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Abstract: Starting from Faddeev's theory, we derive exact one-dimensional integral
equations for the three-body scattering problem. The task is accomplished by
application of the Schmidt method (quasi-particle method). Our equations, which
are more practical than those of Faddeev, have the structure of multi-channel
two-particle Lippmann-Schwinger equations. The generalized ""potentials' oc-
curring in them have to be calculated from two-dimensional integral equations,
the iteration of which should rapidly converge in most cases of physical interest.
Thus our approach admits the systematical application of the methods of pertur-
bation theory to composite-particle scattering problems. To lowest order, we
reproduce a result of Lovelace.

1. INTRODUCTION

Collision processes of three non-relativistic particles which may form
bound two-particle subsystems, have been studied with increasing interest
during the last years. The problem, of course, can be formulated in a well-
defined manner by the basic concepts of multi-channel scattering theory.
However, to handle it in practice, manageable integral equations ought to
be formulated for scattering states or transition operators. A decisive step
towards this goal has been accomplished by Faddeev [1,2]. The main feature
of his equations is that their kernel becomes a Hilbert-Schmidt operator after
iteration. Thus, in principle being solvable, it appears however that they
are too complicated for practical purposes. In particular, these equations
are still two-dimensional after angular momentum decomposition. To ob-
tain a more practical theory, it therefore seems desirable to derive exact,
one-dimensional integral equations for the transition amplitudes.

Starting from Faddeev-like equations for appropriately chosen transition
operators, we reduce them to one-dimensional integral equations which have
the form of multi-channel two-particle Lippmann-Schwinger equations.

This is done by application of the Schmidt method already used by Weinberg
for the treatment of the two-particle collision problem *. We start by split-

* In this form of application, it is called "quasi-particle method", see refs. [3-5].
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ting the transition operators of the two-particle subsystems occurring in
the Faddeev equations into separable and non-separable parts. It should be
stressed that we do not use the fact that the square of the Faddeev kernel,
being a Hilbert-Schmidt operator, may be approximated by a series of
terms separable with respect to all of its variables; i.e. this main property
of the Faddeev equations, which is generally assumed to be essential for the
applicability of the Schmidt method [6], is not important for our treatment *.
(This point will be discussed in more detail in a subsequent publication.) As
a consequence of the fact that our separable parts are separable only with
respect to the subsystem variables, we are not left with purely algebraic
equations as in the two-particle case but are left with one-dimensional in-
tegral equations for the three-particle transition amplitudes.

The generalized "potentials™ occurring in these equations are to be deter-
mined from Faddeev-type integral equations, the kernel of which only in-
volves the non-separable parts of the two-particle subsystem transition am-~
plitudes. Since we can make these non-separable parts as small as we like **,
we may solve these equations by iteration.

In general it may suffice to extract only those separable parts of the two~
particle transition amplitudes which correspond to their bound-state and
resonance poles. We then reproduce in lowest order of iteration the Love-
lace equations [8]. A test of the validity of these approximative equations
becomes therefore possible.

We so derive an exact scheme to solve the three-particle problem which is
also practical because we first reduce the two-dimensional Faddeev equa-
tions to one-dimensional Lippmann-Schwinger-type equations, the "poten-
tials™ of which can be determined by a rapidly converging perturbation
series. Or, stated in more general terms, we show in the case of three-
particle scattering that the strong interaction problem is amenable, after
suitably extracting two-particle bound states and resonances, to methods
of perturbation theory.

In sect. 2, we briefly recall some basic procedures of formal scattering
theory and introduce transition operators which are of a rather symmetric
structure. Therefore they are more convenient for the follewing considera-
tions than the transition operators generally used in the literature [7, 8].
Furthermore we give the Faddeev-like equations which they obey. Sect. 3
is concerned with the transformation of these equations to multi-channel
Lippmann-Schwinger-type equations. In sect. 4, we consider the three-
particle bound-state problem. Finally in sect. 5, two special cases of
physical importance are discussed as examples where our equations simpli-
fy considerably.

* For our procedure it is only a matter of convenience to start from Faddeev equa-
tions. Especially it is useful, but not decisive, that these contain explicitly the
transition operators of the subsystems instead of the potentials.

** This is due to the fact that the kernel of the two-particle Lippmann-Schwinger
equation is a Hilbert-Schmidt operator [7].
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2. TRANSITION OPERATORS AND FADDEEV EQUATIONS

In the following we consider three distinguishable particles * with two-
particle interactions

Va=Vi, 5i=1,2,3; a+i,j,

Vo=0. (2.1)
Besides the total Hamiltonian

3
H=H0+E V,=Hy+V, (2.2)

a=1

we introduce channel Hamiltonians by
Hy=Hy+ Vg, (2.3)

the eigenstates of which are called \fba, m>

Ho | %, ) = Egqm|®g, n) - (2.4)

From time-dependent scattering theory, we derive as usual ** the repre-
sentation of the S-matrix for the transition from an initial configuration
characterized by the state *** &, ) to a final configuration l‘I’B w

H >

= lim lim ei(EB"‘Eam)Q%n)(-if) GlE gy 7€) |2 ). (2.5)

Sz.,.
Br;am [0 €m0

Here we have introduced the resolvent

Ge) = (H-2)"1, (2.6)

which satisfies the (second) resolvent equations
G(z) = Ga(z) - Ga(Z)T/_aG(Z) , (2.7
G(z) = Ga(z) - G(z)VaGa(z) s (2.8)

with
Gale) = (Hy-2)"" (2.9)
Va=V-Vo= 2 V,. (2.10)
viQ

Inserting now (2.8) in (2.7), we get

* For the treatment of identical particles and the inclusion of the Pauli principle,
see ref. [8].
** For the basic concepts of multi-channel scattering theory, see e.g., ref. [9] .
*** In the following we always assume « # 0. We therefore do not consider the case
of three incoming free particles.
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G(2) = 03,G3(2) - G(2) Ugel2)Gf2) (2.11)

where
UBQ(Z) = (1 5,30)( —Z)+V- Va— V}3+6}3ava— VBG(Z)VQ . (2.12)
The representation (2.11) of the resolvent G(z) allows us to perform the
limits in (2.5). The result
San; am = padum = 27 8(Epy = Equ) @, 5 |Ugo(Eqm +10) [ € ) (2.13)

shows that the S-matrix is given by the "on-the-energy-shell” matrix ele-
ments of the "transition operators" Ug,(z).

With the help of the resolvent eqs. (2.7) or (2.8), one immediately derives
that they fulfill the Faddeev-like equations

UBa = —(1 - 6)3a)(HO' zZ Z;EB T'}/GOU')/Q ’ (2'14)
or
Usg = =(1-8gg)(H, - 2) - 52 UssGoTs » (2.15)
Fa

which contain the potentials only implicitly in the transition operators of
the two-particle subsystems

Toy=Vy-VoGaVy - (2.186)
The Ugy are related to the operators
Mpgy =854V - V3GVqg (2.17)
considered by Faddeev *, according to
Upq = -(1-830)(Ho-2) + 20 2o Mg (2.18)
Y#3 G*a

With respect to these operators, our Usa have the advantage of leading more
directly to the desired S—matrlx elements, viz. by (2.13). We note that the
transition operators U, used e.g., by Lovelace [7, 8] have the same ad-
vantage. Being related‘gto the UBOZ by

Use = (1= 83)(Hg = 2) + U

-(1-630)(113-2) + Ug;) ) (2.19)

they coincide with them on the energy shell. Thus they can be inserted in
(2.13) instead of Ugq without a change of the result. On the other hand, they
are less symmetric and fulfill integral equations which in contrast to the
original Faddeev equations and to egs. (2.14) or (2.15) contain the potentials
Vy explicitly besides the operators T,. Since only the on-shell amplitudes

* Cf. ref. [2], eq. (3.7).
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are needed to determine the S-matrix we may use the most convenient off-
shell continuations of them which the Ugq appear to be. Indeed, performing
calculations with the different operators shows at once the advantage of our
choice which results in considerable simplifications. Especially it is demon-
strated in sect. 3 that the Faddeev-like eqs. (2.14) and (2.15) can be trans-
formed very naturally to multi-channel two-particle Lippmann-Schwinger
equations * which in lowest order of perturbation theory reproduce Love-
lace's equations. [The original Lovelace equations given in ref.[8], eq. (3.29),
can be derived immediately if the separable approximation used there is in-
corporated in eq. (2.15)].

We furthermore note that the unitarity relation for Ug, follows from ref.
[7], eq. (132), if both U ) and U ( ) are replaced by U, This relation
can thus be formulated gy use of only one operator. In more detail we get
for the discontinuity across the right-hand cuts

UolE +i€) - Ugo(E -i€) = =27 Uo(E +1€)Ao(E) UpolE - i€)
(2.20)

-2m E 2 Up (E +i€)A,,(E)U, o(E - i€)
v=1n

where A, and A, are the projection operators onto the free three-particle
states and the states with two particles bound the third one being free,
respectively [7].

In sect. 3, we often use the momentum-space representation. The nota-
tion coincides with the one employed in ref. [8]. We also assume that the
total momentum is separated off, i.e., the expressions considered depend
only on the centre-of-mass momenta p, of the two-particle subsystems and
the relative momenta q, of the remaining third particles. Let us further-
more recall [cf.ref. [8], eq. (3.11)] that the transition operator T, acting
on the three-particle space is related to the two-particle T-matrix **

(Pg| T (2) | PY) = To{Pg, P 2) by

(Pa» 9o | Tol2) | Plys G) = 5(ag - ab) Py | Tale -42) [P - (2.21)

3. MULTI-CHANNEL TWO-PARTICLE LIPPMANN-SCHWINGER
EQUATIONS
The equations (2.14) can be written in the form
F=]-ITF. (3.1)

Here the F, I and T are matrices, the elements of which represent operators
in the Hilbert space

* In this respect it is of importance that egs. (2.14) or (2.15) show already the sym-
metric structure of these equations.
** In the following hats on operators indicate that these act in the two-particle space.
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Fgg = GoUgaGo » (3.2)
I3g = -(1-034)Go (3.3)
TBa = _GBQ’TC( - (34)

Eq. (3.1) shows the same algebraic structure as the two-particle resolvent
equation. Thus we can transfer the procedure used by Weinberg to handle
this equation. Especially we may proceed in a manner similar to eqgs. (2.11)-
(2.17) of ref. [6]. )

We start by splitting T, into two parts

-~ -~ 1
T,=T5+ Ty, (3.5)
where f‘g is a sum of separable terms of the form

T3(e) = =23 ey m; 2) £y () (i (3.6)

a, m'
For each bound state or resonance of the subsystem we shall take one sep-
arable term. However, it is important to notice that we may add to TS
further sepa:I"able terms in order to get a sufficiently small * non- separable
remainder T,

In general the "form factors" &a, m Py 2) = (pa\a m;z) may depend on
2. However, if they correspond to bound states ll,l/a ) belonging to the
eigenvalues E m < 0, they have to fulfill

am’ = I7c7zwjolf,m> . 3.7

Note that {&,77; 2 | is not required to be the adjoint of |a,m;2). Eq. (3.5)
implies that in the three-particle space we get the same separation

Ty=TS+ Ty, (3.8)

}a,m,z:E

where, according to eq. (2.21),
-q) Dg t 2
-6(q,-q,) 248y, ok Pop 2 - qa) o, mZ =95 go, P @~ qa) :

In writing {—Emla, m; 2) by g (2@ M52 '} in the following it is always to be
understood that its momentum-space representation has the form (3.9).
The splitting (3.8) now allows to write (3.1) in the form

F=I-ITSF-IT'F, (3.10)

where TS and T' are matrlces given by (3.4) with TS and Ta instead of T,
respectively. If we define F' as the solution of

* More precisely, due to the fact that Ta(z) Go(z) is a Hilbert-Schmidt operator for
square-integrable potentials and Im z # 0, the Schmidt norm of Ta(z)GO(z) can be
made arbitrarily small,
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F'=I-IT'F', (3.11)
we have, multiplying this equation with (1 - TS F) from the right,
F=1-ITSF-ITF, (3.12)
Here the abbreviation
F=F(Q1-TSF) (3.13)

has been used. Comparing (3.12) with (3.10), we conclude
F=F , (3.14)
which implies the important result
F=F-F TSF. (3.15)

Inserting the definitions (3.2)-(3.4) in (3.15) and remembering (3.6) or (3.9)
yields the following integral equation for UBa:

GoUsaGq = GoUsaGy - yEy GoUsy Golv,m) by (V7 1Go UGy, (3.16)
s

where according to (3.11) Uéa is given by

Uhy = ~(1- 650 )(H, - 2 Eﬁ TGl - (3.17)

Let us now consider the case 3 # 0, i.e. the case of elastic or re-arrange-
ment collisions *. Defining the "transition amplitudes™

2) = (B, m;2 |G (2) Uy (2)G (2) |a, m; 2) (3.18)

,Sn am(
we find from (3.16) (see fig. 1)

E z X (3.19)

Xan,am = “pn, am - s,y r Xy, am

where the generalized "potentials" ZBn, am are given by (see fig. 2)
Zon, aml?) = (B, w2 [eNE UBa(Z) (2) |a, m; 2) . (3.20)

If, on the other hand, 8 designates the channel of three free particles (3=0,
break-up processes), we introduce the transition amplitudes

Xp,, am(?) = =(P1 Uogl?) Go(2) | @, m; 2) (3.21)
and the expressions (see fig. 3)
Zp |, am(?) = ~(P1| Upg(2)Go(2) [ @, m; 2) (3.22)

to derive again from (3.16) an equation analogous to (3.19) (see fig. 4):

Xpl,am = Zpl,am - E Zpl 'yrt'yy ¥, am - (3.23)

* Recall the third footnote in sect. 2.
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"R - T - SR
+
Y,r r
Fig. 1. The integral equation (3.19) for the elastic and re-arrangement scattering
amplitudes.

) A 6 B

Fig. 2. Graphical form for the integral equation (3.17) for the generalized '"potentials"
(the semicircles indicate the form factors).

"TE - T S e

Fig. 3. The expressions Zpl’am to be determined from egs. (3.22) and (3.17) in graph-
ical form.

TBE - - VELEE

Fig. 4. Graphical representation of eq. (3.23) that yields the break-up amplitude by
means of the bound-state scattering amplitudes.

Of course, this is nof an integral equation. Instead, it yields immediately
the break-up amplitudes once the amplitudes for elastic and re-arrangement
collisions are calculated from the integral equation (3.19).

It should be stressed that the quantities occurring in eqs. (3.19) and (3.23)
are still operators * acting on the plane wave states Iqa). We recognize
that (3.19) has the form of a multi-channel two-particle Lippmann-Schwinger
equation, the Zgn, am and the t?’V playing the role of potentials and of free
propagators, resﬁectively. Furthermore we note that for |a,m;z> and |6,n;z>
belonging to bound states, according to (3.7) we get

8(E gy = Eqm){ @3, |Ugo(E gy +10) ifba, m)

=6(Egy - Eqm){93! Xgn, amEam +10) 14,),  (3.24)
with B, = qg + Eam’ Eam < 0. (A similar result holds, of course, in the
case 8 = 0.) That is, the Xﬁn am (or Xp om) yield immediately the tran-
sition amplitudes necessary for the calculation of the S-matrix from eq.
(2.13). In other words, the three-particle collision problem is reduced to
the solution of the two-particle Lippmann-Schwinger equations (3.19) which,

* Recall especially eq. (3.9).
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after angular momentum decomposition, represent a system of one-dimen-
sional integral equations. The following difference with the two-particle
case should be noted. Here the application of the Schmidt method yields
purely algebraic equations for the transition amplitudes. We are left with
one~dimensional integral equations in the three-particle case because the
splitting of the kernel into separable and non-separable parts is only per-
formed in the subsystem transition operators; i.e., we have not taken into
account that the square of the Faddeev kernel is a Hilbert-Schmidt operator
which could be approximated by terms which are completely separable in
all the momentum variables *.

In order to find the generalized potentials needed in egs. (3.19) and (3.23),
we have to solve eq. (3.17) which shows the same complicated structure as
the original Faddeev-like eq. (2 14). However, because eq. (3 17) contains
only the non-separable part T of T, we may approximate U; Ba by 1teratmg
this equation. We recall [cf. the discussion following eq. (3. 6)] that T, can
be made small enough to assure rapid convergence of this iteration.

In lowest order we get **

UZS((S)( ) = (1 - éﬁa)(Ho_Z) ? (325)

i.e.
fgn) amt?) = -(1- 530[)(;3,71;2\ Go(2) a,m;2) (3.26)
Z})OI), em(®) = {pyla,m;2) (3.27)

just reproducing the Lovelace equations [ref. [8], eq. (3.29)].
The next step in the interation yields for U:Sa an additional term

2 T (z) .
via,3 |
A second iteration results in
Z)(gi) am = - (183X B [Gola,m) + 20 (FR|G TG |aym)
v+a, B
- L L (Bu|GT G TGy laym) (3.28)
v*3 pFa,y
22 la,m) - 22 (py|T.,Ggla,m)
pyam = \P11% P11yGo 19
v*a
+25 I {py|T G T G la,m) . (3.29)
v PEA,y

* To proceed in the latter way would represent an alternative version of application
of the Schmidt method [6]. Since it is rather difficult to find good completely sep-
arable approximations, we did not follow this procedure.

** Tn this approximation the inhomogeneous term of (3.23) vanishes on the energy
shell, of course.
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(The approximations (3.28) and (3.29) are depicted in figs. 5 and 6.)
B P 8
m m
20 T S " S D Y e
Bn,am V4@, B a Y+B P*ay Y
Fig. 5. The generalized potentials approximated up to second order [cf. eq. (3.28)].

= T D R i
Y ptav Y

Fig. 6. Eq. (3.29) in graphical form.

4. THREE-PARTICLE BOUND STATES

An integral equation for the three-particle, bound states |\IJV>, belonging
to the eigenvalues E,,, can easily be derived from (3.16). Due to the fact
that U 3a has a pole for z = E, < 0, it follows that

CoENT,IW,) = -Gy(E) 20 Uy (E)G(B ) v, 7 E )

1 8Y4
Xt?/,V(Eu)<7/’T;EV'GO(EV)VVl\IIV> ’ (4.1)
Let us define
Q") = Lo, m(E) (@M E, [ Go(B)V, [¥) (4-2)

which is still a vector in the Hilbert space spanned by the plane wave states
.qa> Inserting this definition into (4.1), we find (take o = 0 and recall

=1)
py
)= yEr Go(E YUy (ENGCH(E ) v, 7 ENIQLT) (4.3)
Furthermore, from (4.1) and (4.2), we derive
a,m
Q5" = -1, (2, Z) ' Z o,y Q" (4.4)
This integral equation fixes the e1genva1ues E u and the vectors \Q my

which yield, by means of (4.3), the states i\If . In other words, the three-
particle bound-state problem is reduced in the same manner as the scatter-
ing problem to a one-dimensional integral equation. Inserting the lowest-
order approximation for Z,,, , Bns given by (3.26), we reproduce a result

given by Phillips for separable potentials [cf. ref. [10], eq. (4.6]. But of
course, as in the scattering case, our formalism allows for non-separable
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corrections to the calculation of the bound-state energy.

The considerations of this section and of the previous one are based on
the splitting of the two-particle transition operators into their separable
and non-separable parts. This procedure is, of course, not unique. Several
forms have been proposed, e.g. by Lovelace for the choice of the separable
parts TS (2) [cf. ref. [8], egs. (2.54), (2.63) and (2.64)]. A more systematical
treatment has been put forward by Weinberg [3-5] using the Schmidt method.
As we have already pointed out, this procedure is formally 1dentlca1 with
ours if we replace F, I and T in (3.1) by the two-particle operators G, G
and V respectively. By this method we get in the general case 1nstead of
(3.6) the more complicated form

T8(2) = - 20 |a,m;2)t, ()@ n;2] , (4.5)
m,n
which, nevertheless, by a slight modification can be incorporated in our
formalism, developed in sect. 3. Note that in the "ideal choice" [4] eq. (4.5)
reduces to eq. (3.6). .

Other methods for splitting V into a separable and a non-separable part
have been proposed by Sugar and Blankenbecler [11], by Noyes [12], by
Kowalski [13] and by Mongan [14]. Finally we note that three-body forces
can easily be incorporated in our equations in a manner described in refs.
[10, 15].

o, mn

5. SPECIAL CASES

We would like to discuss now two special cases of our eqs. (3.19) and
(3.23) for which the equations for the "potentials" become very simple

(i) Let one two-body amplitude be formally split into a separable and a
non-separable part (for definiteness we call this channel a = 1). The remain-
ing two amplitudes are supposed to be non-separable T, = Th, 3 # a, and
"small” in the sense that it might be reasonable to keep only first ordér
terms of them *. Thus, the relevant potentials are given by eqgs. (3.28) and
(3.29). Therefore the scattering amplitude becomes very simple (fig. 7a)

3
Xln,lm(z) ~ 25 d,n;z )GO(Z)T;,(Z)GO(Z) |1, m;z) . (5.1)
y=2
Since, as already mentioned, (qll ZPl) am iqa> vanishes on the energy shell,
we find for the on-shell break-up amplitude (see fig. 7b).

* An interesting example of this situation is provided by the elastic and inelastic
electron-deuteron scattering.
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,
IR W e

v=23

= - ZEZ%

Y=23

Fig. 7. Graphical representation of a) the bound-state scattering amplitudes (5.1) ,
b} the break-up amplitude (5.2).

Xp1m@) = 2 (P1|T()Gq(a) [1,m;2)
y#1

2 Egl AP 7 )tl Az )(1,V;z|Go(z)T7'/(z)Go(z)'1,m;z>
'yil v

+ L (p|Ty(2)G, ()T ()G () [1, ;5 2)
'yi

== 2 (pl\T;(z)Go(ZHl,m;z)
v#1

+ 20 {p,IT4(2)G oA Tz 2)G (2) |1, m;2) . (5.2)
y#1

Here T is the full amplitude of the @ = 1 subsystem. Note that this result
is correct up to first order in the small amplitudes 7% and T3 It leads to
a type of spectator model with final state interaction. | This result also
follows, of course, directly from eq. (2.14).]

(ii) Let us now assume that all two-body potentials are separable, one of
them, viz. V3, contains an additional non-separable part V,. To all orders
in the corresponding amplitude T3, the generalized potentials are given by
[cf. egs. (3.28) and (3.29)]

Zﬁn,am(z) = -(1- 5)’30[)(8, h;z hGo(Z) la, m; z)

+ (1= 833)(1-043)(5,7; 2| G (2) T3(2) G (2)] @, m; 2) , (5.3)

Zp,,am(?) = (pyla, m;z) - (1-6,3)(Pq | T5(2)Go(2) @, m;2) . (5.4)

They are graphically shown in figs. 8a and b, respectively. Inserting these
expressions in (3.19), we get integral equations for the elastic and re-
arrangement amplitudes which are depicted in fig. 9a. The corresponding
(on-shell) break-up amplitude given by (3.23) is shown in fig. 9b. These
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a n " a nq n

H
L
T

Fig. 8. The exact generalized ''potentials'' when T1 = T'2 = (0, a) for bound-state scat-
tering, b) for composite particle disintegration, (cf. egs. (5.3) and (5.4), respectively)

r B
"R o TS S
Y.r Y
B
MO

Y.r Y

m e m L Zm L

Fig. 9. Diagrams for a) the bound-state scattering amplitude and b) the break-up
amplitude discussed in subsect. 5(ii).

equations permit e.g. to incorporate Coulomb corrections to proton-deuteron
scattering which had to be neglected [101 previously in calculations with the
Lovelace equations.

6. CONCLUSIONS

We have proposed a systematical and exact treatment of three-particle
bound-state scattering including break-up reactions. One-dimensional
Lippmann-Schwinger-type integral equations have been written down for
the relevant amplitudes. The generalized potentials occurring in them are
to be found by solving Faddeev-type equations which, however, can be ap-
proximated by a few terms of a Born series expansion; e.g. whereas the
original Faddeev equations, though solvable in principle, reveal nearly
unsurmountable calculational difficulties, our approach admits the use of
the methods of perturbation theory. Depicted in form of diagrams, the
physical meaning of our successive approximations becomes transparent.
Having determined the generalized potentials, our one-dimensional integral
equations can be solved by standard methods. In particular, the Schmidt
method could be applied once more to reduce them to purely algebraic equa-
tions.
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