
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1.9 Applications of the GCM

1.9.1 The 2α and 3α Systems

1.9.1.1 Conditions of the Calculations

The α+α system has been well known for many years, and was one of the first appli-
cations of microscopic cluster models. Owing to the large binding energy of the α

particle, 8Be is an ideal example of nuclear cluster structure. Two-alpha calculations
are rather simple; the matrix elements can be computed from the analytical expres-
sions of Tables 1.3, 1.4 and 1.5. The phase shifts are well known experimentally
[127] and can be accurately reproduced by microscopic cluster models associated
with the R-matrix method (see, for example, Ref. [128]).

On the other hand, more complicated 3α calculations have also been performed in
various three-body models. Here we present a simultaneous study of both systems,
as well as a comparison between different 3α descriptions of 12C. The calculations
are performed within the same conditions: an oscillator parameter b = 1.36 fm, and
the Minnesota interaction with an admixture parameter u = 0.94687, as adopted in
Ref. [93]. This u value provides a good description of the α + α phase shifts up
to 20 MeV, i.e. below the proton threshold. In these conditions, the binding energy
of the α particle (independent of u) is Eα = −24.28MeV, and the r.m.s. radius is√

< r2 >α = √
9/8b = 1.44 fm.

1.9.1.2 The α + α System

The generator coordinates R are taken from 0.8 to 8 fm by step of 0.8 fm. We first
present the energy curves, defined as the energy of the system for a fixed generator
coordinate R

E�(R) = H�(R, R)

N�(R, R)
, (1.9.16)

and involve the Hamiltonian and overlap kernels.
Using the asymptotic behaviour (1.8.1) of the Hamiltonian provides, at large R

values

E�(R) → 2Eα + �
2

2μ

�(� + 1)

R2 + Z1Z2e2

R
+ 1

4
�ω, (1.9.17)

where the last contribution comes from a residual kinetic-energy term. The energy
curves cannot be considered as nucleus–nucleus potentials, as they do not include
forbidden states (see Sect. 1.6). However they provide qualitative properties of the
system. In particular the existence of a minimum suggests bound states or resonances,
and the location of this minimum provides an estimate of clustering effects.
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Fig. 1.8 α + α energy
curves (1.9.16). Horizontal
lines represent threshold
energies (see Eq. 1.9.17)

Fig. 1.9 α + α phase shifts
for � = 0, 2, 4. Experimental
data are taken from Ref.
[127]

The energy curves for � = 0, 2, 4 are presented in Fig. 1.8. As it is well known,
the minimum for � = 0 is located at fairly large distances (R ≈ 3.2 fm), which is a
strong support for α + α clustering in 8Be. When � increases this minimum moves
to smaller distances. It almost disappears for � = 4, where only a broad resonance
can be expected.

The α +α phase shifts are presented in Fig. 1.9 with the experimental data of Ref.
[127]. The 0+ ground state is found at E = 0.098 MeV, in fair agreement with exper-
iment (E = 0.092 MeV). The broad 2+ and 4+ resonances are also well reproduced
by the α +α model. Further developments in the α +α system, including monopole
distortion of the α particle (i.e. the α wave function is defined by a combination of
several b values) can be found, for example, in Refs. [37, 60]. A discussion of the
sensitivity to the channel radius is presented in Ref. [124].

1.9.1.3 The 3α System

The 12C nucleus described by a 3α cluster structure has been studied in various
microscopic approaches: with a frozen geometry (see, e.g., Refs. [5, 35, 129]), with
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an α +8 Be model [33, 130], and with the hyperspherical formalism [93]. Here
we aim at comparing the different approaches within the same conditions. We also
complement the hyperspherical calculation presented in Ref. [93].

In multichannel (or multicluster) calculations, the energy curves are defined by
a generalization of (1.9.16). For a given generator coordinate R, the Hamiltonian
matrix is diagonalized as

∑

j

(
HJπ

ij (R, R) − EJπ (R)NJπ
ij (R, R)

)
cJπ

j = 0, (1.9.18)

where i, j represent the channels (or additional generator coordinates in multicluster
problems). We only consider the lowest eigenvalue.

The calculations are performed as follows:

(a) For the frozen geometry, we take an equilateral structure (see Fig. 1.10), with
RC = 1–7 fm (by step of 1 fm). A minimum is found near RC ≈ 2.1 fm, which
is smaller than with the Volkov force [5, 35]. The Volkov force is known to give
rise to stronger clustering effects.

(b) For the α+8Be model (Fig. 1.11), 8Be is described by I = 0,2,4 and by 4 generator
coordinates R2 = 1.4, 2.6, 3.8, 5.0 fm. These values cover the minima observed
in the energy curves (Fig. 1.8). For the α+8Be motion, we take R1 = 1.5–12.3 fm
by step of 1.2 fm. Matrix elements are determined as explained in Ref. [110].
Figure 1.11 displays the α+8Be energy curves as a function of the generator
coordinate R1. The 0+ and 2+ partial waves present a minimum near R1 ≈ 2 fm,
whereas the 3− energy curve is typical of a stronger deformation. We illustrate
the influence of α +8Be� excited channels by keeping only the α +8Be(0+)

configurations (dotted lines). The energy surface (generalization of Eq. (9.18) for
two generator coordinates) is presented in Fig. 1.12 for J = 0+. The minimum,
corresponding to the ground state of 12C, is obtained for rather small values of
R1 and R2. At large R1 values, the dependence on R2 follows the α + α energy
curves of Fig. 1.8.

(c) For the hyperspherical description of the 3α system, we take the generator coordi-
nates R = 1.5–15 fm by step of 1.5 fm, and K values up to Kmax = 12. The energy
curves (Fig. 1.13) present a minimum near R ≈ 4 fm for J = 0+, 2+ and at
larger distance for J = 3−. In Fig. 1.14 we analyze the convergence with respect
to Kmax. This convergence is rather fast, much faster than in non-microscopic
models [116].

The 12C energies, obtained by the diagonalization of the full basis, i.e. including
all generator coordinates, are shown in Table 1.6 for the 0+

1 , 0+
2 , 2+ and 3− states.

Except for the 0+
2 resonance, the differences between calculations (b) and (c) are of

the order of 0.02 MeV, which shows that both bases are equivalent. In contrast, the
much simpler model (a) gives a significant underbinding (∼ 0.7 MeV). In option
(b), considering only I = 0 in 8Be provides a non-negligible difference. For the 0+

2
state which plays a key role in He burning, the α+8Be description is slightly better
than the hyperspherical approach (larger K and R values would be necessary to reach
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Fig. 1.10 3α structure in model (a) (left) and energies (right). The α particle is represented by a
gray circle

Fig. 1.11 3α structure in model (b) (left) and energy curves for different J values (right). The dotted
lines are obtained with the α +8Be(0+) channel only

Fig. 1.12 12C energy surface for J = 0+ as a function of R1 and R2

full convergence). For this state the frozen equilateral triangle configuration is not
adapted.

In general the 2+ excitation energy is underestimated. This result is due to the
lack of spin–orbit force, whose matrix elements vanish in an α model. Introducing α
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Fig. 1.13 3α structure in hyperspherical model (c) (left) and energies (right)
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Fig. 1.14 3α binding energies as a function of Kmax

Table 1.6 Binding energies (in MeV) for various 12C states in models (a), (b) and (c). For model
(b), the bracketed values are obtained with I = 0 only

State (a) (b) (c)

0+
1 −83.69 −84.44(−84.10) −84.46

0+
2 −63.86 −72.23(−72.11) −72.14

2+ −81.29 −82.04(−81.41) −82.06
3− −69.03 −72.30(−71.81) −72.28

breakup configurations increases the 2+ excitation energy [131], in agreement with
experiment. In that case, however, the simplicity of the α cluster model is lost.

1.9.2 Other Applications of the Multicluster Model

In this subsection, we aim to illustrate the multicluster approach with typical results
obtained with a five-cluster model [35, 80, 132]. It allows the description of reac-
tions between a nucleus denoted as 1 and a nucleus denoted as 2 and/or to describe
spectroscopic properties of the unified nucleus (1 + 2).
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Fig. 1.15 Schematic
representation of the
five-center model. Si are the
corresponding vertices
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Table 1.7 Binding energies (in MeV) of one-center and four-center wave functions.

Ground-state One center Four centers
12C 0+ −76.3 −88.0
13C 1/2− −83.7 −91.7
14C 0+ −96.1 −103.4
15N 1/2− −120.7 −126.8
16O 0+ −140.4 −148.8

A schematic representation is given in Fig. 1.15. Nucleus 1 is described by a
tetrahedral structure with three alpha clusters located at the vertices of an equilateral
triangle and an additional s-cluster. Typical examples are 12C = 3α, 13C = 3α + n,

and 15N = 3α + t. Nucleus 2 is described by a s-cluster and corresponds to an α

particle or a nucleon. The set of generator coordinates defining nucleus 1 is defined
as R{C} = (Rc, Rh) (see Fig. 1.15).

To test the cluster description of nucleus 1, we first analyze properties of some
p-shell nuclei described by a tetrahedral structure [35]. The calculations with the
four-cluster model are performed with a mixing of (Rc, Rh) configurations, whereas
one-center results are obtained with Rc = Rh = 0. The oscillator parameter is
optimized to minimize the binding energy. The nucleon–nucleon interaction is the
Volkov force V2 (with the standard value M=0.6), and the spin–orbit amplitude is
chosen as S0 = 30 MeV.fm5. The spin–orbit force does not contribute to 12C, 14C
and 16O since the clusters have an intrinsic spin zero.

Table 1.7 compares the ground-state binding energies in a one-center model and
in a four-centers model. The binding energies obtained within the four-center model
are always lower with a quite substantial difference.

Table 1.8 shows typical E2 transition probabilities and the 12C quadrupole moment.
Clearly the introduction of clustering effects in these nuclei improve the wave func-
tions. The four-cluster results are in good agreement with experiment, whereas the
no-cluster approximation underestimates the E2 properties.

We illustrate five-cluster calculations with the α+16O system, described by five
α clusters [80]. It is well-known that several 20Ne states present a marked α+16O
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Table 1.8 12C quadrupole moment (in e.fm2) and reduced transition probabilities (in W.u.). Exper-
imental data are taken from Refs. [133, 134].

One-center Four-center Experiment
12C Q(2+) 3.0 5.4 6 ± 3

B(E2, 2+ → 0+) 2.0 4.5 4.65 ± 0.26
13C B(E2, 3/2− → 1/2−) 1.5 3.4 3.5 ± 0.8

B(E2, 5/2− → 1/2−) 1.0 3.1 3.1 ± 0.2

Table 1.9 α-width (in keV) of some 20Ne states in the K = 0− band. Experimental data are taken
from Ref. [135]

Jπ Two centers Five centers (0+) Five-centers (0+, 3−, 1−) Experiment

1− 0.042 0.032 0.031 0.028 ± 0.003
3− 13.0 10.8 10.6 8.2 ± 0.3
5− 200 173 169 145 ± 40
7− 700 570 530 310 ± 30

structure. The 20Ne nucleus is described by α + 16O channels where the 0+ ground
state and the 1− and 3− excited states are considered. For computer-time reasons,
only one set of generator coordinates (Rc = 1.8 fm, Rh = 2.5 fm) is selected to
describe the 16O nucleus. These values minimize the 16O binding energy.

We focus here on α widths of some states in the K = 0− band. They are obtained
within the R-matrix formalism. Results are gathered in Table 1.9 and obtained in
three different ways: the standard two-cluster model where 16O is described by a
closed p-shell structure, the multicluster approach with only the 16O ground state,
and with some excited channels. The α widths are overestimated in the two-center
approach, but are significantly reduced when clustering effects are included in 16O.

Excited channels still improve the comparison with experiment.
In Ref. [80] the spectroscopy of 20Ne was complemented by calculations of the

α +16O phase shifts and of the 16O(α, γ)20Ne radiative-capture cross section. As
mentioned in Sect. 1.8, the cluster model can be extended to scattering states with
the R-matrix method, which provides scattering properties (such as resonance widths)
and cross sections.

1.9.3 Multichannel Study of the 17F(p, γ )18Ne Reaction

The knowledge of the 17F(p, γ )18Ne reaction rate is important for the understanding
of novae and X-ray bursts [136]. The energy range characteristic of such astrophysical
events can be evaluated by the calculation of the Gamow energy EG and the width
of the Gamow peak �0 [137]. For a typical temperature T = 0.5 GK, these values
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Fig. 1.16 18Ne and 18O
energy spectra (taken from
Ref. [136]) with respect to
the nucleon threshold (dotted
line)
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are EG = 0.32 MeV and �0 = 0.28 MeV. Until now, a direct measurement of the
17F(p, γ )18Ne cross section down to these energies has not been performed.

It is now well established that the 3+
1 (� = 0) resonance at Ecm = 0.64 MeV

dominates the 17F(p, γ)18Ne reaction rate at stellar temperatures. The energy and
the proton width have been measured by Bardayan et al. [138]. However, the gamma
width which determines the reaction rate is experimentally unknown and is estimated
from theoretical calculations.

The predictive power of the GCM is of particular interest in such a context. Indeed,
the small number of parameters allows reliable calculations in the astrophysical
energy range. The 18Ne wave functions are defined as a combination of 17F + p and
14O + α channel functions. The 17F internal wave functions are defined from all
possible Slater determinants with one proton in the sd shell, the s and p shells being
filled. This provides the well known shell-model states with spin I1 = 5/2+, 1/2+,

and 3/2+. Similarly, the 14O internal wave functions are defined from four neutrons
in the p shell, the s shell being filled for the neutron part, and the s and p shells
being filled for the proton part. This provides two states with I1 = 0+, one state with
I1 = 1+ and two states with I1 = 2+ (see Sect. 7.2). The nucleon–nucleon interaction
is fitted to the 3+ energy. Further detail about the conditions of the calculation is given
in Ref. [136].

The 18Ne spectrum is shown in Fig. 1.16 along with the 18O mirror nucleus. We
find a good overall agreement with experiment. The state ordering below the 17F+p
threshold is well reproduced, except for the 0+

2 state, slightly unbound in the GCM.
However the difference with the experimental value is only of 0.49 MeV. We can also
notice the good description of the 2+

2 state.
The important 3+

1 resonance is known to have a single-particle structure, and is
well described in a 17F + p model. The energy is adjusted by the nucleon–nucleon
force, but the proton width Γp = 21.1 keV is obtained without any fitting procedure.
The GCM value is in very good agreement with experiment (Γp = 18.0 ± 2stat ±
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Fig. 1.17 17F(p, γ )18Ne
astrophysical S-factor with
the contribution of different
multipolarities (taken from
Ref. [136])
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1sys keV). The predicted gamma width Γγ = 33 meV is similar to values deduced
from the shell model, and used in astrophysics (Γγ = 30 ± 20 meV) [138].

The total and partial S-factors are displayed in Fig. 1.17. The astrophysical S-factor
is related to the cross section σ(E) as

S(E) = Eσ(E)exp(2πη), (1.9.19)

where η is the Sommerfeld parameter defined in Sect. 1.8.2. The calculations are
performed for the E1, E2, and M1 multipolarities, and the 0+

1 , 2+
1 , 2+

2 and 4+
1 bound

states are considered. As expected, the non-resonant E1 transitions give the dominant
contribution below the 3+

1 state. At zero energy, the S-factor is entirely determined
by the E1 term. The calculation gives S(0) = 3.5 keV-b. On the contrary, the M1
contribution is dominant near the resonance (the E2 term is negligible). More detailed
calculations [136] show that transitions to the 2+

1 and 2+
2 bound states represent the

main parts of the S-factor.
The 17F(p, γ )18Ne reaction rate is usually calculated as a sum of a direct compo-

nent and of a resonant term taking into account the 1−
1 , 3+

1 and 0+
3 contributions in

18Ne [139]. One of the main advantages of our method is to perform calculations
without separation between resonant and non-resonant contributions. However, in
the present case our model is unable to reproduce the 1−

1 and 0+
3 low-energy reso-

nances. Their contribution to the rate can be treated separately taking energies and
total widths from experiment [139].

All these results illustrate the adequacy and limitations of the present framework
for reactions of astrophysical interest. Here, two states located in the astrophysical
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energy range are not reproduced by the GCM: the 1−
1 and 0+

3 states. This means
that the multichannel basis is not sufficient, and that other configurations should be
introduced. Owing to the fact that the main contribution comes here from the 3+

1
resonance, this problem is however minor.

Another drawback comes from the lack of degrees of freedom in the Volkov
interaction. The present parameter choice leads to a strong overestimate of the
(14O + α)− (17F + p) threshold: 15.43 MeV to be compared with the experimental
value 1.19 MeV [140]. This can be explained by the fact that the model gives a better
description of 17F than of 14O. This problem prevents the simultaneous study of the
14O(α, p)17F transfer reaction. For these reasons, we have developed the EVI [141]
(see Sect. 1.2 for more detail), a new interaction with an additional parameter which
allows to fit two important properties of the system such as a resonance energy and a
threshold value. This interaction is well suited to transfer reactions where the repro-
duction of the Q value is crucial. Applications in nuclear astrophysics can be found,
for example, in Ref. [142].

1.9.4 12Be as an Example of a Light Exotic Nucleus

Due to technical difficulties, experimental informations related to the study of exotic
light nuclei are in general limited. From a theoretical point of view, cluster models
appear to be particularly well adapted to study such nuclei. In particular, the exact
treatment of the asymptotic behavior of the wave functions through the MRM (see
Sect. 1.8) allows the description of unbound states. A cluster model is also well suited
to molecular states, which present a strong deformation.

We illustrate applications of the GCM with a recent study performed on the
12Be nucleus [14], by focusing on molecular states. Above the 6He+6He threshold,
4+, 6+ and 8+ states have been identified in the breakup of 12Be into the 6He+6He
and 8He + α channels by Freer et al. [143]. They are believed to be members of a
molecular band.

A multi-channel wave function is given by a superposition of 8He + α and
6He+6He components. The 0+ internal wave functions of 6He and 8He are built
in a one-center harmonic oscillator model with (p3/2)

2 and (p3/2)
4 configurations,

respectively and the 2+ states, with (p3/2)(p1/2) and (p3/2)
3(p1/2)

1 configurations,
respectively. Details on the conditions of the calculations are given in Ref. [14]. The
present calculation updates an earlier study [13], where only ground-state configu-
rations were included.

The calculation (see Fig. 1.18) supports the existence of a molecular band,
as proposed by Freer et al. [143] and by Saito et al. [144]. The large reduced
widths support the molecular structure of this band. The analysis of the dimen-
sionless reduced widths shows that the 0+ wave function is dominated by the
6He(0+) +6He(0+) channel. The theoretical 2+ and 4+ energies are in good agree-
ment with the results of Saito et al. [144] and of Freer et al. [143], respectively.
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Fig. 1.18 Positive-parity
12Be states predicted by the
GCM (full symbols) and
experimental candidates
(open symbols [143–145])
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The wave functions are dominated by the 6He(0+) +6 He(0+) and 8He(0+) + α

ground-state configurations.
The 0+

2 and 2+
2 states are well reproduced by the GCM. Indeed, the energy differ-

ence with experiment is less than 0.5 MeV for both states (see Fig. 1.18). According
to Refs. [146–148], we confirm that these states belong to a same 0+

2 band and we
propose other band members. The calculation shows that the wave functions of the
0+

2 -band members are dominated by the 8He + α channels.
With this example, we have illustrated the ability of the GCM to describe molecular

states. Indeed, we have reproduced many known states of 12Be, in particular those
belonging to a molecular band. We have also predicted new 12Be bands which could
be searched for in future experimental studies.

1.10 Conclusions

In this work, we have reviewed various aspects of microscopic cluster models. With
respect to non-microscopic variants, microscopic theories offer several advantages:
in particular, they only depend on a nucleon–nucleon interaction, and excited config-
urations can be introduced without further parameters. The cluster approximation
makes them tractable, even for fairly large nucleon numbers. Of course, cluster
models use effective interactions.

Microscopic cluster models are applied in many topics; using the microscopic
R-matrix method, they can be consistently extended to scattering states [124]. This
property opens many perspectives in low-energy nuclear physics. Not only cross
sections can be studied, but spectroscopic applications can be extended to unbound
states, even with a broad width [149]. The microscopic treatment of two-cluster
scattering states is well known, but this formalism has been recently extended to
three-cluster scattering states [95].

We have illustrated the formalism with some typical examples, both in spec-
troscopy and in reactions. In the literature, the GCM has been applied to many
fields, ranging from the spectroscopy of exotic nuclei to reactions of astrophysical
interest. Microscopic cluster models represent a efficient tool for the investigation
of nuclei located near or beyond the driplines. These nuclei, such as 16B or 18B
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for example [150], are now actively studied in large-scale facilities. They combine
several difficulties: they are unbound even in their ground state, excited states of the
core are expected to be important, and core-neutron interactions (such as 15B + n or
17 B+n) are not available. Investigations of Bose–Einstein condensation [8] in nuclear
physics also benefit from cluster models. In the future, scattering theories could be
developed with microscopic cluster wave functions of the projectile, in particular
for the Continuum Discretized Coupled Channel (CDCC) method [99], or for the
eikonal method [151]. The merging of precise scattering models with microscopic
descriptions of the projectile represents a challenge for the upcoming years.
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63. Navrátil, P., Kamuntavičius, G.P., Barrett, B.R.: Phys. Rev. C 61, 044001 (2000)
64. Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Phys. Rev. C 51, 38 (1995)
65. Machleidt, R.: Phys. Rev. C 63, 024001 (2001)
66. Navrátil, P., Gueorguiev, V.G., Vary, J.P., Ormand, W.E., Nogga, A.: Phys. Rev. Lett. 99,

042501 (2007)
67. Tohsaki-Suzuki, A.: Prog. Theor. Phys. Suppl. 62, 191 (1977)
68. Quaglioni, S., Navrátil, P.: Phys. Rev. C 79, 044606 (2009)
69. Hesse, M., Sparenberg, J.M., Van Raemdonck, F., Baye, D.: Nucl. Phys. A 640, 37 (1998)
70. Thompson, D.R., Tang, Y.C.: Phys. Rev. C 4, 306 (1971)
71. Theeten, M., Baye, D., Descouvemont, P.: Phys. Rev. C 74, 044304 (2006)



64 P. Descouvemont and M. Dufour

72. Suzuki, Y.: Nucl. Phys. A 405, 40 (1983)
73. J. Raynal, Computing as a language of physics, Trieste 1971, p. 281. IAEA, Vienna (1972)
74. Baye, D.: Phys. Stat. Sol. (b) 243, 1095 (2006)
75. Horiuchi, H.: Prog. Theor. Phys. 43, 375 (1970)
76. Timofeyuk, N.K., Descouvemont, P.: Phys. Rev. C 71, 064305 (2005)
77. Dufour, M., Descouvemont, P.: Nucl. Phys. A 785, 381 (2007)
78. Lawson, R.D.: Theory of The Nuclear Shell Model. Clarendon, Oxford (1980)
79. Bethe, H.A., Rose, M.E.: Phys. Rev. 51, 283 (1937)
80. Dufour, M., Descouvemont, P., Baye, D.: Phys. Rev. C 50, 795 (1994)
81. Aoki, K., Horiuchi, H.: Prog. Theor. Phys. 68, 2028 (1982)
82. Descouvemont, P., Baye, D.: Nucl. Phys. A 517, 143 (1990)
83. Gartenhaus, S., Schwartz, C.: Phys. Rev. 108, 482 (1957)
84. Rose, H.J., Brink, D.M.: Rev. Mod. Phys. 39, 306 (1967)
85. Baye, D., Descouvemont, P.: Nucl. Phys. A 407, 77 (1983)
86. Tohsaki-Suzuki, A.: Prog. Theor. Phys. 59, 1261 (1978)
87. Hill, D.L., Wheeler, J.A.: Phys. Rev. 89, 1102 (1953)
88. Friedrich, H.: Nucl. Phys. A 224, 537 (1974)
89. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, London (1972)
90. Baye, D., Salmon, Y.: Nucl. Phys. A 331, 254 (1979)
91. Varga, K., Lovas, R.G.: Phys. Rev. C 37, 2906 (1988)
92. Saito, S.: Prog. Theor. Phys. 41, 705 (1969)
93. Suzuki, Y., Matsumura, H., Orabi, M., Fujiwara, Y., Descouvemont, P., Theeten, M., Baye,

D.: Phys. Lett. B 659, 160 (2008)
94. Baye, D., Descouvemont, P.: Ann. Phys. 165, 115 (1985)
95. Damman, A., Descouvemont, P.: Phys. Rev. C 80, 044310 (2009)
96. Theeten, M., Matsumura, H., Orabi, M., Baye, D., Descouvemont, P., Fujiwara, Y., Suzuki,

Y.: Phys. Rev. C 76, 054003 (2007)
97. Fujiwara, Y., Suzuki, Y., Miyagawa, K., Kohno, M., Nemura, H.: Prog. Theor. Phys. 107, 993

(2002)
98. Descouvemont, P., Tursunov, E.M., Baye, D.: Nucl. Phys. A 765, 370 (2006)
99. Austern, N., Iseri, Y., Kamimura, M., Kawai, M., Rawitscher, G., Yahiro, M.: Phys. Rep. 154,

125 (1987)
100. Fujiwara, Y., Suzuki, Y., Kohno, M., Miyagawa, K.: Phys. Rev. C 77, 027001 (2008)
101. Kanada, H., Kaneko, T., Nagata, S., Nomoto, M.: Prog. Theor. Phys. 61, 1327 (1979)
102. Buck, B., Friedrich, H., Wheatley, C.: Nucl. Phys. A 275, 246 (1977)
103. Hutson, J.M.: Comput. Phys. Commun. 84, 1 (1994)
104. Buck, B., Baldock, R.A., Rubio, J.A.: J. Phys. G 11, L11 (1985)
105. Descouvemont, P.: Nucl. Phys. A 655, 440 (1999)
106. Descouvemont, P.: Astrophys. J. 543, 425 (2000)
107. Messiah, A.: Quantum Mechanics. Dover Publications, New York (1999)
108. Descouvemont, P.: Phys. Rev. C 47, 210 (1993)
109. Descouvemont, P.: Nucl. Phys. A 615, 261 (1997)
110. Descouvemont, P., Baye, D.: Nucl. Phys. A 463, 629 (1987)
111. Descouvemont, P., Baye, D.: Nucl. Phys. A 573, 28 (1994)
112. Baye, D., Suzuki, Y., Descouvemont, P.: Prog. Theor. Phys. 91, 271 (1994)
113. Descouvemont, P.: Phys. Rev. C 44, 306 (1991)
114. Zhukov, M.V., Danilin, B.V., Fedorov, D.V., Bang, J.M., Thompson, I.J., Vaagen, J.S.: Phys.

Rep. 231, 151 (1993)
115. Raynal, J., Revai, J.: Nuovo Cim. A 39, 612 (1970)
116. Descouvemont, P., Daniel, C., Baye, D.: Phys. Rev. C 67, 044309 (2003)
117. Thompson, I.J., Danilin, B.V., Efros, V.D., Vaagen, J.S., Bang, J.M., Zhukov, M.V.: Phys.

Rev. C 61, 024318 (2000)
118. Adahchour, A., Descouvemont, P.: J. Phys. G 37, 045102 (2010)



1 Microscopic Cluster Models 65

119. Lane, A.M., Thomas, R.G.: Rev. Mod. Phys. 30, 257 (1958)
120. Thompson, I.J.: Comput. Phys. Rep. 7, 167 (1988)
121. Baye, D., Heenen, P.-H., Libert-Heinemann, M.: Nucl. Phys. A 291, 230 (1977)
122. Hesse, M., Roland, J., Baye, D.: Nucl. Phys. A 709, 184 (2002)
123. Quaglioni, S., Navrátil, P.: Phys. Rev. Lett. 101, 092501 (2008)
124. Descouvemont, P., Baye, D.: Rep. Prog. Phys. 73, 036301 (2010)
125. Descouvemont, P.: Theoretical Models for Nuclear Astrophysics. Nova Science, New York

(2003)
126. Bloch, C.: Nucl. Phys. 4, 503 (1957)
127. Afzal, S.A., Ahmad, A.A.Z., Ali, S.: Rev. Mod. Phys. 41, 247 (1969)
128. Baye, D., Heenen, P.-H.: Nucl. Phys. A 233, 304 (1974)
129. Uegaki, E., Okabe, S., Abe, Y., Tanaka, H.: Prog. Theor. Phys. 57, 1262 (1977)
130. Descouvemont, P., Baye, D.: Phys. Rev. C 36, 54 (1987)
131. Itagaki, N., Aoyama, S., Okabe, S., Ikeda, K.: Phys. Rev. C 70, 054307 (2004)
132. Dufour, M., Descouvemont, P.: Phys. Rev. C 56, 1831 (1997)
133. Ajzenberg-Selove, F.: Nucl. Phys. A 506, 1 (1990)
134. Ajzenberg-Selove, F.: Nucl. Phys. A 523, 1 (1991)
135. Ajzenberg-Selove, F.: Nucl. Phys. A 475, 1 (1987)
136. Dufour, M., Descouvemont, P.: Nucl. Phys. A 730, 316 (2004)
137. Clayton, D.D.: Principles of Stellar Evolution and Nucleosynthesis. The University of

Chicago Press, Chicago (1983)
138. Bardayan, D.W., Blackmon, J.C., Brune, C.R., Champagne, A.E., Chen, A.A., Cox, J.M.,

Davinson, T., Hansper, V.Y., Hofstee, M.A., Johnson, B.A., Kozub, R.L., Ma, Z., Parker, P.D.,
Pierce, D.E., Rabban, M.T., Shotter, A.C., Smith, M.S., Swartz, K.B., Visser, D.W., Woods,
P.J.: Phys. Rev. C 62, 055804 (2000)

139. García, A., Adelberger, E.G., Magnus, P.V., Markoff, D.M., Swartz, K.B., Smith, M.S., Hahn,
K.I., Bateman, N., Parker, P.D.: Phys. Rev. C 43, 2012 (1991)

140. Tilley, D.R., Weller, H.R., Cheves, C.M., Chasteler, R.M.: Nucl. Phys. A 595, 1 (1995)
141. Dufour, M., Descouvemont, P.: Nucl. Phys. A 750, 218 (2005)
142. Dufour, M., Descouvemont, P.: Phys. Rev. C 72, 015801 (2005)
143. Freer, M., Angélique, J.C., Axelsson, L., Benoit, B., Bergmann, U., Catford, W.N., Chappell,

S.P.G., Clarke, N.M., Curtis, N., D’Arrigo, A., DeGóes Brennand, E., Dorvaux, O., Fulton,
B.R., Giardina, G., Gregori, C., Grevy, S., Hanappe, F., Kelly, G., Labiche, M., Le Brun, C.,
Leenhardt, S., Lewitowicz, M., Markenroth, K., Marqués, F.M., Murgatroyd, J.T., Nilsson,
T., Ninane, A., Orr, N.A., Piqueras, I., Laurent, M.G.S., Singer, S.M., Sorlin, O., Stuttgé, L.,
Watson, D.L.: Phys. Rev. C 63, 034301 (2001)

144. Saito, A., Shimoura, S., Takeuchi, S., Motobayashi, T., Minemura, T., Matsuyama, Y., Baba,
H., Akiyoshi, H., Ando, Y., Aoi, N., Fülöp, Z., Gomi, T., Higurashi, Y., Hirai, M., Ieki, K.,
Imai, N., Iwasa, N., Iwasaki, H., Iwata, Y., Kanno, S., Kobayashi, H., Kubono, S., Kunibu,
M., Kurokawa, M., Liu, Z., Michimasa, S., Nakamura, T., Ozawa, S., Sakurai, H., Serata, M.,
Takeshita, E., Teranishi, T., Ue, K., Yamada, K., Yanagisawa, Y., Ishihara, M.: Nucl. Phys. A
738, 337 (2004)

145. Shimoura, S., Ota, S., Demichi, K., Aoi, N., Baba, H., Elekes, Z., Fukuchi, T., Gomi, T.,
Hasegawa, K., Ideguchi, E., Ishihara, M., Iwasa, N., Iwasaki, H., Kanno, S., Kubono, S., Kurita,
K., Kurokawa, M., Matsuyama, Y., Michimasa, S., Miller, K., Minemura, T., Motobayashi,
T., Murakami, T., Notani, M., Odahara, A., Saito, A., Sakurai, H., Takeshita, E., Takeuchi, S.,
Tamaki, M., Teranishi, T., Yamada, K., Yanagisawa, Y., Hamamoto, I.: Phys. Lett. B 654, 87
(2007)

146. Kanada-En’yo, Y., Horiuchi, H.: Phys. Rev. C 68, 014319 (2003)
147. Ito, M., Itagaki, N., Sakurai, H., Ikeda, K.: Phys. Rev. Lett. 100, 182502 (2008)
148. Bohlen, H.G., von Oertzen, W., Kokalova, T., Schulz, C., Kalpakchieva, R., Massey, T.N.,

Milin, M.: Int. J. Mod. Phys. E 17, 2067 (2008)
149. Baye, D., Descouvemont, P., Leo, F.: Phys. Rev. C 72, 024309 (2005)



66 P. Descouvemont and M. Dufour

150. Lecouey, J.L., Orr, N., Marqués, F., Achouri, N., Angélique, J.C., Brown, B., Carstoiu, F.,
Catford, W., Clarke, N., Freer, M., Fulton, B., Grévy, S., Hanappe, F., Jones, K., Labiche, M.,
Lemmon, R., Ninane, A., Sauvan, E., Spohr, K., Stuttgé, L.: Phys. Lett. B 672, 6 (2009)

151. Suzuki, Y., Lovas, R.G., Yabana, K., Varga, K.: Structure and Reactions of Light Exotic
Nuclei. Taylor & Francis, London (2003)


	1 Microscopic Cluster Models
	1.1 Introduction
	1.2 Choice of the Nucleon--Nucleon Interaction
	1.3 The Resonating Group Method
	1.3.1 The RGM Equation
	1.3.2 Example: Overlap Kernel of the  α+n  System

	1.4 The Generator Coordinate Method
	1.4.1 Introduction
	1.4.2 Slater Determinants and GCM Basis Functions
	1.4.3 Equivalence Between RGM and GCM
	1.4.4 Two-Cluster Angular-Momentum Projection

	1.5 Matrix Elements Between Slater Determinants
	1.5.1 General Presentation
	1.5.2 Spin and Isospin Factorization
	1.5.3 The Spin--Orbit Interaction
	1.5.4 Matrix Elements Between Individual Orbitals
	1.5.5 Example:   α+n  Overlap Kernel
	1.5.6 GCM Kernels of   α+N  Systems

	1.6 Approximations of the RGM
	1.6.1 Eigenvalues of the Overlap Kernel
	1.6.2 Reformulation of the RGM Equation
	1.6.3 The Orthogonality Condition Model

	1.7 Recent Developments of the GCM
	1.7.1 Introduction
	1.7.2 Internal Wave Functions
	1.7.3 Multicluster Angular-Momentum Projection
	1.7.4 Multichannel Two-Cluster Systems
	1.7.5 Multicluster Models

	1.8 Scattering States With the GCM
	1.8.1 Introduction
	1.8.2 Cross Sections
	1.8.3 The Microscopic R-Matrix Method

	1.9 Applications of the GCM
	1.9.1 The   2α  and   3α  Systems
	1.9.2 Other Applications of the Multicluster Model
	1.9.3 Multichannel Study of the   17F(p,γ)18Ne  Reaction
	1.9.4   12Be  as an Example of a Light Exotic Nucleus

	1.10 Conclusions
	References


