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Coulomb dissociation of light nuclei

J. A. Tostevin, S. Rugmai, and R. C. Johnson
Department of Physics, School of Physical Sciences, University of Surrey, Guildford, Surrey, GU2 5XH, United Kingdom

~Received 27 January 1998!

We present an alternative theoretical formulation of the Coulomb dissociation process. We apply the for-
malism to the deuteron as an example of a weakly bound two-body composite nucleus with a charged core and
a neutral valence particle and for which exclusive experimental data exist in an appropriate kinematical regime.
The theoretical scheme assumes that the projectile excitation is predominantly to states with low internal
energy and is expected to be applicable at incident projectile energies of tens of MeV per nucleon and above.
A readily calculable expression for the quantum mechanical breakup transition amplitude is obtained without
the use of the distorted-wave Born approximation weak channel coupling approximation or of additional
approximations for finite-range effects. Calculations are presented, analyzed, and compared with high preci-
sion, kinematically complete, measurements of elastic deuteron dissociation into very forward scattering
angles. The calculations and data support the importance of the Coulomb breakup mechanism under these
kinematical conditions.@S0556-2813~98!00206-4#

PACS number~s!: 24.10.Eq, 24.50.1g, 25.10.1s, 25.45.2z
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I. INTRODUCTION

The Coulomb breakup of weakly bound composite s
tems has been studied extensively in nuclear physics.
relationship between the cross section for Coulomb brea
and that for the inverse low-energy nuclear capture proc
@1# has also stimulated much experimental and theoret
effort for applications to nuclear astrophysics. These theo
ical ideas and applications are discussed and reviewe
Ref. @2#. Analyses of Coulomb dissociation of the recen
discovered, and very weakly bound, neutron halo nuclei@3#
have also been numerous, e.g., Refs.@4,5# and references
therein. Coulomb dissociation is believed to be a signific
reaction channel in the scattering of such nuclei from a sta
heavy target nucleus. Halo nuclei are indeed an exciting
plication but the low intensities of the available second
beams of these nuclei means that experimental data are
quite limited—although they are improving rapidly.

In this paper we reconsider calculations of the Coulo
dissociation of a weakly bound two-body composite nucle
consisting of a charged core and a neutral valence part
by a charged target at energies of a few tens of MeV
nucleon and above. Within the framework of this three-bo
model description we present a theory which makes
approximations—that the dominant projectile breakup c
figurations excited are in the low-energy continuum and t
the valence particle does not interact with the target. T
theory is fully quantum mechanical and is also nonpertur
tive. It will be shown to lead to a factored expression for t
quantum mechanical breakup transition amplitude simila
forms reported previously, but which were derived using
proximations to distorted-wave Born approximatio
~DWBA! theory. The result of the present approach diffe
significantly from these in both detail and in interpretatio
We show that, without the use of DWBA weak couplin
approximations or of additional approximations, we are a
to calculate explicitly the quantum mechanical breakup tr
sition amplitude and so make comparisons with the m
exclusive experimental data available.
570556-2813/98/57~6!/3225~12!/$15.00
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The theory presented here offers, in certain cases, an
ternative scheme to semiclassical descriptions of the exc
tion process in the appropriate energy regime. Such se
classical approaches are of many forms, but most rece
these have developed along the lines of coupled chann
e.g., Ref.@4#, and direct solution of the time-dependent equ
tion, e.g., Ref.@5#, and are usually based upon a truncat
multipole expansion of the inter-nuclear electromagnetic
teraction. In the present analysis there is no such restric
to Coulomb multipole excitations. In addition, since our a
proach is nonperturbative, there is no truncation made in
order of excitation corrections. As will be seen, we requ
no zero-range approximations to interactions@6,7#, and we
make no reference to, or make approximations of, assu
semiclassical trajectories.

A crucial requirement for our analysis, however, is th
the Coulomb interaction due to the target charge acts only
a single charged fragment in the composite few-body pro
tile. The method is therefore not immediately applicable
many very interesting situations. These include the Coulo
dissociation of 8B, for which semiclassical methods hav
been applied extensively to consider higher order excita
and multipole effects@8#.

For a deuteron projectile, and unlike halo nuclei, there
no ambiguities in the theoretical analysis associated with
projectile’s structure. The theory is therefore first compa
here with precise, kinematically complete, deuteron ela
breakup data, measured in a restricted solid angles geom
at very forward angles@9–11#. Strong indications of the im-
portance of dipole Coulomb breakup for such a restric
detection geometry have been reported previously in
(d,pn) reaction atEd556 MeV @11#. This dipole dominance
was manifest empirically as a very characteristic dou
peaking in the measured triple differential cross section a
function of detected proton laboratory energy. This dep
dence was reproduced qualitatively, but not quantitatively
Ref. @11# from a consideration of the post and prior for
DWBA amplitudes for Coulomb breakup. We reconsider t
analysis of theseEd556 MeV data and also subsequent da
3225 © 1998 The American Physical Society
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at the higher incident deuteron energies of 140 and
MeV.

The method detailed here generalizes transparently to
breakup of those halo nuclei with a single charged const
ent, such as11Li, 11Be, and 19C. Applications to the Cou-
lomb breakup of such one- and two-neutron halo nuclei w
be discussed elsewhere.

II. FORMALISM

We consider the Coulomb interaction induced dissoc
tion of a bound two-body projectile nucleus (p) by a target
nucleus (t), of massmt and chargeZt . The projectile ground
state is assumed to be a bound statef0 of a charged core
(c), of massmc and chargeZc , and a neutral valence pa
ticle (v) of massmv . In the case of the deuteron then
course the projectile has only one bound state. In the pre
analysis we neglect strong interaction induced breakup
fects. We therefore assume that the projectile interacts w
the target only through a~Coulomb! interactionVct between
the core particle and the target nucleus. It is assumed, an
vital for the solution used in the subsequent analysis, that
valence particle-target interactionVvt can be neglected~or
thatVct@Vvt). We adopt the system of coordinates shown
Fig. 1.

The Schro¨dinger equation satisfied by the scattering wa
function of this three-body (c1v1t) system Cqp

(1)(r ,R)

when the projectile is incident with momentumqp in the
center of mass~c.m.! frame, is therefore

@TR1Vct~R2gvcr !1Hvc2E#Cqp

~1 !~r ,R!50. ~1!

Here Hvc5Tr1Vvc(r ) is the internal Hamiltonian for the
valence and core particle system with relative coordinatr ,
Tr is the relative motion kinetic energy operator, andVvc is
their binding potential. The vectorR is the projectile-target
separation andTR is the corresponding kinetic energy oper
tor. The quantitygvc5mv /(mv1mc), so R2gvcr5Rc is
the target-core separation. The projectile ground state w
function f0(r ) satisfies

Hvcf0~r !52«0f0~r !. ~2!

The required three-body wave functionCqp

(1)(r ,R) there-

fore satisfies the scattering boundary conditions

FIG. 1. Definition of the coordinate system adopted for the co
valence, and target three-body systems.
0
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Cqp

~1 !~r ,R!5eiqp•Rf0~r !1outgoing waves, ~3!

where, for a projectile with a single bound state, the outgo
waves include only elastic scattering and elastic brea
channels. More generally, the outgoing waves will also
clude terms from any inelastically excited bound states. T
incident plane wave boundary condition stated in Eq.~3! is
of course strictly incorrect in the presence of unscree
Coulomb interactions. Our final formulas can be justifie
however, as is usual, by considering the limit of the app
priately screened Coulomb problem.

A. Adiabatic approximation

An essential step in any discussion of an adiabatic
proximation is that two sets of dynamical variables must
defined. One set is then identified as a high-energy~andfast!
set and the other as a low-energy~and slow! set. In the
present context we identify the energetic or fast variable w
R, the projectile’s center of mass translational motion, a
the slow variable withr , its internal motion. At high incident
energies~and largeqp), and for an extendedf0, this division
is natural given the form of the entrance channel bound
condition in Eq.~3!. We assume therefore that the valenc
core relative excitation energies«, associated with those
broken-up configurations which are strongly coupled in
three-body Schro¨dinger equation, Eq.~1!, are such that«
!E, whereE is the incident energy of the projectile.

The actual amplitudes with which the spectrum
breakup states ofHvc are excited in the collision will of
course be dictated by the strengths and geometries of
tidal forces experienced by the projectile’s constituents.
the present case these are onlyVct , the Coulomb interaction
between the core and target. The long range of this inte
tion means that it can act repeatedly, to high order, but,
cause of its slow spatial variation, matrix elements ofVct
will only couple states ofHvc in close proximity in relative
energy.

Assuming«!E, little error will be expected upon replac
ing Hvc in Eq. ~1! by a representative constant energy. Mo
over, if this constant is chosen as2«0, we also guarantee
that the solution of the resulting approximate three-bo
equation satisfies the correct incident wave boundary co
tions and that the dominant elastic channel component in
wave function has the correct channel energy. In this ph
cal ~adiabatic! limit, the three-body equation therefore rea

F2
\2

2mp
¹R

2 1Vct~R2gvcr !2E0GC̄qp

~1 !~r ,R!50, ~4!

whereE05E1«05\2qp
2/2mp is the incident c.m. kinetic en

ergy andmp5mpmt /(mp1mt) is the projectile-target re-
duced mass.

The approximation involved here, replacingHvc by 2«0,
is selectively referred to as either an adiabatic approxima
@12#, in the few-body reactions theory literature, or, mo
usually in the Coulomb excitation literature, as a sudden
proximation @2#. We adopt the former usage. The appro
mation is seen to assume, because of the low excitation
ergies involved, that it is a good approximation to treat t
full excitation spectrum ofHvc as being degenerate in energ

,
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57 3227COULOMB DISSOCIATION OF LIGHT NUCLEI
with the ground state. The possible shortcomings of the

proximate three-body wave functionC̄qp

(1) calculated using

this scheme, in certain regions of the six-dimensional (r ,R)
space, are discussed in the following subsections.

B. Adiabatic model wave function

It is important for the subsequent discussion to apprec
that the dependence of the approximate three-body Sc¨-
dinger equation, Eq.~4!, on the core-valence particle separ
tion r is now only parametric. Thus Eq.~4! has to be solved
for all values of afixed separationr . We show that this
solution can be expressed exactly@13,14# as a product of
three factors.

We introduce the operatorUR(x), which translates the
variableR through2x, i.e., UR(x)5exp(2x•¹R). Clearly
therefore the potential operatorVct in Eq. ~4! can be ex-
pressed as

Vct~Rc!5Vct~R2gvcr !5UR~gvcr !Vct~R!UR
† ~gvcr !,

~5!

and, since@UR(gvcr ),¹R
2 #50, then

F2
\2

2mp
¹R

2 1Vct~R!2E0G@UR
† ~gvcr !C̄qp

~1 !~r ,R!#50.

~6!

Evidently, the most general form of the solutio

UR
† (gvcr )C̄qp

(1)(r ,R) of this equation is the product of~i! an

arbitrary functionF(r ) of the core-valence particle separ
tion, and~ii ! a projectile distorted wavexqp

(1)(R), and which

satisfies the Schro¨dinger equation

F2
\2

2mp
¹R

2 1Vct~R!2E0Gxqp

~1 !~R!50. ~7!

In the present context thereforexqp

(1) is a three-dimensiona

Coulomb distorted wave which describes the scattering
the projectile, of massmp and considered pointlike, by th
Coulomb interactionVct . The required three-body solutio
of Eq. ~4! is therefore

C̄qp

~1 !~r ,R!5F~r !@UR~gvcr !xqp

~1 !~R!#5F~r !xqp

~1 !~Rc!,

~8!

wherexqp

(1) has now to be evaluated at the core’s posit

coordinateRc . We note that, since@UR(gvcr ),Hvc#Þ0, this
product solution follows from Eq.~1! only when Hvc is
treated adiabatically.

The as yet unspecified multiplicative functionF(r ) in Eq.
~8! must now be chosen so that the particular solution sa
fies the required incident wave boundary condition, Eq.~3!,
as well as Eq.~4!. Consideration of the incident wave boun
ary condition satisfied byxqp

(1)(Rc), i.e.,

xqp

~1 !~Rc!5eiqp•~R2gvcr !1outgoing waves, ~9!

and byC̄qp

(1)(r ,R), Eq. ~3!, shows that we require that
p-

te
ro
-

f

s-

F~r !5exp~ igvcqp•r !f0~r !. ~10!

Hence theexactsolution of the adiabatic three-body prob
lem, Eq.~4!, is @13,14#

C̄qp

~1 !~r ,R!5exp~ igvcqp•r !xqp

~1 !~Rc!f0~r !. ~11!

It is important to stress that this three-body wave funct
retains breakup components. These are manifest in the
tremely complex dependence of the wave function onr , be-
yond that inf0, entering bothxqp

(1)(R2gvcr ) and in the

exponential factor exp(igvcqp•r ).
In the following we use the three-body wave functio

C̄qp

(1) to calculate the Coulomb dissociation process. The

plication of this three-body model solution to the elastic sc
tering of halo nuclei has recently been presented elsew
@13,15#. In that case the core-target interactionVct was not
assumed to be purely Coulomb but, since theremv /mc!1,
Vct could reasonably be assumed to be dominant, i.e.,
Vct@Vvt . A careful discussion of the validity of the adia
batic approximation in both the nuclear and Coulomb dom
nated situations is presented in Ref.@14#.

C. Use of the adiabatic wave function

We have shown that Eq.~11! is the exact solution of the
stated three-body model, given only the adiabatic assu
tion. The very explicit form of the solution in this cas
makes it clear that, at large core-valence particle separat

r→` the presence of the factorf0 means thatC̄qp

(1) van-

ishes~at least exponentially! in this region. This region con-
tains contributions from some parts of the breakup flux a
thus it is evident that for large values ofur u, in any direction,

C̄qp

(1) will be inaccurate—a consequence of our assumpt

that the entire spectrum ofHvc is degenerate with the groun
state.

It follows that, to use the three-body wave function of E
~11! to calculate a Coulomb breakup amplitude, we m
consider its limitation to only certain regions of the si
dimensional (r ,R) space. We therefore select the break
matrix element to be evaluated accordingly and, in parti
lar, we do not attempt to extract the breakup amplitude fr
the asymptotics of our approximate adiabatic solution. In f
we use the post-form of the exact quantum mechan
breakup amplitude.

This amplitude, from a projectile initial stateqp to a three-
body final state with core momentumqc and valence particle
momentumqv in the c.m. frame, is

Tbu~qvqc ,qp!5E dRE dre2 iqv•Rvxqc

~2 !* ~Rc!

3Vvc~r !Cqp

~1 !~r ,R!, ~12!

wherexqc

(2) is an in-going waves Coulomb distorted wave f

the core fragment. Due toVvc , the integrand in Eq.~12!
involves only finiter and so does not involve the three-bod
wave function in regions where our approximate soluti
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will be inaccurate. We therefore insertC̄qp

(1) as an approxi-

mation toCqp

(1) within this post-form amplitude giving

T̄AD~qvqc ,qp!5^eiqv•Rvxqc

~2 !~Rc!uVvc~r !uC̄qp

~1 !~r ,R!&.
~13!

Our approach therefore goes beyond the lowest o
adiabatic approximation as described byC̄qp

(1) . This can be

seen as follows. We first rewrite theexactthree-body Schro¨-
dinger equation of Eq.~1!, prior to any adiabatic approxima
tion, as

@E2TRv
2TRc

2Vct~Rc!#Cqp

~1 !~r ,R!5Vvc~r !Cqp

~1 !~r ,R!,

~14!

whereTRv
andTRc

are the kinetic energies in the coordinat

Rv and Rc of Fig. 1 and involve the reduced massesmv
5mv(mc1mt)/(mv1mc1mt) and mc5mcmt /(mc1mt),
respectively. Since now a calculation of the source term
Eq. ~14! requires only finite separationsr , we can use the

adiabatic wave functionC̄qp

(1) as a good approximation t

Cqp

(1) within this source term only. This yields the inhom

geneous equation

@E2TRv
2TRc

2Vct~Rc!#Ĉqp

~1 !~r ,R!5Vvc~r !C̄qp

~1 !~r ,R!,

~15!

and a~first! iterated approximate wave functionĈqp

(1) . This

equation has formal solution

Ĉqp

~1 !~r ,R!5
1

~2p!3E dkv8E dRv8E dRc8

3eikv8•~Rv2Rv8!GEc

~1 !~Rc ,Rc8!

3Vvc~r 8!C̄qp

~1 !~r 8,R8!, ~16!

or, upon integrating over the directions ofkv8,

Ĉqp

~1 !~r ,R!5
2 i

~2p!2E dRv8E dRc8E
2`

`

kv8dkv8

3
eikv8uRv2Rv8u

uRv2Rv8u
GEc

~1 !~Rc ,Rc8!

3Vvc~r 8!C̄qp

~1 !~r 8,R8!, ~17!

whereGEc

(1) is the core-target Green’s function in the pre

ence of potentialVct:

GEc

~1 !~Rc ,Rc8!5^Rcu@Ec
12TRc

2Vct#
21uRc8&,

Ec5E2\2kv8
2/2mv . ~18!

Using the asymptotic behavior of the two Green’s functio
in the integrand asRv and Rc→` in the directionsRc

→Rcq̂c and Rv→Rvq̂v , the final integral overkv8 can be
er

n

-

s

carried out using the stationary-phase point ofkv8Rv 1kcRc

@16#. This derives the expected three-body asymptotics@17#

and the approximate transition amplitudeT̄AD of Eq. ~13!,
i.e.,

Ĉqp

~1 !~r ,R!→@ factors#3
ei ~qvRv1qcRc!

R5/2

3^eiqv•Rv8xqc

~2 !~Rc8!uVvc~r 8!uC̄qp

~1 !~r 8,R8!&,

~19!

where R is the hyperradial variableR25(mvRv
2

1mcRc
2)/Amvmc andqv andqc are such as to satisfy energ

conservation\2qv
2/2mv1\2qc

2/2mc5E. The phase space
factors entering Eq.~19! are discussed in Ref.@17# and those
required for the calculated cross sections are presented in
results section of this paper.

An evaluation of the breakup amplitudeT̄AD of Eq. ~13! is
therefore formally equivalent to the solution of Eq.~15!. So,
although the adiabatic approximation neglects the projec
excitation energy in the calculation of the adiabatic thre

body wave functionC̄qp

(1) , this does not mean we calcula

the breakup using thej50 approximation, the zero adiaba
ticity parameter limit, of semiclassical theories@2#. As the
analysis above shows, our calculation ofT̄AD includes cor-
rectly the final state wave functions, kinematics, and exc
tion energies, unlike analogousj50 semiclassical calcula
tions.

D. Breakup transition amplitude

Our approximationT̄AD to the Coulomb breakup trans
tion amplitude is therefore

T̄AD~qvqc ,qp!5E dRE dre2 iqv•Rvxqc

~2 !* ~Rc!Vvc~r !

3@eigvcqp•rxqp

~1 !~Rc!f0~r !#. ~20!

Upon making a change of integration variable fromR to Rc ,
and noting thatRv5g tcRc1r , where g tc5mt /(mc1mt),
our breakup amplitude is seen to factorize exactly as

T̄AD~qvqc ,qp!5F E dre2 iPv•rVvc~r !f0~r !G
3F E dRce

2 iQv•Rcxqc

~2 !* ~Rc!xqp

~1 !~Rc!G
5^PvuVvcuf0&^Qv ,xqc

~2 !uxqp

~1 !&, ~21!

where we have definedPv5qv2gvcqp andQv5g tcqv .
The two factors in Eq.~21! delineate the structure an

dynamical parts of the calculation. The overlap of the th
continuum functions which arises here,^Qv ,xqc

(2)uxqp

(1)&, has

been evaluated in closed form and is expressed in term
the bremsstrahlung integral, e.g., Refs.@18,19#. This factor
now contains all the dynamics of the breakup process an
readily calculated.
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The projectile structure enters through the vertex funct
^PvuVvcuf0& and is also simply evaluated given any structu
model for the projectile. In Coulomb dissociation momentu
can be transferred to the valence particle only by virtue of
interactionVvc with the core. Since the termgvcqp in Pv is
the fraction of the incident momentum of the project
which is carried by the valence particle, this structure ver
displays explicitly this momentum transfer from the grou
state viaVvc .

Therefore, without any approximation additional to t
adiabatic assumption, Eq.~21! encompasses a fully finite
range treatment of the core-valence particle interactionVvc .
Our amplitude is thus applicable to projectiles with a
ground state orbital angular momentum structure, and
includes breakup contributions from all contributing Co
lomb multipoles and relative orbital angular momenta b
tween the valence and core fragments. This amplitude cle
also differs significantly from those of DWBA theories sin
it includes the initial and final state interactionsVct andVvc
to all orders. In the following we contrast our result wi
those published previously, based on approximations to
weak coupling DWBA theory.

III. RELATIONSHIP TO DWBA APPROACHES

Expressions with a factored structure similar to that of o
Eq. ~21!, and which also use the bremsstrahlung integra
treat the reaction dynamics, have been presented previo
e.g., Refs.@18,20#. These alternative expressions were o
tained, however, not as above, but by starting from the p
form of the distorted-wave Born approximation to th
breakup transition amplitude

TDW~qvqc ,qp!5E dRE dre2 iqv•Rvxqc

~2 !* ~Rc!

3Vvc~r !@xqp

~1 !~R!f0~r !#, ~22!

and then making different additional approximations.TDW is
obtained by neglecting completely the effects of the C
lomb polarization ~breakup! potential DV(r ,R)5Vct(Rc)
2Vct(R) in the calculation of the three-body wave functio
It thus replacesCqp

(1)(r ,R) by

Cqp

~1 !~r ,R!'xqp

~1 !~R!f0~r !, ~23!

in Eq. ~12!, wherexqp

(1)(R) is the entrance channel Coulom

distorted wave~for an assumed point projectile!, the argu-
ment of which is the projectile c.m. coordinate. It is assum
in writing Eq. ~22! that breakup channels are very weak
coupled and hence that this coupling need only be treate
first order. We reiterate that the adiabatic formulation lead
to Eq. ~21! did not use such Born approximation conside
ations at any stage.

For a realistic and hence finite rangedVvc the DWBA
amplitude TDW has itself not been calculated exactly a
further approximations are therefore applied—involving a
proximate treatments of, or the complete neglect of, th
finite-range effects. In Coulomb breakup, however, the f
that the Coulomb interaction acts at the charged core and
at the center of mass of the projectile is absolutely criti
n

s

x

so

-
rly

e

r
o
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-
st

-

d

to
g
-

-
e
t
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and therefore requires a very careful consideration of
deviations ofRc from R. Our adiabatic model formulation
retained these finiter effects explicitly. A key result is that
in Eq. ~21!, the projectile vertex appears evaluated atPv
5qv2gvcqp , whereqv andqp are the outgoing valence pa
ticle and incident projectile asymptotic momenta, and he
Pv is the momentum transferred to the neutron in t
breakup.

In the following we examine critically those approxima
tions toTDW previously used in the literature which lead
expressions similar to our Eq.~21!. We carry out this discus-
sion with the deuteron dissociation process in mind, for
cident energies in the range 30–140 MeV per nucleon. Si
in the (d,pn) reactionVvc is the freenp interaction,TDW in
this case presents the physical situation in which the ra
Rvc of the transition interaction is the smallest encounter
In addition the (d,pn) reaction involves the least massiv
physical projectile and dissociated fragments. Thus, for a
action of a given incident energy per nucleon, the wave fu
tions entering the DWBA matrix element will have long
wavelengths than in the analogous reactions with hea
projectiles. It follows that the ratio of the interaction rang
Rvc to the wavelengthsl of the distorted waves entering Eq
~22! is at its smallest for the (d,pn) reaction. This ratio is a
critical measure for assessing the likely importance of reta
ing finite-range effects within the breakup amplitude.

A. Method of zero-range DWBA

For the (d,pn) reaction,Vvc is the physicalnp interaction
with a ~finite! rangeRvc'1.4 fm. For a zero-range approx
mation to the DWBA matrix element, Eq.~22!, to provide a
reasonable quantitative estimate of the amplitude requ
that all functions~other thanVvcf0) appearing in the inte-
grand have characteristic lengthsl, for a significant func-
tional variation, such thatl@Rvc . When this is the case, a
at very low ~tandem! energies, then the zero-range appro
mation neglects variations of the distorted waves prod
e2 iqv•Rvxqc

(2)* (Rc)xqp

(1)(R) for thoseur u<Rvc .

However, even in the case of the light-ion (d,pn) reac-
tion, at say 100 MeV, the wave number of the incident de
teron is larger than 3 fm21 and thus thel associated with
the distorted waves are comparable toRvc . The approxima-
tion that the distorted waves are constant over the rang
Vvcf0 in Eq. ~22! is therefore untenable and finite-rang
effects are expected to be significant. This situation will
even worse for heavier systems, such as halo nuclei, w
theRvc are larger, the nuclei more weakly bound, and t
projectile and fragmentl ~at the same incident energy pe
nucleon! are even smaller. The zero-range approximation
the post-form DWBA breakup matrix element is therefo
difficult to justify physically, either in the present light-io
context or for related halo systems with similar incide
energies/nucleon. This zero-range DWBA approach, and
underlying physical picture it suggests of the breakup p
cess, particularly for higher energies or massive particles
therefore misleading.

If nevertheless one assumes that the zero-range app
mation is valid then, taking the smallRvc limit, i.e., R
→Rc , and Rv→g tcRc , in the distorted waves integran
e2 iqv•Rvxqc

(2)* (Rc)xqp

(1)(R), Eq. ~22! reduces to
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TDW~qvqc ,qp!'TZR~qvqc ,qp!5D0^Qv ,xqc

~2 !uxqp

~1 !&,
~24!

where

D05E drVvc~r !f0~r !5^0uVvcuf0&. ~25!

Thus, when applicable, the zero-range approximation to
DWBA leads to an expression with the structure of our E
~21!, but where the projectile vertex is evaluated at ze
valence-core relative momentum—the usual zero-ra
strength constantD0.

Comparison with our Eq.~21! shows that this zero-rang
expression is, fortuitously, equal to thePv50 approximation
to our finite-range adiabatic breakup amplitude. Since in
~21! the projectile vertex appears evaluated atPv5qv
2gvcqp , the presence ofqp results inuPvu, the momentum
transfer, taking on small values. As a result only relativ
low momentum components of the vertex are probed in
Eq. ~21!. Consequently, although the application of the ze
range approximation to Eq.~22!, which leads to Eq.~24!, is
not physically justified at the energies of interest here,
Pv50 approximation to Eq.~21! is expected to be rathe
good. In the deuteron breakup calculations which follo
uPvu' 0.1 fm21 at the cross section maxima. It follows tha
starting from our Eq.~21!, a good first approximation is to
replace the vertex function by itsPv50 strength constant
although there is no reason to do so.

We summarize that the expression given on the right-h
side of Eq.~24! is, fortuitously, a rather good approximatio
to T̄AD of Eqs.~20! and~21!. It is, however, expected to be
very poor approximation to the finite-range DWBA amp
tude TDW . This is, we believe, the reason for the appar
success of such supposedly ‘‘zero-range calculations,’’ ba
on Eq. ~24!, in comparisons with experimental data, e.
Ref. @20#.

B. Method of Baur and Trautmann

An alternative approximation scheme which leads to
amplitude of the form of Eq.~21!, was introduced by Bau
and Trautmann@18#. The original motivation of these author
was the study of deuteron breakup at sub-Coulomb ba
energies where the present adiabatic model is almost
tainly inappropriate. Their basic method has, however, b
cited in other contexts.

Their ansatz is to replace the projectile c.m. coordinate
the projectile distorted wave, in Eq.~22!, by the core coor-
dinate, i.e.,xqp

(1)(R)→xqp

(1)(Rc). This means their approxi

mation to the three-body wave function is

Cqp

~1 !~r ,R!'xqp

~1 !~Rc!f0~r !, ~26!

and was argued on the basis that the Coulomb polariza
potential acts to push the proton coordinate, on average
larger radii. Since the exponential factor exp(igvcqp•r )
which arose in our Eq.~11! for the three-body wave function
is absent, it follows that in this case,

TBT~qvqc ,qp!5^qvuVvcuf0&^Qv ,xqc

~2 !uxqp

~1 !&. ~27!
e
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Once again this looks similar to our Eq.~21! but with the
very important difference that the first term, the project
vertex, is now evaluated at the valence particle momen
qv in the final state — not at the momentum transferPv as
appears in Eq.~21!. While for the original application envis
aged in@18#, dissociation at sub-Coulomb barrier energie
the importantuqvu are small, and sôqvuVvcuf0&'D0, this is
not the case for the applications involved in Refs.@20,21#
and elsewhere.

At the energies of interest here, the relevant momentaqv
are large. They are typically in the range 1.0–2.0 fm21 in the
deuteron breakup calculations of the following section. F
ure 2 shows the modulus of the vertex function calculated
the Hulthén @22# and Reid soft core@23# deuteron wave func-
tions, as a function of thenp relative momentum. At mo-
menta of 1.0–2.0 fm21 the function values for such realisti
deuteron wave functions are already markedly different fr
their low momentumqv'0 values. This difference o
^qvuVvcuf0& from the zero-range vertexD05^0uVvcuf0&
will be even more acute in systems, such as halo nuclei, w
reduced binding and largerRvc .

The Baur-Trautmann approximation thus yields a break
amplitude which differs from the adiabatic theory by a fac
^qvuVvcuf0&/^PvuVvcuf0& which is dependent on the kine
matics of the reaction and the observables calculated.
show the result of using this approach in the following se
tion.

We conclude, however, that, even in deuteron induc
reactions with final state valence particle momentaqv as
small as 1 fm21, the approximate breakup amplitudeTBT of
Eq. ~27! will differ markedly from bothT̄AD of Eq. ~21! and
TZR of Eq. ~24!. In particular, for any realisticVvcf0, it is
not a reasonable approximation to replace^qvuVvcuf0& by
D0, which restores the calculation to zero-range form, as
been done in the literature for both deuteron and h
nucleus systems, e.g., Refs.@20,21#.

FIG. 2. Modulus of the vertex function calculated for th
Hulthén and Reid soft core deuteron wave functions, as a func
of the np relative momentum.
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IV. RESULTS AND ANALYSIS

In the following we compare the predictions of calcul
tions made using Eq.~21! with high precision measuremen
of the triple differential cross sectionsd3s/dVndVpdEp for
deuteron dissociation into very forward angles. In addition
their precision, these deuteron data are free from struc
ambiguities associated with the projectile vertex. We ad
the finite-range Hulthe´n vertex presented explicitly in Ref
@18#, and shown also in Fig. 2. Given this input the theor
ical calculations we present are entirely parameter free
the cross section formulas we continue to refer to the c
and valence particles for generality. Of coursec is now the
proton,v is the neutron, and the projectilep is the deuteron.

The necessary three-body final state kinematics and p
space formulas for the calculation ofd3s/dVvdVcdEc are
presented in Ref.@24# and also discussed in Ref.@25#. These
give

d3s

dVcdVvdEc
5

2pmp

\2qp

uT~qvqc ,qp!u2r~Ec ,Vc ,Vv!,

~28!

wherer(Ec ,Vc ,Vv) is the density of states, per unit co
particle energy interval, for detection at solid anglesVv and
Vc , and is

r~Ec ,Vc ,Vv!5
mcmv\kc\kv

~2p\!6

3F mt

mv1mt1mv~kc2K !•kv /kv
2G .

~29!

Here\kc and\kv are the proton and neutron momenta in t
final state and\K the total momentum, all in the frame~c.m.
or laboratory! of interest. The experimental data consider
here are presented in the laboratory frame.

As will be seen in the following, the angular dependenc
of these calculated triple differential cross sections near z
degrees are extremely rapid and qualitatively different
light and heavy targets, and at different incident energies
is therefore essential to integrate and then average the t
retical angular distributions over the specified experimen
solid angle acceptances before final comparisons are m
with data. That is, we evaluate

d3s~exp!

dVcdVvdEc
5

1

DVcDVv
E

DVc ,DVv

dVcdVv

d3s

dVcdVvdEc
,

~30!

where the integrations over the protonDVc and neutron
DVv detection solid angles are carried out using numer
quadratures.

The (d,pn) elastic breakup data have been measure
the RIKEN Accelerator Research Facility, Saitama, at 1
and 270 MeV@9,10#, and at the Research Center for Nucle
Physics~RCNP!, Osaka, at 56 MeV@11#, in a kinematical
condition ofup'un'0°. The targets were12C, 28Si, 40Ca,
90Zr, 118Sn, 165Ho, and 208Pb atEd5140 and 270 MeV and
o
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12C, 40Ca, 90Zr, and 208Pb atEd556 MeV. The solid angles
subtended by the neutron and proton counters will be see
be of considerable importance. These wereDVn50.45 msr
~with a circular geometry! at 140 MeV and 0.48 msr~with
square geometry! at 270 MeV. TheDVp57.2 msr ~a 60
3120 mrad2 rectangular geometry! at both 140 and 270
MeV. For the 56 MeV data, thenDVn50.88 msr~with cir-
cular geometry! andDVp55.6 msr~a 75375 mrad2 square
geometry!. In all cases the solid angle elements are cente
aboutup5un50°.

A. Calculations at 140 MeV

The calculations and data at 140 MeV@9,10# are com-
pared in Fig. 3 for all measured targets. The errors show
the figure are statistical only. The solid lines show the ela
breakup cross sections, as a function of the detected~labora-
tory! proton energy, calculated using the finite-range am
tude of Eq.~21! and Eqs.~28!, ~29!, and ~30!. The overall

FIG. 3. Experimental and calculated adiabatic model~solid
curves! triple differential cross sections for deuteron breakup n
0° in the laboratory frame atEd5140 MeV. The calculations are
averaged over the proton and neutron detection solid angles s
fied in the text. The dashed curves, for12C and 208Pb, use the
Baur-Trautmann approximation of Eq.~27!.
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3232 57J. A. TOSTEVIN, S. RUGMAI, AND R. C. JOHNSON
agreement of the calculated magnitudes,Zt dependence, and
the proton energy dependence, with the data is good
improves with increasing target charge. The factor of 40
crease in the magnitudes of the measured cross sectio
going from 12C to 208Pb is seen to be well reproduced as
function of Zt . Figure 3 does not, however, reveal the co
plex way that the calculated cross sections are built up in
integrations over the experimental solid angle acceptan
These are quite different for the small and largeZt targets.

To clarify these differences, in Fig. 4 we show the calc
lated double differential cross section angular distributio
against up ~at un50°), integrated over the final proto
energy—without solid angle averaging. The curves show
representative12C, 40Ca, 118Sn, and 208Pb target cases a
Ed5140. The experimental acceptances for the 140 M
data involve a very smallDVn50.45 msr and so settingun
50° is representative. The proton~spectrometer! acceptance
on the other hand isDVp57.2 msr ~with the rectangular
geometry given above! and includes proton angles as large
up'3.5° about zero degrees. Over this angular range
intrinsic cross section for12C, with forward going neutrons
is seen to fall by more than an order of magnitude while t
for 208Pb increases by about a factor of 3.

Figures 5 and 6 show the calculated triple different
cross sections, withun50°, for 12C and 208Pb at up50°
~short dashed curves!, up51° ~dot-dashed curves!, and up
52° ~long dashed curves!, showing again the increasin
cross section withup for 208Pb and the rapidly falling cros
section withup for 12C. Also shown are the experiment
data and the correctly calculated averages over the ex
mental acceptances~solid curves!. These figures show tha
the calculations, and the level of agreement obtained
presented in Fig. 3, do not arise trivially from a simple sc
ing of calculated cross sections withZt . We see that the
trends withZt and target mass and the obtained cross sec

FIG. 4. Calculated double differential cross section angular
tributions versusup ~at un50°), integrated over the detected proto
energy and without solid angle averaging, for12C, 40Ca, 118Sn, and
208Pb atEd5140 MeV.
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magnitudes are the result of a careful specification of exp
mental conditions and of the theory which derives a com
cated dependence of the breakup mechanism on target ch
and detected proton energy. Evidently the theoretical cr
sections calculated at zero degrees have no direct rela
ship to the data. We return to this point in the followin
discussion.

Overall, our results are consistent with an underlyi
physical picture in which Coulomb breakup is the domina
mechanism. There are, however, indications of a missing
interfering contribution, particularly on the lighter target

- FIG. 5. Calculated triple differential cross section for12C, with
un50°, at up50° ~short dashed curves!, up51° ~dot-dashed
curves!, and up52° ~long dashed curves! at Ed5140 MeV. Also
shown are the experimental data and the calculated averages
the experimental acceptances~solid curves!.

FIG. 6. As for Fig. 5 but for the208Pb target atEd5140 MeV.
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57 3233COULOMB DISSOCIATION OF LIGHT NUCLEI
most probably resulting from smaller nuclear breakup c
tributions.

We should note that if, instead of using the adiaba
theory amplitude of Eq.~21!, we use the Baur-Trautman
approximation of Eq.~27! then we calculate the result
shown by the long dashed curves in Fig. 3 for12C and208Pb.
As discussed earlier, the factor^qvuVvcuf0&/^PvuVvcuf0& be-
tween these two amplitudes results in a considerable un
estimation of the data at 140 MeV. Since the contributingqv
increase withEd we shall see that this discrepancy is ev
more serious at 270 MeV.

B. Calculations at 270 MeV

The calculations and data at 270 MeV@10,9# are com-
pared in Fig. 7 for all measured targets, the errors sho
being statistical only. The solid lines show the solid an
averaged elastic breakup cross sections using Eq.~21!. As
for the 140 MeV data, the overall agreement of the cal
lated magnitudes andZt dependence, with the data is goo

FIG. 7. Experimental and calculated adiabatic model~solid
curves! triple differential cross sections for deuteron breakup n
0° in the laboratory frame atEd5270 MeV. The calculations are
averaged over the proton and neutron detection solid angles s
fied in the text. The dashed curves, for12C and 208Pb, use the
Baur-Trautmann approximation of Eq.~27!.
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and improves with increasing target charge. The increas
magnitudes of the measured cross sections, now by a fa
of '160, in going from 12C to 208Pb is seen to be wel
reproduced as a function ofZt . Again our results are consis
tent with a dominant Coulomb breakup mechanism with
dications of a missing interference from smaller nuclear c
tributions. The minima in the calculated cross sections,
to the dominant dipole breakup mechanism, are also fi
within the data at 270 MeV, additional evidence of a missi
nuclear breakup contribution.

The cross sections of Fig. 7, similar to those of Fig. 3,
built up from the integrations~and then the average! over the
experimental solid angle acceptances. Figure 8 shows
calculated double differential cross section angular distri
tions at 270 MeV, analogous to Fig. 4, and without so
angle averaging. The experimental acceptances at 270 M
are essentially the same as at 140 MeV and so similar c
clusions apply. Over the proton~spectrometer! acceptance
the intrinsic cross section for12C, with forward going neu-
trons, is now seen to fall by two orders of magnitude whi
at 270 MeV, that for208Pb now also falls slowly with in-
creasingup . Once again it is evident that the trends withZt ,
and the calculated cross section magnitudes, result fro
complicated interplay of the theoretical dependences and
experimental kinematical conditions and solid angles
volved. The dependences of the Coulomb breakup mec
nism, on the incident deuteron energy, target charge,
detected proton energy, within the present theory app
rather consistent with the experimental data. Using the Ba
Trautmann approximation of Eq.~27! we calculate the long
dashed curves in Fig. 7, for12C and 208Pb, resulting in a
considerable underestimation of the data.

C. Calculations at 56 MeV

An incident deuteron energy of 56 MeV is at the low
end of the range of energies at which an adiabatic treatm

r

ci-

FIG. 8. Calculated double differential cross section angular d
tributions versusup ~at un50°), integrated over the detected proto
energy and without solid angle averaging, for12C, 40Ca, 118Sn, and
208Pb atEd5270 MeV.
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3234 57J. A. TOSTEVIN, S. RUGMAI, AND R. C. JOHNSON
is thought to be reliable, based upon earlier comparison
adiabatic and nonadiabatic methods for transfer reaction
nuclear breakup processes@26,27#. We include an analysis o
these experimental data here both for completeness and
these data were also the subject of an earlier~prior form!
DWBA analysis by Samantaet al. @28#.

The calculations and data at 56 MeV@11# are compared in
Fig. 9 for the four measured targets12C, 40Ca, 90Zr, and
208Pb. The errors shown are statistical only. The solid lin
show the solid angle averaged elastic breakup cross sec
calculated using Eq.~21!. When using instead the Bau
Trautmann approximation to the amplitude, Eq.~27!, we cal-
culate the long dashed curves in Fig. 9, for the12C and 90Zr
targets. Since now theuqvu involved are smaller, the under
estimation of the data is less severe, but it is clear that
model does not include the essential physics correctly at
energy also. We see that the quality of the agreement of
adiabatic model calculations with the data for the th
lighter targets is comparable to that for the higher-ene
data. The calculations for the208Pb target on the other han
underestimate the data rather seriously~about a factor of 4!.
The origin of this particular discrepancy for208Pb is unclear
based on the present analysis. The discrepancy might re
a more significant nuclear breakup contribution, due to
increasing strength of the real distortion and increased
face absorption in the nucleon-target interactions, as the
teron incident energy is reduced. Alternatively the resu
might indicate the onset of significant nonadiabatic corr
tions at this lowest energy.

The calculated double differential cross section angu
distributions at 56 MeV, analogous to Fig. 8, and witho
solid angle averaging, are shown in Fig. 10. The angu
variations of the cross section, with emerging proton an
are now much less pronounced, but still forward an
peaked, for the light targets. That for90Zr is now almost
constant. The cross section for208Pb is seen to increase rap
idly with up and hence, when combined with the sinup
weighting in theDVp solid angle integral, most of the ca

FIG. 9. Experimental and calculated adiabatic model~solid
curves! triple differential cross sections for deuteron breakup n
0° in the laboratory frame atEd556 MeV. The calculations are
averaged over the proton and neutron detection solid angles s
fied in the text. The dashed curves for12C and 90Zr, use the Baur-
Trautmann approximation of Eq.~27!.
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culated cross section for208Pb in Fig. 9 results from the
protons emerging at the very largest extremes of the exp
mental detection solid angles.

Our Coulomb breakup results, which reproduce the m
nitudes of the12C, 40Ca, and 90Zr data are in contrast to
those of the~prior form! DWBA analysis of these sam
(d,pn) data by Samantaet al. @28#. They reported Coulomb
breakup cross sections which significantly overpredic
these data. They also concluded that nuclear breakup co
butions are large. Since we have not considered nuc
breakup here, we are unable to comment on this latter
ture. Regarding the Coulomb breakup calculations, howe
it is not at all clear that the necessary averages of the ca
lated triple differential cross sections, over the experimen
acceptances about zero degrees, were carried out in
@28#. Figure 11 shows, in addition to the angle averag
calculations~solid curves! and data, the triple cross section
calculated strictly atup5un50° ~dashed curves!. Without
the solid angle averaging one would indeed conclude that
Coulomb dissociation contribution is too large on the lig
12C and 40Ca, targets.

D. General features

We have shown that, even in the presence of only p
Coulomb breakup, the angular distributions of the disso
ated fragments have a complex dependence on the inci
projectile energy and the target mass and charge. In par
lar, there is no simple scaling of the calculations with t
target charge. We summarize this information in Fig.
which shows the calculated double differential cross secti
at and near zero degrees as a function of the target nuc
charge, integrated over the detected proton energy.
circle, square, and diamond symbols show the results
Ed5140, 270, and 56 MeV, respectively. The solid symb
are the calculations which have been averaged over the

r

ci-

FIG. 10. Calculated double differential cross section angu
distributions versusup ~at un50°), integrated over the detecte
proton energy and without solid angle averaging, for12C, 40Ca,
90Zr, and 208Pb atEd556 MeV.
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57 3235COULOMB DISSOCIATION OF LIGHT NUCLEI
ton and neutron detection solid angles. The open symbols
the cross sections calculated strictly atup5un50°. Several
general trends are evident.

With reference to the open symbols, the cross secti
calculated strictly atup5un50° show a characteristic tren
with increasing energy. All calculations show a maximum
a given Zt , whose value, and the magnitude of the cro
section, increases with incident energy. At all energies

FIG. 11. Experimental and calculated adiabatic model~solid
curves! triple differential cross sections for deuteron breakup n
0° in the laboratory frame atEd556 MeV. The calculations are
averaged over the proton and neutron detection solid angles s
fied in the text. The dashed curves are the cross sections calcu
strictly at up5un50°.

FIG. 12. Calculated double differential cross sections at z
degrees, versus the target nucleus charge, integrated over th
tected proton energy, atEd5140, 270, and 56 MeV. The solid
symbols show the calculations when averaged over the proton
neutron detection solid angles. The open symbols are the cross
tions calculated strictly atup5un50°.
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up5un50° differential cross section is smaller for208Pb
than for several of the lighter nuclei. For the lower two e
ergies, 140 and 56 MeV, the208Pb cross section atup5un

50° is smaller or comparable to that for12C.
The calculated angular distributions of the core~proton!

fragment, forun50°, shown in Figs. 4, 8, and 10, mean tha
when integrated over the small experimental solid angle
ceptances, the picture is very different, as shown by the s
symbols in Fig. 12. The almost straight line~on the log-log
plot! for the calculated cross sections at 270 MeV, indicat
of a simple power law dependence onZt , is therefore en-
tirely the result of the particular chosen experimental det
tor arrangement. The information within the measurement
much more complex and further investigations, using diff
ent solid angle geometries would be very interesting. In
cases, however, the forward peaked proton angular distr
tions for the lightest targets means that the measurement
considerably reduced compared to theup5un50° results.
The opposite is true for the most massive targets where
finite solid angles increase the measured effective cross
tions.

We conclude by noting that the present method, based
the solution of Eq.~1!, depends critically on the approxima
tion that only one projectile constituent effectively interac
with the target. The method is not immediately applicab
therefore either to the treatment of breakup in cases wh
the projectile has two loosely bound and charged const
ents, or to the treatment of breakup due to the nuclear c
ponents of the core and valence particle-target interact
Vct

N and Vvt
N . This is particularly the case for the deutero

where, for the two nucleonsVct
N'Vvt

N . The method could
nevertheless provide a good first approximation for syste
such as halo nuclei, with a large core to valence particle m
ratio, or whereVct@Vvt , e.g., Ref.@13#.

V. SUMMARY AND CONCLUSIONS

We have considered the Coulomb dissociation of a co
posite projectile comprising a charged core and a neu
valence particle. We have shown that the use of a sin
approximation, that breakup is to the low-energy continuu
leads to a simple and transparent expression for the
form breakup amplitude in the limit that strong interactio
effects are neglected. The treatment includes a fully fin
range treatment of the valence-core particle interactionVvc
and does not make the weak coupling approximation of
DWBA.

We have compared the parameter free theoretical pre
tions with high precision differential deuteron dissociati
measurements near zero degrees, at incident deuteron
gies of 140, 270, and 56 MeV. We obtain a good agreem
with experiment over the full range of measured targe
from Zt56 to 82, at 140 and 270 MeV. We obtain a simil
agreement with the data for12C, 40Ca, and90Zr targets at 56
MeV, but we underestimate the data for208Pb at this lowest
energy.

We have argued that the zero-range approximation to
finite-range DWBA breakup amplitude is very suspect at
energies of interest here. It cannot be justified either in
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3236 57J. A. TOSTEVIN, S. RUGMAI, AND R. C. JOHNSON
present light-ion context or for related halo systems w
similar incident energies/nucleon. We have shown, howe
that if applied, then the zero-range approximation leads to
expression which, fortuitously, is equal to thePv50 ap-
proximation to our finite-range adiabatic breakup amplitu
We believe therefore that the physical picture suggested
the zero-range DWBA, regarding the importance of fini
range and multistep effects, is quite misleading and that
amplitudes actually calculated should instead be viewed
good approximation to a finite-range, nonperturbative, ad
batic breakup amplitude.
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