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Coulomb dissociation of light nuclei
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We present an alternative theoretical formulation of the Coulomb dissociation process. We apply the for-
malism to the deuteron as an example of a weakly bound two-body composite nucleus with a charged core and
a neutral valence particle and for which exclusive experimental data exist in an appropriate kinematical regime.
The theoretical scheme assumes that the projectile excitation is predominantly to states with low internal
energy and is expected to be applicable at incident projectile energies of tens of MeV per nucleon and above.
A readily calculable expression for the quantum mechanical breakup transition amplitude is obtained without
the use of the distorted-wave Born approximation weak channel coupling approximation or of additional
approximations for finite-range effects. Calculations are presented, analyzed, and compared with high preci-
sion, kinematically complete, measurements of elastic deuteron dissociation into very forward scattering
angles. The calculations and data support the importance of the Coulomb breakup mechanism under these
kinematical conditiong.S0556-281®8)00206-4

PACS numbdis): 24.10.Eq, 24.50:g, 25.10:+s, 25.45-2

I. INTRODUCTION The theory presented here offers, in certain cases, an al-
ternative scheme to semiclassical descriptions of the excita-
The Coulomb breakup of weakly bound composite systion process in the appropriate energy regime. Such semi-
tems has been studied extensively in nuclear physics. Theassical approaches are of many forms, but most recently
relationship between the cross section for Coulomb breakuthese have developed along the lines of coupled channels,
and that for the inverse low-energy nuclear capture process.g., Ref[4], and direct solution of the time-dependent equa-
[1] has also stimulated much experimental and theoreticdion, e.g., Ref[5], and are usually based upon a truncated
effort for applications to nuclear astrophysics. These theoretmultipole expansion of the inter-nuclear electromagnetic in-
ical ideas and applications are discussed and reviewed iteraction. In the present analysis there is no such restriction
Ref. [2]. Analyses of Coulomb dissociation of the recently to Coulomb multipole excitations. In addition, since our ap-
discovered, and very weakly bound, neutron halo njd@gi proach is nonperturbative, there is no truncation made in the
have also been numerous, e.g., Ré¢fg5] and references order of excitation corrections. As will be seen, we require
therein. Coulomb dissociation is believed to be a significanho zero-range approximations to interactigfs/], and we
reaction channel in the scattering of such nuclei from a stablenake no reference to, or make approximations of, assumed
heavy target nucleus. Halo nuclei are indeed an exciting apsemiclassical trajectories.
plication but the low intensities of the available secondary A crucial requirement for our analysis, however, is that
beams of these nuclei means that experimental data are stile Coulomb interaction due to the target charge acts only on
quite limited—although they are improving rapidly. a single charged fragment in the composite few-body projec-
In this paper we reconsider calculations of the Coulomhitile. The method is therefore not immediately applicable to
dissociation of a weakly bound two-body composite nucleusimany very interesting situations. These include the Coulomb
consisting of a charged core and a neutral valence particlelissociation of®B, for which semiclassical methods have
by a charged target at energies of a few tens of MeV pebeen applied extensively to consider higher order excitation
nucleon and above. Within the framework of this three-bodyand multipole effect$8].
model description we present a theory which makes two For a deuteron projectile, and unlike halo nuclei, there are
approximations—that the dominant projectile breakup confio ambiguities in the theoretical analysis associated with the
figurations excited are in the low-energy continuum and thaprojectile’s structure. The theory is therefore first compared
the valence particle does not interact with the target. Thdnere with precise, kinematically complete, deuteron elastic
theory is fully quantum mechanical and is also nonperturbabreakup data, measured in a restricted solid angles geometry
tive. It will be shown to lead to a factored expression for theat very forward anglef9—11]. Strong indications of the im-
qguantum mechanical breakup transition amplitude similar tgortance of dipole Coulomb breakup for such a restricted
forms reported previously, but which were derived using ap-detection geometry have been reported previously in the
proximations to distorted-wave Born approximation (d,pn) reaction aEy =56 MeV [11]. This dipole dominance
(DWBA) theory. The result of the present approach differswas manifest empirically as a very characteristic double
significantly from these in both detail and in interpretation. peaking in the measured triple differential cross section as a
We show that, without the use of DWBA weak coupling function of detected proton laboratory energy. This depen-
approximations or of additional approximations, we are abladlence was reproduced qualitatively, but not quantitatively, in
to calculate explicitly the quantum mechanical breakup tranRef. [11] from a consideration of the post and prior form
sition amplitude and so make comparisons with the mosDWBA amplitudes for Coulomb breakup. We reconsider the
exclusive experimental data available. analysis of thes&;=56 MeV data and also subsequent data
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xpg?(r,R)=eiqp'R¢o(r)+outgoing waves, (3

where, for a projectile with a single bound state, the outgoing
waves include only elastic scattering and elastic breakup
channels. More generally, the outgoing waves will also in-

clude terms from any inelastically excited bound states. The
incident plane wave boundary condition stated in 8j.is

of course strictly incorrect in the presence of unscreened
Coulomb interactions. Our final formulas can be justified,

however, as is usual, by considering the limit of the appro-
priately screened Coulomb problem.

—_ ) A. Adiabatic approximation
FIG. 1. Definition of the coordinate system adopted for the core, ) ) ] . ) )
valence, and target three-body systems. An essential step in any discussion of an adiabatic ap-

proximation is that two sets of dynamical variables must be
at the higher incident deuteron energies of 140 and 27@efined. One setis then identified as a high-en¢agylfasy
MeV. set and the other as a low-ener¢gnd slow) set. In the
The method detailed here generalizes transparently to tHeresent context we identify the energetic or fast variable with
breakup of those halo nuclei with a single charged constituR, the projectile’s center of mass translational motion, and
ent, such ast'Li, MBe, and°C. Applications to the Cou- the slow variable witlr, its internal motion. At high incident

lomb breakup of such one- and two-neutron halo nuclei willenergiegand largeg,,), and for an extended,, this division

be discussed elsewhere. is natural given the form of the entrance channel boundary
condition in Eq.(3). We assume therefore that the valence-
Il. FORMALISM core relative excitation energies, associated with those

broken-up configurations which are strongly coupled in the

We consider the Coulomb interaction induced dissociathree-body Schidinger equation, Eq(1), are such thak
tion of a bound two-body projectile nucleup)(by a target <E, whereE is the incident energy of the projectile.
nucleus ), of massm; and charge, . The projectile ground The actual amplitudes with which the spectrum of
state is assumed to be a bound stateof a charged core preakup states oH,. are excited in the collision will of
(c), of massm, and chargeZ., and a neutral valence par- course be dictated by the strengths and geometries of the
ticle (v) of massm,. In the case of the deuteron then of tidal forces experienced by the projectile’s constituents. In
course the projectile has only one bound state. In the presetiie present case these are oy, the Coulomb interaction
analysis we neglect strong interaction induced breakup efsetween the core and target. The long range of this interac-
fects. We therefore assume that the projectile interacts witfion means that it can act repeatedly, to high order, but, be-
the target only through éCoulomb interactionV; between cause of its slow spatial variation, matrix elements\Qf
the core particle and the target nucleus. It is assumed, and ygill only couple states of, . in close proximity in relative
vital for the solution used in the subsequent analysis, that thenergy.

valence particle-target interaction, can be neglectedor  Assuminge <E, little error will be expected upon replac-
thatVe>V,,). We adopt the system of coordinates shown ining H, in Eq. (1) by a representative constant energy. More-
Fig. 1. over, if this constant is chosen ase,, we also guarantee

The Schrdinger equation satisfied by the scattering wavethat the solution of the resulting approximate three-body
function of this three-body d+v +t) system \I'g”(r,R) equation satisfies the correct incident wave boundary condi-
when the projectile is incident with momentquf in the tions and that the dominant elastic channel component in the
center of masgc.m) frame, is therefore wave function has the correct channel energy. In this physi-

cal (adiabatig limit, the three-body equation therefore reads

[Trt+ Vel R=y,er) +H,c—EIWE(r,R)=0. (1) )

ki 2 P () —
Here H,.=T,+V,(r) is the internal Hamiltonian for the 2MpvR+V°t(R Yocl) = Eo| Wg, (R)=0, (4
valence and core particle system with relative coordimate

T, is the relative motion kinetic energy operator, ang is ~ whereEq,= E+80=ﬁ2q§/2,up is the incident c.m. kinetic en-
their binding potential. The vectdR is the projectile-target ergy and u,=m,m;/(m,+m,) is the projectile-target re-
separation and, is the corresponding kinetic energy opera- duced mass.

tor. The quantityy,.=m,/(m,+m:), so R—y,r=R; is The approximation involved here, replacibg. by —&o,
the target-core separation. The projectile ground state wavié selectively referred to as either an adiabatic approximation
function ¢y(r) satisfies [12], in the few-body reactions theory literature, or, more
usually in the Coulomb excitation literature, as a sudden ap-
Hyco(r)=—eodo(r). (2)  proximation[2]. We adopt the former usage. The approxi-

) 4 mation is seen to assume, because of the low excitation en-
The required three-body wave functidify ’(r,R) there-  ergies involved, that it is a good approximation to treat the
fore satisfies the scattering boundary conditions full excitation spectrum oH, . as being degenerate in energy
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with the ground state. The possible shortcomings of the ap- F(r)=expliy,clp 1) do(r). (10)
proximate three-body wave functioﬂg” calculated using

p . . .
this scheme, in certain regions of the six-dimensiomaR} Hence theex_actsolutlon of the adiabatic three-body prob-
space, are discussed in the following subsections. lem, Eq.(4), is [13,14

B. Adiabatic model wave function lI’;'J;)(F,R)ZEX}CU Yoclp® f)Xg:)(Rc)%(r)- (11

It is important for the subsequent discussion to appreciate
that the dependence of the approximate three-body ‘Schrdt is important to stress that this three-body wave function
dinger equation, Eq4), on the core-valence particle separa-retains breakup components. These are manifest in the ex-
tion r is now only parametric. Thus E¢4) has to be solved tremely complex dependence of the wave functiorr phe-
for all values of afixed separationr. We show that this yond that in ¢,, entering botth:)(R—yvcr) and in the
solution can be expressed exacfly3,14 as a product of exponential factor expf,dp-r).

three factors. In the following we use the three-body wave function

We introduce the operatddg(x), which translates the —) . L
variableR through —x, i.e., Un(X) = exp(—x- V). Clearly \Ifqp to calculate the Coulomb dissociation process. The ap-

therefore the potential operatdf,, in Eq. (4) can be ex- Plication of this three-body model solution to the elastic scat-

pressed as tering of halo nuclei has recently been presented elsewhere
[13,15. In that case the core-target interactidg was not
Vi i(Re) =V (R—y,cr) =Ug( yvcr)Vct(R)UL( Yocl ), assumed to be purely Coulomb but, since theygm.<1,

(5) V. could reasonably be assumed to be dominant, i.e., that
_ 5 V>V,;. A careful discussion of the validity of the adia-
and, sincg Ur(7y,cr),Vg]=0, then batic approximation in both the nuclear and Coulomb domi-

5 nated situations is presented in Rigif4].

A 2 1 w(+)
= 5= VRt Va(R)—Eg|[Ug( Yucr)q’qp (r,R)]=0.

2,up C. Use of the adiabatic wave function

(6)
We have shown that Eq11) is the exact solution of the
Evidently, the most general form of the solution stated three-body model, given only the adiabatic assump-
UL( »yvcr)\lfé:)(r,R) of this equation is the product QID an tionk Thte I\/erythe)ip“(inli form of thel Solutiont-ir: this Ca?-e
arbitrary functionF(r) of the core-valence particle separa- makes It clear that, at large core-vaience par |£(e+)separa 1ons
tion, and(ii) a projectile distorted Wavgg;)(R), and which  F— the presence of the facta, means thatV, * van-

satisfies the Schdinger equation ishes(at least exponentialjyin this region. This region con-
tains contributions from some parts of the breakup flux and
h? 2 (+) thus it is evident that for large values [of, in any direction,
- 2ﬂpvR+VCt(R)_E0 Xq, (R)=0. (M ¥ will be inaccurate—a consequence of our assumption

p
that the entire spectrum &f . is degenerate with the ground
In the present context therefonéq;) is a three-dimensional state.
Coulomb distorted wave which describes the scattering of It follows that, to use the three-body wave function of Eq.
the projectile, of masg:, and considered pointlike, by the (11) to calculate a Coulomb breakup amplitude, we must
Coulomb interactiorV,. The required three-body solution consider its limitation to only certain regions of the six-

of Eq. (4) is therefore dimensional (,R) space. We therefore select the breakup
matrix element to be evaluated accordingly and, in particu-

V(1 R)= A1) [Ur(y,eNx (R 1= A1) x (R, lar, we do not attempt to extract the breakup amplitude from
5 (HR)=FNURYeN g, (R)]=FNxg, (Re) the asymptotics of our approximate adiabatic solution. In fact

8

where Xé:) has now to be evaluated at the core’s position

we use the post-form of the exact quantum mechanical
breakup amplitude.
This amplitude, from a projectile initial statg to a three-

coordinateR. . We note that, sincBUr(v,cr),Hocl#0, this - 164y final state with core momentugp and valence particle
product solution follows from Eq(1) only whenH,. is momenturng, in the c.m. frame, is
. .m. ,

treated adiabatically.

The as yet unspecified multiplicative functidgfgr) in Eq. iq, R, (=)
(8) must now be chosen so that the particular solution satis- Tbu(quqcﬂp):f dRJ dre " Texg " (Re)
fies the required incident wave boundary condition, &,
as well as Eq(4). Consideration of the incident wave bound- vac(r)\lfg:)(r,R), (12

ary condition satisfied byg:)(RC), ie.,
wherexg;) is an in-going waves Coulomb distorted wave for

the core fragment. Due tv,., the integrand in Eq(12)
o involves only finiter and so does not involve the three-body
and by\Ifg;)(r,R), Eq. (3), shows that we require that wave function in regions where our approximate solution

Xg:’(RC)=eiqp'<R—vvJ)+outgoing waves, (9
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will be inaccurate. We therefore inseﬁg;) as an approxi-
mation to\Fg:) within this post-form amplitude giving

Tao(G,Ge bp) = (€% Roxg (Ro) [V, )| WG (1,R)).
(13

Our approach therefore goes beyond the lowest order

adiabatic approximation as described W:) . This can be

seen as follows. We first rewrite texactthree-body Schro
dinger equation of Eq.1), prior to any adiabatic approxima-
tion, as

[E=Tr,~Tr,~ Vel R W (1 R)=V,e(NWG (1. R),
(14

whereTg andTg_are the kinetic energies in the coordinates

R, and R; of Fig. 1 and involve the reduced masses
=m,(m.+my)/(m,+m,+my) and u.=m.m,/(m.+m,),

respectively. Since now a calculation of the source term iqh

Eq. (14) requires only finite separations we can use the

adiabatic wave functionlf_g:) as a good approximation to
\Ifg:) within this source term only. This yields the inhomo-
geneous equation

[E=Tr, = Tr,~ Ve RITFL (1 R)=V,o (N (1R,
(15

and a(first) iterated approximate wave functioiflg:). This
equation has formal solution

1
W)J dkudeUJdRc

% eik;.(RU—R;)G(Et)(RC R!)

Jr(+) -
\Ifqp (r,R) 2

XV, 1) W R, (16)

or, upon integrating over the directions kf,

_I ©
dR;j dR’J k,dk;
(27T)2f C e kv

! ’
elkv\RU—va

X
IR,— R,

Jr(+) -
\I,qp (rvR)_

Gt (Re,Ry)
xVUc(r’)\I_fg:)(r’,R’), 17

whereGE") is the core-target Green’s function in the pres-
ence of potentiaV/:

GE (Re R =(RA[EL ~Tr,~ Ved “HIRD),

E.=E—#%%k?12u, . (18
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carried out using the stationary-phase poinkpR, +k.R.
[16]. This derives the expected three-body asymptdtlas
and the approximate transition amplitudigy of Eg. (13),
ie.,

i(g,R,+dcRe)
G © e

% (r,R)—[factorg X

R5/ 2

X (€% oy (ROIV,e(r )WL (1 R),
(19

where R is the hyperradial variable R?=(u,R?
+MCR§)/\/MUMC andq, andq, are such as to satisfy energy
conservation#29%/2u, + #29%/2u.=E. The phase space
factors entering Eq19) are discussed in Ref17] and those
required for the calculated cross sections are presented in the
results section of this paper.

An evaluation of the breakup amplitude of Eq.(13) is
erefore formally equivalent to the solution of E45). So,
although the adiabatic approximation neglects the projectile
excitation energy in the calculation of the adiabatic three-

body wave function\fg:) , this does not mean we calculate

the breakup using thé=0 approximation, the zero adiaba-
ticity parameter limit, of semiclassical theorig2]. As the
analysis above shows, our calculationgfy includes cor-
rectly the final state wave functions, kinematics, and excita-
tion energies, unlike analogous=0 semiclassical calcula-
tions.

D. Breakup transition amplitude

Our approximation?AD to the Coulomb breakup transi-
tion amplitude is therefore

?AD(qvovqp):J dRJ dreiiq”.R”X((;];)*(Rc)vuc(r)

X[€'70e% T (Ro) (1) ]- (20
Upon making a change of integration variable fréo R,
and noting thatR,= y,;R.+r, where y;,.=m,/(m.+m,),
our breakup amplitude is seen to factorize exactly as

?AD(quc vqp):[f dreiipv.rvvc(r)(ﬁo(r)

X

J dRce—iQu-RCXg:)* (Rc)Xg:)(RC)}

=(PVucl 00X(Qu x5, Ixg, ), (2D
where we have defined,=d,— v,.0, andQ, = y.q, -

The two factors in Eq(21) delineate the structure and
dynamical parts of the calculation. The overlap of the three
continuum functions which arises hefq, *XE]:)|X((1:;)>' has

been evaluated in closed form and is expressed in terms of
Using the asymptotic behavior of the two Green's functionsthe bremsstrahlung integral, e.g., R€fs8,19. This factor
in the integrand aRR, and R.— in the directionsR.  now contains all the dynamics of the breakup process and is
—R.0. and R,—R,q,, the final integral ovek, can be readily calculated.
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The projectile structure enters through the vertex functiorand therefore requires a very careful consideration of the
(P,|V,¢| o) and is also simply evaluated given any structuredeviations ofR. from R. Our adiabatic model formulation
model for the projectile. In Coulomb dissociation momentumretained these finite effects explicitly. A key result is that,
can be transferred to the valence particle only by virtue of itdn Eq. (21), the projectile vertex appears evaluatedPat
interactionV,. with the core. Since the term,.q, in P, is =0, Y,cp, Whereq, andqj, are the outgoing valence par-
the fraction of the incident momentum of the projectile ticle and incident projectile asymptotic momenta, and hence
which is carried by the valence particle, this structure vertex, is the momentum transferred to the neutron in the
displays explicitly this momentum transfer from the groundbreakup.
state viaV, . In the following we examine critically those approxima-

Therefore, without any approximation additional to thetions to Tpyy previously used in the literature which lead to
adiabatic assumption, Eq21) encompasses a fully finite- expressions similar to our E€R1). We carry out this discus-
range treatment of the core-valence particle interacdpn sion with the deuteron dissociation process in mind, for in-
Our amplitude is thus applicable to projectiles with anycident energies in the range 30—140 MeV per nucleon. Since
ground state orbital angular momentum structure, and alsim the (d,pn) reactionV, is the freenp interaction,Tpyy in
includes breakup contributions from all contributing Cou-this case presents the physical situation in which the range
lomb multipoles and relative orbital angular momenta be-R . of the transition interaction is the smallest encountered.
tween the valence and core fragments. This amplitude clearlyy addition the @,pn) reaction involves the least massive
also differs significantly from those of DWBA theories since physical projectile and dissociated fragments. Thus, for a re-
it includes the initial and final state interactiods; andV,.  action of a given incident energy per nucleon, the wave func-
to all orders. In the following we contrast our result with tions entering the DWBA matrix element will have longer
those published previously, based on approximations to thaavelengths than in the analogous reactions with heavier

weak coupling DWBA theory. projectiles. It follows that the ratio of the interaction range
R, to the wavelengths of the distorted waves entering Eg.
I1l. RELATIONSHIP TO DWBA APPROACHES (22) is at its smallest for thed,pn) reaction. This ratio is a

] ) o critical measure for assessing the likely importance of retain-
Expressions Wlth a factored structure similar to t_hat of OUling finite-range effects within the breakup amplitude.
Eq. (21), and which also use the bremsstrahlung integral to

treat the reaction dynamics, have been presented previously,
e.g., Refs[18,20. These alternative expressions were ob-
tained, however, not as above, but by starting from the post For the @d,pn) reaction,V, is the physicahp interaction
form of the distorted-wave Born approximation to the with a (finite) rangeR,.~1.4 fm. For a zero-range approxi-
breakup transition amplitude mation to the DWBA matrix element, EqQR2), to provide a
reasonable quantitative estimate of the amplitude requires
that all functions(other thanV,.¢o) appearing in the inte-
grand have characteristic lengths for a significant func-
(+) tional variation, such that>R,.. When this is the case, as
XVye(Nlxg, (R)do(N], (220 at very low(tandem energies, then the zero-range approxi-

) . N o . mation neglects variations of the distorted waves product
and then making different additional approximatiofigy is ef'q”'R”Xg_)*(Rc)Xéﬂ(R) for those|r|<R,..
obtained by neglecting completely the effects of the Cou- c P

A ' _ However, even in the case of the light-iod,pn) reac-
lomb polgrlzann (breqkup patential Av(r’R)_VC‘(RC). tion, at say 100 MeV, the wave number of the incident deu-
—V(R) in the calculation of the three-body wave function.

It thus replacest (1, R) by teron is larger than 3 fm! and thus thex associated with
G M7 the distorted waves are comparableRg.. The approxima-
(+) (+) tion that the distorted waves are constant over the range of
‘Pqp (r,R)~qu (R) ¢o(r), (23 V, 0o in Eq. (22) is therefore untenable and finite-range
effects are expected to be significant. This situation will be
in Eq. (12), wherexg:)(R) is the entrance channel Coulomb even worse for heavier systems, such as halo nuclei, where
distorted wave(for an assumed point projectilethe argu- the R, are larger, the nuclei more weakly bound, and the
ment of which is the projectile c.m. coordinate. It is assumedprojectile and fragmenk (at the same incident energy per
in writing Eq. (22) that breakup channels are very weakly nucleon are even smaller. The zero-range approximation to
coupled and hence that this coupling need only be treated tine post-form DWBA breakup matrix element is therefore
first order. We reiterate that the adiabatic formulation leadingfifficult to justify physically, either in the present light-ion
to Eq. (21) did not use such Born approximation consider-context or for related halo systems with similar incident
ations at any stage. energies/nucleon. This zero-range DWBA approach, and the
For a realistic and hence finite rangstl, the DWBA  underlying physical picture it suggests of the breakup pro-
amplitude Ty, has itself not been calculated exactly andcess, particularly for higher energies or massive particles, is
further approximations are therefore applied—involving ap-therefore misleading.
proximate treatments of, or the complete neglect of, these If nevertheless one assumes that the zero-range approxi-
finite-range effects. In Coulomb breakup, however, the factnation is valid then, taking the smallR,. limit, i.e., R
that the Coulomb interaction acts at the charged core and netR., and R,— v(R., in the distorted waves integrand
at the center of mass of the projectile is absolutely criticale"qv'vagz)*(Rc))(g;)(R), Eq. (22) reduces to

A. Method of zero-range DWBA

Tow(dy0c,dp) = f dR J dre~'% Rox(* (Ro)
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Tow(%0e . 8p) ~ Tzr(0,8c. 8p) = Do(Qu . xg, Ixg) ), 140 ' ' -
(24)
where 120 —— Hulthen |
---- Reid
« 100 |
Do=f drV,c(r) o(r) =(0[Vyc| do). (25) e
. N > 80
Thus, when applicable, the zero-range approximation to the =
DWBA leads to an expression with the structure of our Eq. —~
(21), but where the projectile vertex is evaluated at zero < 60
valence-core relative momentum—the usual zero-range 2
strength constariD,,. = 40| \ .
Comparison with our Eq(21) shows that this zero-range i N
expression is, fortuitously, equal to tRe=0 approximation \\
to our finite-range adiabatic breakup amplitude. Since in Eq. 20 N
(21 the projectile vertex appears evaluated Rt=q, \\
— ¥»clp . the presence afj, results in|P,|, the momentum 0 , , , N
transfer, taking on small values. As a result only relatively 0.0 0.5 1.0 1.5 2.0
low momentum components of the vertex are probed in our IP,| (fm™)
Eq. (21). Consequently, although the application of the zero-
range approximation to E422), which leads to Eq(24), is FIG. 2. Modulus of the vertex function calculated for the

not physically justified at the energies of interest here, thdulthen and Reid soft core deuteron wave functions, as a function
P,=0 approximation to Eq(21) is expected to be rather ©f thenp relative momentum.
good. In the deuteron breakup calculations which follow
|P,|]= 0.1 fm~1! at the cross section maxima. It follows that, Once again this looks similar to our E€R1) but with the
starting from our Eq(21), a good first approximation is to very important difference that the first term, the projectile
replace the vertex function by i8,=0 strength constant, vertex, is now evaluated at the valence particle momentum
although there is no reason to do so. g, in the final state — not at the momentum trandferas

We summarize that the expression given on the right-handppears in Eq21). While for the original application envis-
side of Eq.(24) is, fortuitously, a rather good approximation aged in[18], dissociation at sub-Coulomb barrier energies,

to Tap of Egs.(20) and(21). It is, however, expected to be a the importantq,| are small, and s¢q,|V, ¢ ¢o)~Do, this is
very poor approximation to the finite-range DWBA ampli- ot the case for the applications involved in Re80,21]
tude Tpy. This is, we believe, the reason for the apparen@nd elsewhere. _

success of such supposedly “zero-range calculations,” based At the energies of interest here, the relevant momepta

on Eq. (24), in comparisons with experimental data, e.g.,are large. They are typically in the range 1.0~2.0 fnin the
Ref. [20]. deuteron breakup calculations of the following section. Fig-

ure 2 shows the modulus of the vertex function calculated for
the Hulthen [22] and Reid soft corg23] deuteron wave func-
tions, as a function of thep relative momentum. At mo-
An alternative approximation scheme which leads to anmenta of 1.0—-2.0 fm! the function values for such realistic
amplitude of the form of Eq(21), was introduced by Baur geuteron wave functions are already markedly different from
and Trautmanfl8]. The original motivation of these authors tneir |ow momentumq,~0 values. This difference of
was the study of deuteron breakup at sub-Coulomb barrigfy v, |40) from the zero-range verte®o=(0|V, | do)
energies where the present adiabatic model is almost cegj| he even more acute in systems, such as halo nuclei, with
tainly inappropriate. Their basic method has, however, beefaqyced binding and largeR, .
cited in other contexts. The Baur-Trautmann approximation thus yields a breakup

Their ansatz is to replace the projectile c.m. coordinate ilymplitude which differs from the adiabatic theory by a factor
the projectile distorted wave, in EqR2), by the core coor- (0, |V, el bl (P, |V, bo) Which is dependent on the kine-

B. Method of Baur and Trautmann

dinate, i-e-,Xg:)(R)*Xé:)(Rc)- This means their approxi- matics of the reaction and the observables calculated. We

mation to the three-body wave function is show the result of using this approach in the following sec-
tion.

q’é:)(f,R)“Xg:)(Rc)%(f), (26) We conclude, however, that, even in deuteron induced

reactions with final state valence particle momeqgtaas
and was argued on the basis that the Coulomb polarizatiosmall as 1 fm?, the approximate breakup amplitudigr of
potential acts to push the proton cpordinate, on average, tq. (27) will differ markedly from bothT »5 of Eq. (21) and
larger radii. Since the exponential factor e¥p(Q,-r) T, of Eq. (24). In particular, for any realisti&/, g, it is
which arose in our Eq.ll)_ for the three-body wave function ot 5 reasonable approximation to repldcg|V,| o) by
is absent, it follows that in this case, Do, which restores the calculation to zero-range form, as has

_ been done in the literature for both deuteron and halo
TBT(quqc-qp):<qvlvvc|¢0><Qv 1X((:]C)|Xg:)>- (27) nucleus systems, e.g., Refg0,21.
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IV. RESULTS AND ANALYSIS ' ' 1000 : ' '

In the following we compare the predictions of calcula-
tions made using Eq21) with high precision measurements
of the triple differential cross sectioraiéa/dﬂndﬂpd E, for
deuteron dissociation into very forward angles. In addition to
their precision, these deuteron data are free from structure
ambiguities associated with the projectile vertex. We adopt
the finite-range Hulthe vertex presented explicitly in Ref.
[18], and shown also in Fig. 2. Given this input the theoret-
ical calculations we present are entirely parameter free. In
the cross section formulas we continue to refer to the core

sr?)

-1

and valence particles for generality. Of courses now the
proton,v is the neutron, and the projectifeis the deuteron.

The necessary three-body final state kinematics and phase

space formulas for the calculation dfo/dQ,dQdE, are
presented in Ref24] and also discussed in R¢25]. These
give

d3o 2w
dQ.dQ,dE, #2q

21T(d,9c . Gp)2p(Ec. Qe ),
" (29)

where p(E;,Q.,Q,) is the density of states, per unit core
particle energy interval, for detection at solid anglesand
Q., and is

(E..0 Q)_mcmuﬁkchku
P{Ec,32c,3L, (27Tﬁ)6
mg
m, +me+m,(ke—K) -k, /k?|
(29

X

Herefik. and%k, are the proton and neutron momenta in the

final state andiK the total momentum, all in the franie.m.

d*o/dE,d0,dQ, (mb MeV

4000
4000
3000
2000
2000
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6000
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4000

E,=140 MeV

d*o/dE 40,40, (mbMeV sr?)

2000

[
40

60

80 100

E, (MeV)

FIG. 3. Experimental and calculated adiabatic mo¢sslid
curves triple differential cross sections for deuteron breakup near

or laboratory of interest. The experimental data considered0® in the laboratory frame &4=140 MeV. The calculations are

here are presented in the laboratory frame.

averaged over the proton and neutron detection solid angles speci-

As will be seen in the following, the angular dependencedied in the text. The dashed curves, ffiC and **Pb, use the
of these calculated triple differential cross sections near zergaur-Trautmann approximation of E(R7).
degrees are extremely rapid and qualitatively different for
light and heavy targets, and at different incident energies. I£?C, “°Ca, °°zr, and 2°%Pb atE4=56 MeV. The solid angles
is therefore essential to integrate and then average the thesubtended by the neutron and proton counters will be seen to
retical angular distributions over the specified experimentabe of considerable importance. These waAi®,,=0.45 msr
solid angle acceptances before final comparisons are madwith a circular geometiyat 140 MeV and 0.48 ms{with

with data. That is, we evaluate

d3o

v d0.dQ,dE,’
(30

d3o(exp) B 1
dQ.dQ,dE; AQAQ, Jaq, a0,

dQ.dO

where the integrations over the protdr(), and neutron

square geometjyat 270 MeV. TheAQ,=7.2 msr(a 60
X120 mrad rectangular geometyyat both 140 and 270
MeV. For the 56 MeV data, theAQ),=0.88 msr(with cir-
cular geometryand A€ ,=5.6 msr(a 75<75 mradf square
geometry. In all cases the solid angle elements are centered
aboutf,= 6,=0°.

AQ, detection solid angles are carried out using numerical

guadratures.

A. Calculations at 140 MeV

The (d,pn) elastic breakup data have been measured at The calculations and data at 140 Md¥,10] are com-
the RIKEN Accelerator Research Facility, Saitama, at 14Gared in Fig. 3 for all measured targets. The errors shown in
and 270 MeV[9,10], and at the Research Center for Nuclearthe figure are statistical only. The solid lines show the elastic

Physics(RCNP), Osaka, at 56 Me\f11], in a kinematical
condition of §,~ 6,~0°. The targets weré’C, %si, 4°Ca,

breakup cross sections, as a function of the detetabdra-

tory) proton energy, calculated using the finite-range ampli-

9zr, 183N, 180, and 2°%Pb atE,=140 and 270 MeV and tude of Eq.(21) and Egs.(28), (29), and (30). The overall
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FIG. 4. Calculated double differential cross section angular dis- FIG. 5. Calculated triple differential cross section f8€, with
tributions versug, (at 6,=0°), integrated over the detected proton n=0°, at §,=0° (short dashed curvgs 6,=1° (dot-dashed
energy and without solid angle averaging, 18, “Ca, 8n, and ~ curves, and0 =2° (long dashed curvesat Eq=140 MeV. Also
20%p atE4=140 MeV. shown are the experimental data and the calculated averages over

the experimental acceptanceslid curves.
agreement of the calculated magnitudésdependence, and

the proton energy dependence, with the data is good an@agnitudes are the result of a careful specification of experi-
improves with increasing target charge. The factor of 40 in-mental conditions and of the theory which derives a compli-
crease in the magnitudes of the measured cross sections ¢ated dependence of the breakup mechanism on target charge
going from 2C to 2°%b is seen to be well reproduced as aand detected proton energy. Evidently the theoretical cross
function of Z,. Figure 3 does not, however, reveal the com-Sections calculated at zero degrees have no direct relation-
plex way that the calculated cross sections are built up in thghip to the data. We return to this point in the following
integrations over the experimental solid angle acceptance§!SCUSS|0n-
These are quite different for the small and la#jetargets. Overall, our results are consistent with an underlying
To clarify these differences, in Fig. 4 we show the calcu-Physical picture in which Coulomb breakup is the dominant
lated double differential cross section angular distributionsmechanism. There are, however, indications of a missing and

against ¢, (at 9,=0°), integrated over the final proton mterfenng contribution, particularly on the lighter targets,
energy—wnhout solid angle averaging. The curves show the

representativet?C, °Ca, 1185n, and?%Pb target cases at 8000 ; . .
Ey=140. The experimental acceptances for the 140 MeV

data involve a very smalh ) ,=0.45 msr and so setting,

=0° is representative. The protgspectrometgracceptance

on the other hand i&(,=7.2 msr(with the rectangular
geometry given aboyend includes proton angles as large as
0,~3.5° about zero degrees. Over this angular range the
|ntr|n3|c cross section fot?C, with forward going neutrons,

is seen to fall by more than an order of magnitude while that
for 2%Pb increases by about a factor of 3.

Figures 5 and 6 show the calculated triple differential
cross sections, with,=0°, for ?C and ?°%Pb at 6,=0°
(short dashed curvgsf,=1° (dot-dashed curvgsand 6,
=2° (long dashed curvésshowing again the increasing
cross section wittd, for 2°®Pb and the rapidly falling cross
section with 6, for *“C. Also shown are the experimental
data and the correctly calculated averages over the experi-
mental acceptancesolid curve$. These figures show that
the calculations, and the level of agreement obtained and
presented in Fig. 3, do not arise trivially from a simple scal-
ing of calculated cross sections wilfy. We see that the

trends withZ; and target mass and the obtained cross section FIG. 6. As for Fig. 5 but for thé*®b target aE ;=140 MeV

6000

4000

d*o/dE,dQ,dQ, (mb MeV™ sr)
n
o
(=]
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FIG. 8. Calculated double differential cross section angular dis-
tributions versug), (at 6,=0°), integrated over the detected proton
100 120 140 160 180 O 100 20 a0 60 120 energy and without solid angle averaging, #é€, 4°Ca, 1*8sn, and
208ph atEy=270 MeV.

2000

©
o

1000 b 2oy, £ A(d,pn)Agnd and improves with increasing target charge. The increasing
. magnitudes of the measured cross sections, now by a factor
E =270 MeV of ~160, in going from*?C to 2®*b is seen to be well
d reproduced as a function & . Again our results are consis-
] tent with a dominant Coulomb breakup mechanism with in-
dications of a missing interference from smaller nuclear con-
140 160 180 tributions. The minima in the calculated cross sections, due
E, (MeV) to the dominant dipole breakup mechanism, are also filled

within the data at 270 MeV, additional evidence of a missing

FIG. 7. Experimental and calculated adiabatic modalid ~ Nnuclear breakup contribution. .
curves triple differential cross sections for deuteron breakup near ~1he cross sections of Fig. 7, similar to those of Fig. 3, are
0° in the laboratory frame @ 4=270 MeV. The calculations are built up from the integrationéand then the averagever the

averaged over the proton and neutron detection solid angles spe@xperimental solid angle acceptances. Figure 8 shows the
fied in the text. The dashed curves, fHiC and 2°%Pb, use the Calculated double differential cross section angular distribu-

Baur-Trautmann approximation of E(R7). tions at 270 MeV, analogous to Fig. 4, and without solid
angle averaging. The experimental acceptances at 270 MeV
, are essentially the same as at 140 MeV and so similar con-
m'ost'probably resulting from smaller nuclear breakup con|ysions apply. Over the protofspectrometer acceptance
tributions. o _ ~the intrinsic cross section fol’C, with forward going neu-
We should note that if, instead of using the adiabaticirons, is now seen to fall by two orders of magnitude while,
theory amplitude of Eq(21), we use the Baur-Trautmann at 270 MeV, that for?°®Pb now also falls slowly with in-
approximation of Eq.(27) then we calculate the results creasingd,. Once again it is evident that the trends with
shown by the long dashed curves in Fig. 3 t86€ and?®®b.  and the calculated cross section magnitudes, result from a
As discussed earlier, the fact@y, |V, c| o)/ (P,|V,c| $o) be-  complicated interplay of the theoretical dependences and the
tween these two amplitudes results in a considerable undeexperimental kinematical conditions and solid angles in-
estimation of the data at 140 MeV. Since the contributipg volved. The dependences of the Coulomb breakup mecha-
increase withEy we shall see that this discrepancy is evennism, on the incident deuteron energy, target charge, and

12000 |

8000 |

d’6/dE,d0.dQ, (mb MeV' sr?)

4000

0 4
80 100 120

more serious at 270 MeV. detected proton energy, within the present theory appear
rather consistent with the experimental data. Using the Baur-
B. Calculations at 270 MeV Trautmann approximation of E@27) we calculate the long

: dashed curves in Fig. 7, fot’C and 2%%b, resulting in a
The calculations and data at 270 M¢¥0,9 are com- considerable underestimation of the data.

pared in Fig. 7 for all measured targets, the errors shown
being statistical only. The solid lines show the solid angle
averaged elastic breakup cross sections using(ZL. As

for the 140 MeV data, the overall agreement of the calcu- An incident deuteron energy of 56 MeV is at the lower
lated magnitudes and, dependence, with the data is good end of the range of energies at which an adiabatic treatment

C. Calculations at 56 MeV



3234 J. A. TOSTEVIN, S. RUGMAI, AND R. C. JOHNSON 57

T T T
12, 1000 [ E

150 C A 0.

. '. zr 9n=0
o 800 E

100 . k 800 F i
/\'. 10 o 7
»!

!
50 7.
i

®
3
= WV N S
-g 10 20 30 40 50 B
e 500 Q
% 1000 | g E 08
> a a00 | Pb | c Y
B, sof - ¥ o] 10°
1] 300 | * $ T
sl - i g
o 0k ] 200 /’. . %
200 ] 100 ‘0_ J ~
/f‘/\} °
o . . h o L
10 20 30 40 50 10 20 30 40 50
Ep (MeV)

E,=56 MeV

FIG. 9. Experimental and calculated adiabatic mogsslid . .
curves triple differential cross sections for deuteron breakup near 0.0 10 20
0° in the laboratory frame aEy=56 MeV. The calculations are 0. (degrees)
averaged over the proton and neutron detection solid angles speci- P
fied in the text. The dashed curves f5€ and °°zr, use the Baur-
Trautmann approximation of E§27).

FIG. 10. Calculated double differential cross section angular
distributions versug, (at ,=0°), integrated over the detected
proton energy and without solid angle averaging, ¥€, “°Ca,
is thought to be reliable, based upon earlier comparisons o®zr, and 2°%Ph atEy=56 MeV.
adiabatic and nonadiabatic methods for transfer reaction and

nuclear breakup process@$,27. We include an analysis of |4 cross section fof®®b in Fig. 9 results from the
these experimental data here both for completeness and sin¢e

these data were also the subject of an eaffeior form) protons emerging at_the very largest extremes of the experi-
DWBA analysis by Samantat al. [28]. mental detection solid angles,

- . Our Coulomb breakup results, which reproduce the mag-
The calculations and data at 56 MgV1] are compared in . 12~ 40 90 :
Fig. 9 for the four measured targeféC, “°Ca, %7, and nitudes of the'C, “°Ca, and®°Zr data are in contrast to

208h. The errors shown are statistical only. The solid line those of the(prior form) DWBA analysis of these same

show the solid angle averaged elastic breakup cross sectio g,pn) data by Samantat al. [28]. They reported Coulomb
calculated using Eq(21). When using instead the Baur- reakup cross sections which significantly overpredicted

Trautmann approximation to the amplitude, E27), we cal- these data. They also concluded that nuclear breakup contri-
culate the long dashed curves in Fig. 9, for fR€ and %z butions are large. Since we have not considered nuclear

targets. Since now thig,| involved are smaller, the under- breakup here, we are unable to comment on this latter fea-
gets. v ' .ture. Regarding the Coulomb breakup calculations, however,

estimation of the data is less severe, but it is clear that thig" " 20 o' oot that the necessary averages of the calcu-

model does not include the essentllal physics correctly at th'r?é\ted triple differential cross sections, over the experimental
energy 'also. We see that.the qughty of the agreement of th cceptances about zero degrees, were carried out in Ref.
adiabatic model calculations with the data for the thre 28]. Figure 11 shows, in addition to the angle averaged

lighter targets is comparable to that for the higher-energ : . . .
X calculations(solid curve$ and data, the triple cross sections
data. The calculations for th#&b target on the other hand calculated strictly a,= 6,=0° (dashed curvés Without

_lIJ_rrldere_st_lmaft(taht_he daga rlathotle_r serloudb%lég)s;a::)a_ctor 0{ A the solid angle averaging one would indeed conclude that the
€ origin of this particufar discrepancy ISunciear  coulomb dissociation contribution is too large on the light,
based on the present analysis. The discrepancy might refle@C and “°Ca, targets

a more significant nuclear breakup contribution, due to the
increasing strength of the real distortion and increased sur-
face absorption in the nucleon-target interactions, as the deu-
teron incident energy is reduced. Alternatively the results We have shown that, even in the presence of only pure
might indicate the onset of significant nonadiabatic correcCoulomb breakup, the angular distributions of the dissoci-
tions at this lowest energy. ated fragments have a complex dependence on the incident
The calculated double differential cross section angulaprojectile energy and the target mass and charge. In particu-
distributions at 56 MeV, analogous to Fig. 8, and withoutlar, there is no simple scaling of the calculations with the
solid angle averaging, are shown in Fig. 10. The angulatarget charge. We summarize this information in Fig. 12
variations of the cross section, with emerging proton anglewhich shows the calculated double differential cross sections
are now much less pronounced, but still forward angleat and near zero degrees as a function of the target nucleus
peaked, for the light targets. That f6PZr is now almost charge, integrated over the detected proton energy. The
constant. The cross section fé#%b is seen to increase rap- circle, square, and diamond symbols show the results at
idly with 6, and hence, when combined with the &jn E4=140, 270, and 56 MeV, respectively. The solid symbols
weighting in theA(), solid angle integral, most of the cal- are the calculations which have been averaged over the pro-

D. General features
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350

0,=6,=0° differential cross section is smaller f6f%b
than for several of the lighter nuclei. For the lower two en-
ergies, 140 and 56 MeV, th&*%b cross section at,= 6,
=0° is smaller or comparable to that féfC.

The calculated angular distributions of the cdpeoton
fragment, ford,=0°, shown in Figs. 4, 8, and 10, mean that,
when integrated over the small experimental solid angle ac-
o T ] ceptances, the picture is very different, as shown by the solid
,,’\ “Ca | A(dpn)A,,, symbols in Fig. 12. The almost straight lien the log-log
I plot) for the calculated cross sections at 270 MeV, indicative
i ‘\ E -56 MeV of a simple power law dependence @p, is therefore en-

a tirely the result of the particular chosen experimental detec-
tor arrangement. The information within the measurements is
R much more complex and further investigations, using differ-
E, (MeV) ent solid angle geometries would be very interesting. In all
cases, however, the forward peaked proton angular distribu-

FIG. 11. Experimental and calculated adiabatic mo@elid  tions for the lightest targets means that the measurements are
curyes) triple differential cross sections for deuteron brgakup nealconsiderably reduced compared to the=6,=0° results.
0° in the laboratory frame @,=56 MeV. The calculations are  Thg gpposite is true for the most massive targets where the

averaged over the proton and neutron detection solid angles speginiie olid angles increase the measured effective cross sec-
fied in the text. The dashed curves are the cross sections calculatfﬁgnS

strictly at 6,=60,=0°.
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We conclude by noting that the present method, based on
the solution of Eq(1), depends critically on the approxima-
ton and neutron detection solid angles. The open symbols atin that only one projectile constituent effectively interacts
the cross sections calculated strictlyégt=6,,=0°. Several with the target. The method is not immediately applicable
general trends are evident. therefore either to the treatment of breakup in cases where

With reference to the open symbols, the cross sectionthe projectile has two loosely bound and charged constitu-
calculated strictly a¥,= 6,=0° show a characteristic trend ents, or to the treatment of breakup due to the nuclear com-
with increasing energy. All calculations show a maximum atponents of the core and valence particle-target interactions
a givenZ;, whose value, and the magnitude of the crossv and V). This is particularly the case for the deuteron
section, increases with incident energy. At all energies thgyhere, for the two nucleonvg'twvl’}'t. The method could

nevertheless provide a good first approximation for systems,
- ] such as halo nuclei, with a large core to valence particle mass
ratio, or whereV >V, e.g., Ref[13].

10° ¢ .

V. SUMMARY AND CONCLUSIONS

N

—y
o
T
1

We have considered the Coulomb dissociation of a com-
posite projectile comprising a charged core and a neutral
valence particle. We have shown that the use of a single
approximation, that breakup is to the low-energy continuum,
] leads to a simple and transparent expression for the post
form breakup amplitude in the limit that strong interaction
effects are neglected. The treatment includes a fully finite-
range treatment of the valence-core particle interactign
and does not make the weak coupling approximation of the
DWBA.

We have compared the parameter free theoretical predic-
tions with high precision differential deuteron dissociation
] measurements near zero degrees, at incident deuteron ener-
' gies of 140, 270, and 56 MeV. We obtain a good agreement
10 100 . .

Target charge Z with experiment over the full range of measu'red tqrgets,

from Z,=6 to 82, at 140 and 270 MeV. We obtain a similar

FIG. 12. Calculated double differential cross sections at zer@dreement with the data fofC, “°Ca, and®Zr targets at 56
degrees, versus the target nucleus charge, integrated over the ddeV, but we underestimate the data féfPb at this lowest
tected proton energy, d&4=140, 270, and 56 MeV. The solid €nergy.
symbols show the calculations when averaged over the proton and We have argued that the zero-range approximation to the
neutron detection solid angles. The open symbols are the cross sdtnite-range DWBA breakup amplitude is very suspect at the
tions calculated strictly af,=6,=0°. energies of interest here. It cannot be justified either in the

10"

d’o/dQ,dQ, (bsr?)

o—e 140 MeV (averaged)
O—O0 140 MeV (0 degree)
=—a 270 MeV (averaged)
0—0 270 MeV (0 degree)
10" | ¢—@56 MeV (averaged)
O— 56 MeV (0 degree)
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