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The propagation of a deuteron through nuclear matter is examined in terms of a simple nonlocal but
separable potential for the n-p interaction. It is found that the binding energy of the deuteron in nuclear
matter depends strongly on the relative orientation of the deuteron spin and center-of-mass momentum, when
both the Pauli exclusion principle and the tensor force component in the neutron-proton interaction are
included in the calculation. A thorough discussion of the physical mechanism involved is presented. It is
shown that this effect is associated with the presence of a new type of spin dependent interaction of the T,
type, in the deuteron-nucleus optical potential. The nuclear matter calculations are applied to the realistic
case of a deuteron scattered by a heavy nucleus through a simple model which is valid for deuteron incident
energies in excess of 100 MeV. The T, force thus produced is found to have a non-negligible strength over a
wide range of high incident deuteron energies and to be very sensitive to high momentum components of the
nucleon-nucleon interaction. The mechanism examined here is also expected to generate a T, force and a

modified Ty force at low energies.

[NUCLEAR REACTIONS d in nuclear matter, Pauli exclusion principle, D-state]
probability. d optical potential, tensor force, E;<1 BeV, polarized d.

I. INTRODUCTION

This paper is concerned with the effects of anti-
symmetrization on the scattering of a deuteron by
a heavy target nucleus. As a simple model it is
assumed that the target remains in its ground state
and is adequately described throughout the scat-
tering by a single determinant of occupied single-
particle states. Models of this type have been
studied by a number of authors'~® and are known
to provide a framework within which interesting
physical effects associated with antisymmetriza-
tion can be displayed and calculated. The relevant
literature has been reviewed recently by Pong and
Austern.®

Under these assumptions the deuteron-nucleus
many-body Schrédinger equation reduces to an ef-
fective three-body equation for a function y(p,n)
of the coordinates of a neutron and proton only.
The equation satisfied by this function is of the
Bethe-Goldstone type and can be written

(E-t,=t,=U,=QV,)¥(p,n) =0, ¢);

where £, and ¢, are kinetic energy operators for
the proton and neutron, U, and U, are Hartree-
Fock potentials for the nucleon-nucleus interac-
tion, and V,, is the neutron-proton interaction.
The influence of the identity of the nucleons in the
deuteron and the nucleons in the target is dis-
played in Eq. (1) through the operator @ which
projects onto states of the two nucleon system
which can be constructed out of single-particle
states not occupied in the target ground state.

Approximate solutions of Eq. (1) and a discus-
sion of implications for the deuteron optical po-
tential can be found in Ref. 5 where a review of
earlier calculations based on versions of Eq. (1)
can also be found. Reference 5 also contains an
estimate of target excitation effects neglected in
Eq. (1).

This paper is primarily concerned with the
additional physical effects that arise in the solution
of Eq. (1) because of the large tensor force com-
ponent of V,,. These effects have been ignored in
earlier work in this field which has emphasized
corrections to the central part of the deuteron
optical potential. It will be shown here that the
combined effects of the tensor force in V,, and
the requirements of antisymmetry give rise to a
significant spin-dependent force in the deuteron
optical potential of the T, type (in Satchler’s’
classification).

In order to display this result in a simple con-
text the case of a deuteron propagating in nuclear
matter is considered in the next section. The
implications of the nuclear matter results for
deuteron scattering by a finite nucleus are dis-
cussed in Sec. III. A brief account of some of
these results has been given in Ref. 8.

II. DEUTERON IN NUCLEAR MATTER

A. Bound state solutions of the Bethe-Goldstone equation

In this section the neutron and proton of Eq. (1)
are assumed to be propagating in nuclear matter
in its ground state and of uniform density char-
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acterized by a Fermi momentum k. The projec-
tor @ is taken to be
Q=Q,9,, (2)
where
Q- [  dk DIILACACAAR 3)
k,)l, Cp

where IE,, o,) is a plane wave proton state. A
similar definition obtains for Q,.

In nuclear matter the Hamiltonian in (1) com-
mutes with the operator for the total momentum
of the neutron and proton and Eq. (1) has solutions
of the form

v=e' TRz (D), @
where
R=4(F,+7,), F=F,-F,, (5)

and ¢z () satisfies

(€~ t, - QrlkpV,)| ¢%,)=0, (6)
with
2772
E-e+ LK +U 9 +U?, (7a)
2
t,=— r Ve, (7b)
m

and m is the nucleon mass. The operator Qz(ky)
in Eq. (6) acts on the spins and relative coordinates
of the neutron and proton only and is given by

Qen)= 3 [ dkIE,0,,0,)(K,0, 0,1 % 6,,®, D),
Up. n
(8)
where

0., K) =0, if | 3K+K| or [$K-K|

is less than kg,
=1, if |3K+K| and |1 -K|
are greater than k, (9)

and

k-
elr

(Fl&)= @ (10)
In writing down Egs. (6) and (7) the nonlocality
of the Hartree-Fock potentials U, and U, has been

ignored in order to simplify the formulas, and
U, and U, are taken to have the constant values
U(°) and U(°) . A simple correction for nonlocality
is mcluded later along the lines studied in Refs.
9 and 10.

Bound state solutions of (6) with € <0 also sat-

isfy
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| o, S irers Qx(kp)V,|¢K ) (11)

Solutions of this equation exist in simple analytic
form if V,, is a separable interaction. They have
been studied in detail by Gambhir and Griffin* in
the case that V,, is the rank-1 S-wave potential
of Yamaguchi.’ It was shown in Ref. 4 that bound
state solutions exist for sufficiently high E, or
low enough kg.

The treatment is readily extended to the case
when V,, contains a tensor force of the type given
by Yamaguchi and Yamaguchi'? which has the form

Vnp""-'_ ‘z lfu><ful) (12)

where

(K10, 01120 = [C) + 7= T®1,,®0) a0y

(13)

In Eq. (13) x,, is a triplet spin wave function and
S,; is the usual tensor force operator

3[5(p)-K|[5n)-K]
kz

S, = ~5(p) *Sn). (14)

The particular functional forms assumed in Ref.
12 for C(k) and T(k) were

W)= g (152)
2
T()= o » (15b)

where the force parameters A, £, v, and 3 were
chosen to fit properties of the deuteron and low

energy n-p scattering. According to Ref. 12 this
procedure gives

A=0.2540 fm™3 ¢=1.663, (16a)

B=1.335 fm™,y=1.537 fm™! (16b)

if the deuteron D-state probability is assumed to
be 4%. Alternative sets of values of these param-
eters will be discussed below.

Because of the way the direction Kis picked out
by the operator @&(ky) in Eq. (11) the angular mo-
mentum about the center of mass of the deuteron
J does not commute with Q& V. €ven though it
commutes with V,,, and hence eigenstates | 9% )
do not have definite J. However, J-K does com-
mute with QgV,,, and hence solutions of Eq. (11)
have the form

l¢(K GM,M» Nu QK(kp)Ifu>r (17)

provided € satisfies
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1+—= <f,.l 7 Qk(kep) | fu)=0. (18)
In these expressions N is a nor malization con-
stant, and the quantum number M is the eigen-
value of J-K/K, i.e., choosing the z axis to be
along the direction of K

T 9K, € M)Y=M ¢(K, €, M)). (19)

If V,, is invariant under time reversal it is not
difficult to show that

Ey=€_y (20

Equations (17)—-(20) mean that a deuteron with
center-of-mass momentum K which is triply de-
generate in free space (M =x1,0), splits in nu-
clear matter into two states of different energy:
a nondegenerate state with M =0, energy ¢,, and
a doubly degenerate state with M =+1, and energy
€,, where M is the component of the total angular
momentum along K.

The eigenvalues ¢, are the values of € which
satisfy Eq. (18). This can be rewritten

3

1 = Vule)=0, (21a)
where
Vule)= (ful Qﬁ(kp) [ fie) + (21b)

The difference ¢, - €, is nonzero only if the nu-
clear matter density is nonzero and the tensor
force component in V,, is nonzero. If kx=0, Q%
is independent of the direction of K, and V,, be-
comes independent of M because it is the matrix
element of a tensor of rank zero in spin and rel-
ative coordinate space. In the absence of tensor
forces V,(¢) is independent of M even if & #0 be-
cause then [fy) is an eigenfunction of the intrinsic
spin operators $? and S, and the operators @ and
(e - ¢,)7* are tensors of rank zero in spin space.

The general nature of some of these results
can be seen by noting that if | ¢(K, €y, M)) is a
normalized solution of Eq. (11), and ¢, satisfies
Eq. (18), then also

ell =(¢(is Ell;M)I [tr +QE(kF)Vn’]I ¢(i§’ EMyM»

=( oK, e, M)| Qz(kp)(t, + V)R (k) | 9K, €y, M )

=( o&, ey, M) |H,,| ¢(&, €y, M)), (22)
where

H,=t,+V, (23)

is the free-space Hamiltonian for the n-p system.
The state | (K, ¢,,M)) can be regarded as a trial
wave function for an eigenstate of H,, with J,=M,
and therefore

€y = 6?(, (24)

where ¢ is the lowest eigenvalue of H,, with J,
=M.

The result (24) means, for example, that a
deuteron is always less bound in nuclear matter
than in free space. In addition, (24) can be used
to show that the connection between the presence
of spin-dependent forces in the spin-triplet V,,
and the existence of two bound states with differ-
ent binding energies for the n-p system in nuclear
matter is a very general one and is not a peculiar-
ity of the Yamaguchi potential. Thus, consider a
spin-independent spin-triplet v, adjusted to give
the correct spectrum of H,, in free space. The
ground state will be characterized by L=L,=0,
and all other states will be unbound. The spin
wave functions can be ignored and Eqgs. (22) and
(23) can be used with M reinterpreted as L,. In
nuclear matter I is not a good quantum number
even in the absence of tensor forces; nevertheless
the inequality (24) shows that there can be no bound
states with L, # 0 because all eigenstates of H,,
with L, #0 are unbound in free space.

Of course, whether or not any states are bound
for an interesting range of values of K* and &,
depends on the values of the parameters deter-
mining V,,. This question will be taken up in
Sec.IID.

B. Calculation of binding energy

In order to evaluate the quantity V,(¢) of Eq.
(18) it is convenient to use the Legendre expan-
sions of the projection operator @%. Using pro-
perties of the Legendre polynomials P,(x) it is
readily shown that the quantity akF(K k) defined
in Eqgs. (8)-(10) has the expansion

6, (K,E)=%Z 0,(K, kb, kp) 2L+ 1)P,(R+F), (25)

F

where K denotes the direction of ﬁ, and where
6,(K,k,kz)=0, [odd, (26a)
B(K, B, kp)=2b0(k — a)0(kp +3K — k)

+2[0CK = kp— k) +0(k - 3K - k)],
(26b)

(K, k,kp)= 2—(”%"@ 6(k - a)6(ky +3K — k),

1>0, even, (26¢c)
and ¢ and b are defined by

1p i 1
alK,k, k)= {ZK kp, 1 kp<2K, (27a)
(kp? = 3K3)1/2, if kp>iK
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1p2_p 2
B, k, k)= 4"’2—"‘-‘————112’“‘— . (27b)

The form factor given in Eq. (13) can also be
written

(B, 0, 0,1 fu) = (40172 2 v, (X1, (R, 0,0 0,),
L=0,2

(28)
where

‘y?LS)J(E’ Ly Un) = ; (LA’ So ]JM) YLA(E)XSO(OM on)v
(o]

(29)
vo(R) =C(R), (30a)
vy (B) = T(R). (30b)

Standard formulas'® can now be used to show that
the quantity V() defined in Eq. (21) can be ex-
pressed as

2
gn— Vyle)=- Z (1M, 10| 1M)

x V3 121.(L0, 10| L'OYW(L’L11; 1)
L,L'

X Zﬂfmdkkzvy(k)?%—;z-
0

XUL(k)el(K, k, ki‘), (31)

where A? is defined by € =-%%A%/m, and
L=@L+1)1"2,

Tables of the angular momentum coupling co-
efficients can be used to reduce Eq. (31) to

h—z
— Vi (€)==L(€) +L(e), (32a)
m
h—z
— Vole) ==I,(€) - 2L,(e), (32b)
m
where
i 2
Io(e)=21rj; dk 12 6,(K , k, kF)—C(?:—kT:(k) . (3%)

Lie)=2r fo" Ak 26,(K, b k) T(k)[%ﬁfl};ﬂc(k)]

(33b)
The eigenvalue condition given in Eq. (21a) be-
comes

1

A= 10(51)-12(61) ’

M==1, (34a)

1

= M=0 34b
AR ACAFETR PR , (34b)

where

o,
== A4 M,K, k) (35a)
and
BM == €y (35b)

is the binding energy of a deuteron with the quan-
tum numbers displayed as arguments of A in Eq.
(35).

Note that in free space, where 6, =0 for all &,
or in the absence of a tensor force, when T'(2)=0
for all &, the integral I,(e) vanishes, the two ei-
genvalue conditions (34) become identical, and the
deuteron binding energy becomes independent of
the relative orientation of its linear and angular
momenta, as expected.

For the functional forms given in Eq. (15) the
integrals in Eq. (33) can be evaluated analytically
for a given set of values of the force parameters
t,y,B, center-of-mass momentum K, Fermi mo-
mentum k,, and binding energy parameter A. The
approach used to solve Eqgs. (34a) and (34b) was to
vary the value of A in each case such that the
right-hand sides yielded the correct value of the
free-space n-p force strength . The results
were checked by evaluating the integrals I, and
I, both numerically and analytically.'

C. Parameters of V, »

As a measure of the sensitivity of the results
discussed in the next section to the model assumed
for the neutron-proton interaction in free space
a number of calculations were performed with dif-
ferent values of the range parameters g8 and v, and
the strength parameters ) and ¢{. It was found pos-
sible to adjust the predicted free-space deuteron
D-state probability by large factors while keeping
the free-space deuteron binding energy, quadru-
pole moment @, and triplet scattering length fixed
at their experimental values. At the same time the
predicted triplet effective range changed by very
small amounts so that the sets of parameters ob-
tained in this way all fitted the very low energy
properties of the triplet n-p system well. Sets
of parameters corresponding to different D-state
probabilities therefore correspond to different
models of the high energy short distance behavior
of the neutron-proton interaction. Further details
can be found in the Appendix where a table of sets
of parameters can be found.

D. Numerical results for the binding energy in nuclear matter

The term “ para state” will be used to refer to a
state with M =x1. In these cases the deuteron’s
angular momentum has a nonvanishing projection
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FIG. 1. Binding energy for the para state and ortho
state in nuclear matter for deuteron energy 200 MeV and
the indicated D-state probabilities.

along its center center-of-mass momentum K.
A state having a vanishing angular momentum
projection along ﬁ, i.e., M=0, will be referred
to an an “ortho state”,

Figure 1 shows the variation with & of the ratio
of the deuteron binding energy to B, the deuteron
binding energy in free space. The center-of-mass
momentum K corresponds to an energy

Ey =H?K? /4m (36)

of 200 MeV. This energy is appropriate for a
deuteron at the center of a heavy nucleus whose
kinetic energy outside the nucleus is roughly 120
MeV.

The curves corresponding to different free-space
D-state probabilities P, in Fig. 1 refer to the
parameter sets for the n-p interaction discussed
in Sec. IIC.

In Fig. 2 the difference between the binding en-
ergies of the ortho and para states is displayed
for the same cases as in Fig. 1. The dependence
of the binding energy ratio and differences on Ej
for a Fermi momentum corresponding to the
center of a heavy nucleus is shown in Figs. 3 and
4.

Note that the curves break off in Fig. 2 at high
kp and in Fig. 4 at low K because at these points

2.4
EK=200MeV

Ry —

———— =49 7 .

PD L% '/ ’\\

—_— PD= 6% // /// \\\\
1.2 Sy \
’ /7 \

L)
- /
B,18, / Y
(MeV) / /
/7
0.6 / //
L
/7y

i

///
0 1 1

05 1.0 ; 15 2.0
k_(fm™)
F( m

FIG. 2. Binding energy difference between the para
state and ortho state in nuclear matter for deuteron en-
ergy 200 MeV and indicated D-state probabilities.

EK(MeV)
100 200 400 800
1.0 — — T ===
811
075+
0.5+
BM/Bf
0.25+
0
25 5.0 10.0

K (frmi )
FIG. 3. Binding energy for the para state and ortho
state in nuclear matter of Fermi momentum 1.36 fm™!
and the indicated D-state probabilities.
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FIG. 4. Binding energy difference between the para
and ortho state in nuclear matter of Fermi momentum
1.36 fm~! and the indicated D-state probabilities.

the binding energy of the ortho state goes to zero.
A method of extending the results beyond these
points is discussed in Ref. 6. This approach will
not be followed here because it will be shown in
Sec. III B that the application of these results to
finite nuclei is most valid at high energy. Some
important features of these results are set out
below.

(i) The binding energy of the deuteron in nuclear
matter is always less than the binding energy in
free space. The general reason for this is discus-
sed in Sec. IT A [see Eq. (24)]. Note that the fig-
ures show that the free space binding energy is
achieved for k, -0 as expected.

(ii) The binding energy of the para states is
always greater than the binding energy of the
ortho state, i.e., B,, >B,. The ortho-state binding
energy goes to zero with increasing density (Fig.
1) or decreasing K (Fig. 3) much more rapidly than
the para-state binding energy.

(iii) The energy difference (B,, - B,) has a max-
imum as a function of E,, for fixed k.. There is
no splitting for K =0 because no direction is picked
out to which M can refer in that limit; there is
no splitting for K -« because By approaches B,
for all M. Hence the energy difference must have
at least one maximum as a function of E;. A sim-

iliar discussion shows that the observed maximum
as a function of k., for fixed E,, is consistent
with the expected behavior of the energy difference
in the limit of large and small kg.

(iv) When the parameters of V,, are varied such
that the free-space deuteron binding energy, quad-
rupole moment, scattering length, and effective
range are essentially constant, but the free-space
D-state probability P, is allowed to change by a
substantial amount, large changes are induced in
the binding energy of the ortho state B,. The rel-
atively small changes in R,, show a complicated
dependence on P,, but the binding energy of the
ortho state decreases systematically with an in-
crease of P,. As a result (B,, - B,) increases
with P, (see Fig. 4).

The relevance of these result to the propagation
of a deuteron through a finite nucleus will be dis-
cussed in Sec. IlI. The next several subsections
are concerned with obtaining an understanding of
the systematic effects described in paragraphs
(i)-(iv) above, and to this end the angular momen-
tum distribution of the wave function of a deuteron
in nuclear matter will be discussed in the next
subsection.

E. Orbital angular momentum distribution of the deuteron
in nuclear matter

The angular momentum structure of the deuteron
wave function in nuclear matter is obtained from
Egs. (17), (28), and (30):

(Ey Upv onl ¢’(ﬁ1 EMyM»

SN Y

(LA, 10' lM)YLrAr (E)
€y~ €x L,L' AN’

X X1a(ap: vy ()61 4

XQ4, K, b, kg), (37a)
where
B a @ (K B R p) = f Ak Y §,Bo, ®,B)Y,(F).
(37b)
The quantity @4, determines the way in which
the orbital angular momentum structure of the
deuteron is modified by the requirement that the
neutron and proton both must have momenta out-

side the Fermi sea, and is related to the quantity
6, introduced in Eq. (25) by

S1=>_ (LA,10|L’A)(LO0,10|L"0)

1
2
X %%(K,k,k,,). (38)

Figures 5-7 are the results of calculations of
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FIG. 5. Orbital angular momentum distribution in 0 1 1 1 ]

nuclear matter of Fermi momentum 1.36 fm~! for the
para state. The ratios are defined in Egs. (41) and (42).

the probability distribution
PU (K k)= Y [ dkE? [k, LA, 10| 6, €, M) 7,
A,0 Y0

(39)

where, according to Eq. (37)

EK(MeV)
100 200 400 800
12 T T T
1.0F ~ ]
08+
Para-state
06 k_=1.36fm !
F
] . at
0.4 /I P0+
/R ',5-1
! 2
02k / A
[ TRy
o | l/ 1 1 )]
2.0 3.0 40 5.0 6.0 7.0

FIG. 6. As in Fig. 5, but for the ortho state.

20 3.0 4.0 5.0 6.0 7.0
K (fmh)

FIG. 7. High orbital angular momentum distribution
in nuclear matter of Fermi momentum 1.36 fm~!.

(kyL'A, 10| 0K, €,,M))

=N 5 (L4, 10[100Q% ). (40)
=% I
P¥(K,k,) is the probability of finding the orbital
angular momentum L’ in a deuteron with center-
of-mass momentum K in nuclear matter of Fermi
momentum k., and in either the ortho (M =0) or
para state (M =11). Quantities shown with a cir-
cumflex in Figs. 5 and 6 refer to the ratios

BYK, k) = ﬂ%‘i’i’ , (41a)

L

where L=0 and 2, and P, is the corresponding

probability in free space as determined by the

parameters given in Eq. (16), i.e., P,=4%.
The binding energy ratios

B,=8B,/B, (41b)

are also plotted in Figs. 5 and 6 for comparison
purposes.

The most striking feature of the results shown
in Figs. 5 and 6 is that the decrease in deuteron
binding energy with decreasing center-of-mass
momentum K is strongly correlated with a decrease
in D-state probability. A comparison of Figs. 5
and 6 shows that the much slower decrease of the
binding energy of the para state with K, noted in
Sec. IID, is reflected in the much slower decrease
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FIG. 8. Distribution of relative momenta in the S state
(Py) and the D state ( P,) corresponding to a D-state
probability of 4%. P, and P, are normalized in such a
way that their respective maxima are equal to one.

with K of the D-state probability in the para-state
case.

These simple correlations break down when
|3K - k| is not large compared with the momen-
tum spread in the free deuteron S-state wave func-
tion. An indication of the more complex situation
for K<4 fm™ when %,=1.36 fm™ is seen in Fig. 6.
A full discussion is given in Ref. 15,

Figure 7 shows the behavior of the quantity

P = L}; PY(K,kp). (42)

It can be seen that the probability of orbital
angular momentum values other than S and D re-
main very small for K>4 fm™, and this is re-
flected in the fact that the decrease in D-state
probability mentioned above is mainly associated
with an increase in the S-state probability. The
qualitative features of these results can be under-
stood as follows.

In the first place, for large center-of-mass
momentum K, the role of the Pauli projection op-
erator Qg is to project out large relative momen-
tum components k& because it is only these com-
ponents that can combine with 3K to give a momen-
tum less than k;. The D-state component of the
free-space deuteron wave function is peaked at
much higher relative momenta than is the S-state

component (see Fig. 8). It is therefore natural that
the effect of nuclear matter is to reduce the D-
state probability, and thus reduce the effectiveness
of the tensor force in producing binding.

Secondly, the large difference between the Pauli
effects in the ortho and para states can be under-
stood as the result of the absence of any compon-
ent in the M =0 wave function with L ,=2. This
can be seen in Eq. (37a) where the Clebsch-Gordan
coefficient (LA,10|1M) allows A=42,0=7%1, if
M=41, but if M=0, A=-0=11, or 0 only. This
simple consequence of angular momentum conser-
vation is important because of the different depen-
dence on k, and K enjoyed by the quantity

Qé\z(Ksk’kF) =f dk GkF(K,E) IYZA(E) lz (43)

for different values of A,

The influence of the Pauli principle on the D-
state probability in the wave function Eq. (37a) ap-
pears through the deviation of @2 from unity. For
3K >k, which is the region of interest here, de-
viation from unity occurs only if %# lies in the range

3K =kp<k<3K+kp, (44)

and then

6.

~27 T~
Q;‘z(K,k,kF)=jo d¢j; * $in0d6|Y,,(6,9) I,
b

(45)
where
cosf, = fi"'_%Kl%;:_’fﬁ =b (46)
as defined in Eq. (27Db).
It is readily shown that
Q2,=3b(3b* - 1002 +15), (47a)
QL, =3b%(5 - 3b2), (47b)
Q% =3b(9b* - 1062 +5), (47c)

and that as b deviates from 1, @Z, drops off much
more slowly from the value 1 than do @}, and QJ,.

Hence the D-state part of a deuteron with M=1
contains a large proportion (60% in free space)
of a component which is relatively unaffected by
the Fermi sea if 3K > k.. The ortho state has a
D-state part which consists entirely of components
with A=0 and +1 and which are affected strongly
by the Pauli projection. The much stronger effect
of the Fermi sea on the binding energy of the ortho
state than on the para state is therefore under-
standable.

The effects of changes of P, on the binding en-
ergies and binding energy differences in the region
3K >k, in Figs. 1-4 also now become clearer.
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TABLE 1. Calculated parameters for the Yamaguchi potential and the corresponding triplet

effective range.

D-state Effective
probability range 7,
%) (fm) g ¢m™) y (fm™) A (fm™) t
1 1.704 1.415 0.6773 0.3820 0.1124
2 1.705 1.388 1.077 0.3422 0.4701
3 1.704 1.361 1.337 0.2979 0.9946
4 1.702 1.335 1.537 0.254 0 1.663
5 1.701 1.309 1.701 0.2138 2.467
6 1.699 1.284 1.841 0.178 6 3.401
7 1.697 1.260 1.963 0.1487 4.463
8 1.695 1.237 2.072 0.1238 5.652
9 1.693 1.214 2.170 0.1032 6.971
10 1.691 1.191 2.259 0.086 22 8.419
For the parameter changes discussed in the Ap- [4K +K|> %, (48a)
pendix an increase in P, is associated with a de- and
crease in the range of the V,, tensor force, i.e., .
an increase in the parameter ¥ in Table I. Hence [sK-k|[>Fp. (48b)

the D-state wave function extends to higher mo-
mentum, and is enhanced in a region of momen-
tum where the Pauli projection operator differs
from unity. The net effect is to project out more
of the D-state wave function in a range of momen-
tum where the tensor force is large and hence to
decrease the latter’s binding effect even further.
This is the effect of increasing P, shown in Figs.
1 and 3. The effect of increasing P, shown in
Figs. 2 and 4 reflects the fact, discussed in the
last paragraph, that the Pauli projection has a
relatively small effect on those angular momentum
components which dominate the para states but are
absent from the ortho state.

A simple physical picture which correctly ac-
counts for many of the features discussed above
is described in the next subsection.

F. A simple picture

The basic mechanism whereby the influence of
the nuclear medium causes the binding energy of
the deuteron to depend on J K can be understood
in terms of a model in which the intrinsic spins
of the nucleons in the deuteron are ignored and
the “spin” of the deuteron is accounted for entire-
ly in terms of orbital angular momentum, L=1,
For this fictitious deuteron'® there is a very strong
correlation between the plane of the orbit of the
neutron and proton about their center of mass and
the value of L, the projection of the deuteron “spin”
along K. .

If the proton in the deuteron has momentum k
relative to the deuteron center of mass, then the
presence of the nuclear medium means that K must
satisfy

For a deuteron with L,=11, when semiclassically
the Blane of the n-p orbit in which the_.rotating vec-
tor k lies is always perpendicular to K, the condi-
tions (48a) and (48b) reduce to

(%K2+k2)1/2>k1,-, (49)

because K and K are perpendicular in this case.

However, if L,=0, then for part of the time K
must have a component along K and the conditions
(48a) and (48b) become

GK2+R2+K-K) 2>k, (50a)
(K2 +K2 -k -R)/2 >k, (50b)

For a given K, if the magnitude of K is such
that condition (49) is just satisfied it is clear that
conditions (50) will be violated for some orienta-
tion of k. Hence if the range of possible values of
k? has an upper bound, as it does effectively in
the deuteron, the condition (49) is more easily
satisfied than conditions (50), i.e., it is harder
to satisfy the Pauli principle in the case L,=0
than in the case L,=x1. This simple model there-
fore predicts that the state with L,=0 is more
strongly affected by the presence of the nuclear
medium than states with L, =+1.

The crucial property of the fictitious deuteron
used in this argument is the coupling between the
plane of the orbit of the neutron and proton about
their center of mass and the projection of the deu-
teron “spin.” A coupling of this type is contained
in the real deuteron through its D-state compon-
ent. The quantum analog of the discussion of con-
ditions (49) and (50) is the discussion in the last
subsection of the properties of the quantities @2,
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as a function of A and the way in which values of
A are linked with values of M in the deuteron D-
state component.

III. SPIN DEPENDENCE OF THE DEUTERON OPTICAL
POTENTIAL

A. Nuclear matter

The results of the last section show that the
dispersion law for a bound deuteron with J,=M,
total energy E, and center-of-mass momentum
K, in nuclear matter of Fermi momentum kg, is

niK?
4m

E=¢, (K, kp)+ +UP+ U, (51)
where the notation is that of Egs. (7).
The quantity

VK, kp)=€y— €, +UD+U, (52)

where €, (=—B,) is the value of €, in free space,
can be interpreted as an effective potential for a
deuteron propagating in nuclear matter, i.e.,
the deuteron optical potential.

The contribution to V,, from the binding energy
modification can be written

€y—€,=0€ - Ae(M? - 3), (53)
where

A€ (K, kp) =3¢, +3¢,~ €, (54a)

A€(K,kp)=€,— €, =B, - B, (54b)

and Ae€ is the quantity plotted in Figs. 2 and 4.
The term A€, in Eq. (53) is a Pauli correction
to the spin-independent part of the deuteron op-
tical potential and is related to the corrections
estimated in Refs. 1-6.
Recalling the definition of M, the spin-dependent
term in Eq. (53) can be written

- 25 [6-Rr- 371, (55)

where S is the spin-1 operator, i.e., the operator
denoted by J for clarity hitherto.

The spin-dependent potential (55) has the form of
a second rank tensor potential of the T, type, in
the original classification of Satchler,” where

T,= (8K - 2K, (56)

There are another two types of spin-dependent
second rank tensor forces which do not violate
general symmetry requirements, and which in
principle could be present in the deuteron optical
potential in addition to the usual L. S potential.
According to Satchler” these are

Ux(R)TR ’ (57a)
U,(R)T, (5'Tb)

AND R. C. JOHNSON 17
where
SR\ 2
T(T) -3 (58a)
T, =(T-Sp+41.-§- 212, (58b)

and where U, and U, are arbitrary radial functions.
Terms of the T, and T, type cannot occur in

the dispersion law for a deuteron propagating in

nuclear matter of constant density.

B. Finite size target nucleus

It was shown in the previous subsection that
the combined effect of the Pauli principle and the
tensor force component in V,, is to generate a
tensor force of the T, type in the nuclear matter
case. The calculation of the T, force in the deu-
teron-nucleus optical potential requires an ap-
proximate solution of Eq. (1) in the case that U,
U,, and @ have the forms appropriate to a finite
target nucleus. The calculations presented in the
next subsection are based on the following approx-
imations and assumptions.

(i) We assume that at each center-of-mass co-
ordinate R that the center-of-mass motion is as-
sociated with a definite local momentum K(R).
This is the approach used, for example in Refs.
5 and 6, and in effect replaces the operator QV,,
by one wh1ch is local in the variable R (but not
necessarily in the variable 7).

(ii) All breakup effects due to the potentials
U, and U, are ignored, and U,and U, are replaced
in Eq. (1) by the Watanabe!” deuteron optical po-
tential

®R,M! |V, [R,My=R", by, |U,+U,[R, 0,  (59)

where ¢)M(F) is the free-space deuteron wave func-
tion. The notation in Eq. (59) allows for the fact
that the optical potentials U, and U, may be non-
local. Corrections to this approximation, in the
absence of Pauli effects, have received consider-
able attention® %1% and definitely cannot be ignored
in general.?®

(iii) At each point R the relative motion of the
neutron and proton of the incident deuteron is as-
sumed to be a bound state solution of the equation

[e(R)-t,-Q RV, ]0o(F,R)=0. (60)

If 7, is the time taken by the center of mass to
travel a distance AR, for which the perturbation
(@z - 1)V, changes appreciably and 7, is the time
which characterizes the components of the n-p
relative motion that are mainly affected by the per-
turbation (g~ 1)V,, in Eq. (60), a qualitative esti-
mate for the vahdlty of the adiabatic assumption
(iii) can be set by requiring that 7,> 7,. The ef-
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fect of the Pauli principle when 3K >k is to pro-
ject out relative momenta K satisfying

k>3K-Fkp (61)
and for these components

T..2 K
Tp AR (K=2kp)?"°

If R is taken to be the surface thickness of the
target, a discussion based on estimate (62) shows
that approximation (iii) is expected to have some
validity in the nuclear surface for incident deu-
teron energies in excess of 100 MeV, and to be-
come rapidly more valid as the energy increases.
Detailed quantitative considerations concerning the
validity of approximation (ii) and (iii) will be given
elsewhere.?!

(iv) The projection operator Qg(ﬁ) is assumed
to be given by Eq. (8), where %2.(R) is determined
by the target density p(R) at R through the relation

k(R)={5[3mp(R) J/5, (63)

Approximation (iv) is closely related to the ap-
proximate form for the one-body density matrix
for finite nuclei which has been found to have a
useful range of validity by Negele and Vautherin.??
In the present context it is important to note that
it is the nuclear density averaged over a distance
characterizing the range of V,,, and not over the
size of the deuteron, which determines the size
of the Pauli effect. This is reflected by the struc-
ture of Egs. (1) and (60). Note also that the cal-
culations of Sec. II show that the splitting A€ is
very sensitive to the properties of V,, for high
values of k. Thus Ae€ is associated with rather
close collisions of the neutron and proton, and an
estimate based on the target density at their cen-
ter of mass should not be a bad approximation.

(62)

C. Results for finite nuclei

The result of the approximations discussed in
Sec. III B is to replace the dispersion relation
(51) for an incident deuteron kinetic energy E,
(=E+B,) by

n*K?

E,= ot Vo(R,K) + A€ (R,K) - Ae(R,K)(M?* - 3),

(64)

where V,, A€, and A€ are defined in Egs. (59),
(54a), and (54b), respectively, and M =+1,0.

The binding energy corrections A€, and A€ in
Eq. (64) acquire an R dependence because of their
dependence on the local Fermi momentum %.(R).
The latter has been calculated from Eq. (63) with
p obtained from the Fermi charge distributions??
given in Table 3 of Ref. 24,

For a given incident energy E, and spin projec-
tion M, Eq. (64) is to be solved for K as a function
of R. Denoting this solution by K ,(R), the spin-
dependent Pauli correction at R is

-ae[R,K  (R)](M? - 2). (65)

Because of the smallness of A€, and A€ com-
pared with V, and the known properties of the lat-
ter, this procedure can be simplified considerably,
and to sufficient accuracy K(R) can be taken to be
the solution of

n2K®

E4=W +V"(R)+VP(R)+V°°“(R), (66)
where V, and V, are neutron and proton optical
potentials evaluated®'® at 3E, and V,, is the Coul-
omb field of the target. The spin-orbit and imagin-
ary parts of V, and V, are neglected, as is the ef-
fect of averaging over the deuteron internal wave
function in Eq. (59). In considering these approx-
imations it should be borne in mind that for the
incident energies of main interest here K(R) is a
much more slowly varying function of R than is
ky(R). Hence, errors in K(R) do not produce
large errors in the R dependence of the ratio
K/2k,, which is the key parameter determining
the magnitude of the Pauli effects.

The values of V, and V, were calculated using
the parameters given in Ref. 25, Eq. (13). The
potential vV , was taken to be that due to a uni-
formly charged sphere of charge radius R_2® Once
again the fact that these potentials do not give ac-
curate fits to nucleon scattering at the higher end
of the energy range considered here is of little
importance because for high energy K(R) is dom-
inated by E,.

Results for a %2Zr target calculated in the man-
ner outlined above are shown in Figs. 9-14 for
several incident deuteron energies and free-space
D-state probabilities (determined as discussed in
Sec. IIC). Figures 9-11 display the ratios
B,/B, as a function of R, and Figs 12-14 display
the splitting A€(R) defined in Eq. (54b). Results
obtained for other targets display the same qual-
itative features as the ones shown here.

For incident deuteron energies in the neighbor-
hood of 50 MeV (Fig. 9) the binding energy of the
ortho state reduces rapidly to zero just inside the
nuclear surface. The binding energy of the para
state is also reduced as the deuteron penetrates
the nuclear surface but remains finite and con-
stant in the nuclear interior. The binding energy
difference A€ (Fig. 12) has been calculated only
when both the para-state and ortho-state config-
urations are bound. At these energies A€ exhibits
a peak at the nuclear surface, just before B, van-
ishes.
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Ed=50MeV922r

1.0
—===P 2%

0.8 + PD= 4%

0.6
BM /Bf
0.4 =
0.2 Ortho-state
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FIG. 9. The ratios of the binding energy of the deuter-
on in a finite nucleus to the free-space binding energy,
for the ortho state and para state, for various D-state
probabilities at E; =50 MeV.

At higher incident energies (Figs. 10 and 11)
both the para- and ortho-state configurations are
bound throughout the target nucleus. The binding
energy reduction is much greater for the ortho
state than for the para state at a particular value
of R. The energy difference Ae (Figs. 13 and 14)
is almost constant in the nuclear interior and falls
rapidly to zero outside the nuclear surface.

As a function of energy the maximum value of

2
Ed=150MeV9 Zr

L Para-state

/
B Ortho-state /
/By / ————P 2%
0.4 pro e D
// ——P 4%
0.2 J ___PD= 8°/°
0 L —t 1 1
0 20 L0 6.0 8.0 10.0

R{fm)
FIG. 10. As in Fig. 9 but for E; =150 MeV.

2
Ed= 250MeV 9 Zr

1.0

0.8 | Para-state
Ortho-state

0.6 /
. // —-==P 2%
b
[ —— P =4%
BM/Bf D_ o
0 2 L —_— PD-B /0

0 20 4.0 6.0 8.0 10.0
R{fm)
FIG. 11. As in Fig. 9 but for E; =250 MeV.

the energy difference A€(R) has a maximum at
about 180 MeV, the precise energy depending on
P and the target. This behavior reflects the
fact that for zero local momentum K(R) there can
be no splitting of states with different M because
no direction is picked out. At high energies when
K(R) > E,(R) for all R, the Pauli principle has no
effect because for these values of K there is a
negligible probability of finding either nucleon of
the deuteron with a momentum less than k.. In
this limit the Pauli correction is small and @ ~1.
For any deuteron wave function of the form

&, (k) = [ug(k) +S,up(k)] X! (67)
20 £ _5oMev 322
15 F--==P 2%
— =70
PD L%
10F__p -
A€ D
(Mev) |7 7T T
0.5k
0 |
0 20 100

R(fm)

FIG. 12. Binding energy difference between the para
state and ortho state in a finite nucleus for E; =50 MeV.
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FIG. 13. As in Fig. 12 but for E; =150 MeV.

A€ can be estimated from the perturbation theory

result

de % (@,1QV,, |2) - (2, |QV,, |2y (68)

which yields

1.8

1.5

1.2

0.9

At
{MeV)
0.6

0.3

92
~ Ed=250MeV Zr

-=-= P 2%
—_— =/0,
PD 4%

\

| — Py %

0 20 40 6.0 8.0 10.0

R(fm)

FIG. 14. As in Fig. 12 but for E; =250 MeV.

1343
A€(R,K) RS 48m°p(R)(E,+B,)uy(2K)
K»ZkF

x[upK) —u (zK)] . (69)

An idea of the validity of this formula can be
obtained from a comparison of the prediction of
Eq. (69) with the results for the Yamaguchi poten-
tial described in previous sections. The two meth-
ods agree to within 15% for all nuclear densities
for E; 2 300 MeV and for nuclear regions beyond
the half-density radius for lower energies. Equa-
tion (69) clearly exhibits the dependence of Ae
on the momentum distribution in the deuteron.

It can be used to estimate A€ for any assumed
V,, interaction. Calculations along these lines
are in progress.

The magnitude of A€ increases significantly as
the free-space D-state probability increases. This
is the analog of the phenomenon discussed at the
end of Sec. IIE for nuclear matter, and can also
be deduced from the approximate result given in
Eq. (69).

The detail shape of A€(R) can be very well fitted
to the form

A€(R) =V, {1 +exp[(R - c,)/a, ]}
+V, expl(R - ¢,)/a,]
x {1 +exp[(R - c,)/a,]}?, (70)

where the parameters V, etc. vary with energy
and target.

The second term in Eq. (70) is important for
E,<180 MeV, where it contributes to a surface
peak in AE(R).

D. Tp potential

As discussed in Sec. III A the splitting A€ gives
information about the strength of a potential of the
T, type in the deuteron optical potential [see Egs.
(55) and (56)].

It is interesting to compare the values of A€ with
the strength of the T, potential predicted by the
Watanabe model. According to Keaton and Arm-
strong?” the latter model predicts a peak value in
the nuclear surface of about 2 MeV for 2 medium
mass nucleus (*°Ni) at E,=15 MeV. At E,=180
MeV this predicted value will be reduced to about
1.0 MeV if it is assumed that the energy depen-
dence of the nucleon optical potential is given by
dU,/dE ,=0.3. In the neighborhood of E,=180 MeV
the T, potential predicted by the calculation of the
last section has a maximum strength, the value
at maximum varying from 0.8 to 1.7 MeV depending
on the properties of the n-p interaction at short
distances.

These considerations suggest that the Pauli
mechanism makes an important contribution to
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the spin dependence of the deuteron-nucleus inter-
action at energies in the 100-300 MeV range.

At lower energies the treatment of the Pauli
effects used here is expected to break down.
Nevertheless the basic mechanism which produces
the T, force is still operative at low energies, al-
though an accurate estimate of its strength be-
comes more difficult. Calculations®! based on the
present method and on the alternative approach
of Austern®® give a T, force of magnitude similar
to the T, force predicted by the Watanabe model,
although of considerably smaller diffuseness.
From a phenomenological point of view Goddard
has shown?® that at low energies it can be difficult
to differentiate the effects of a T and 7', force on
observables.

IV. CONCLUSIONS

A definite physical mechanism has been proposed
which generates a spin-dependent interaction of
novel type in the deuteron-nucleus interaction.
Approximate calculations indicate that this force
should play a very important role in the spin de-
pendence of deuteron scattering from spin-zero
nuclei at energies below approximately 400 MeV.

A key feature of this spin-dependence is its sec-
ond rank tensor character. As a result® the ob-
servables T,,, T,,, and T,, and certain combina-
tions of polarization transfer coefficients®' are ex-
pected to be most strongly effected by the presence
of this force.

It was shown in Sec. II E that the strong spin-
dependence discussed here arises because the
Pauli principle strongly inhibits the ability of the
tensor force in V,, to contribute to the binding of
a deuteron in nuclear matter. It is interesting that
a similar mechanism is believed to play an im-
portant role in the understanding of the saturation
properties of nuclear forces.** In nuclear matter
calculations one important reason why a minimum
occurs in the binding energy-density curve near the
observed density of nuclear matter is because the
binding energy contribution from two nucleons in
a 38, state below the top of the Fermi sea is strong-
ly influenced by the suppression of tensor force
effects by the requirements of the Pauli principle.*?
In the nuclear matter ground state all directions
of the center-of-mass momentum of a pair of nu-
cleons are equally probable and are averaged over
in the calculation of the energy of nuclear matter.
Hence, the splitting of states with different values
of J+K by the Pauli mechanism is of secondary
importance. On the other hand, in the case of deu-
teron scattering the incident and scattered beam
momenta pick out directions for K of special sig-
nificance, and the splitting effects become ob-

servable through their influence on the polarization
of the scattered deuterons. In principle a study of
the strength of the T, force provides information
on the effective interaction in nuclear matter for

a range of energies and densities.

It was shown in Sec, III C that the predicted
strength of the T, force is very sensitive to the
properties of the n-p interaction at short dis-
tances. These results were obtained using the
rather crude Yamaguchi model of the n-p inter-
action. However, it was shown in Sec. II C that
the Yamaguchi potential is sufficiently flexible
that its low energy properties can be kept fixed
while at the same time altering its high energy
properties. The qualitative point made in Sec.

III C is expected, therefore, to survive a more
complete calculation.

An important feature of deuteron wave functions
generated by forces more realistic than the Yam-
aguchi potential, and which therefore contain a
hard core, is that the momentum space S-state
wave function has a zero in the neighborhood of
2 fm™ where the D-state wave function is very
large.®® In the same momentum range the S and
D components of the Yamaguchi wave function have
a very similar magnitude. Hence for high incident
deuteron energies the effect of the Pauli principle
in projecting out high momentum components, as
discussed in Sec. II E, will have a much bigger
effect on the D-state wave function, relative to
the effect on the S-state wave function, in the hard
core case than in the Yamaguchi case. On these
grounds alone, therefore, it is expected [see,
e.g., Eq. (69)] that a more realistic V,, will gener-
ate an even larger T, force than that generated by
the Yamaguchi potential and reported here.

Another aspect of the Pauli mechanism investi-
gated in Sec. I E is that, in addition to predicting
a T, force it also has implications for the T
force. According to the Watanabe model the lat-
ter depends on the D-state component of the deu-
teron in a crucial manner.?”%*% It was shown
in Sec. II E that the Pauli principle changes the
deuteron D-state probability from its free-space
value. For high enough energy the effect is al-
ways to decrease the D-state probability at any
density, but at lower energy the effects are more
complicated. In any case, it is clear that modifi-
cations are expected of the predictions of the
Watanabe model with a free-space deuteron wave
function, and may produce interesting effects on
tensor analyzing powers in elastic deuteron scat-
tering at low energies 27 2%:3¢
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APPENDIX

The Yamaguchi potential contains four param-
eters. They are B8 and v, which are associated
with the range of the central and tensor interac-
tion, the overall strength of the n-p interaction

A, and the relative strength of the tensor inter-
action £. For given D-state probability P, the
properties of the deuteron and the experimental
value for the triplet scattering length a permit
only one set of physically meaningful parameters
for the Yamaguchi potential.!? This set of param-
eters is obtained as follows,'?1°

The quantity A is fixed from the experimental
value of the deuteron binding energy. Equations
(25) and (29) in Ref. 12 for P, and a yield the fol-
lowing third order equation in ¥ and B:

2(1-PD)<A+B)3[i B(A+2/3)]

P, \B /laa~ 2(a+pyp

__A+y (A+y)
_7(5A+7)[2A+ y ] (a1)

For assumed values of 8 and P, this equation
has only one real solution for y. The overall
strength of the interaction A and the relative
strength of the tensor force { may then be deter-
mined from Egs. (23) and (25) of Ref. 12, With
these values for A, B, v, A, and ¢, the deuteron
quadrupole moment @ is determined from the ex-
pression

{A82(542 + 448 +82) + By (1043 + 33 A2 +2248% +58°)

+72(54%+224% + 334487 +108°) +y* (A% + 448 + 58%)}

_ V2nN%t Al
Q= 10(A+6)“[(ﬁ+7)2(A+7)5
2

t BT PEeyy BB Y 402+ BY)(E 4 38y +7) + 1688y (3 +7)}

2

T Biaay
T2N?2(TA3 + 49A%y + 91 A7 + 339°)

- 1603 (A +v) :

This expression is reproduced here because
the corresponding expression in Ref, 12, Eq.
(26), is incorrect.

For a fixed value for P, the above procedure
yields two sets of parameters corresponding to a
given value of @. One of these two sets, however,
corresponds to an unphysically long range for the
tensor interaction (~10 fm) and it is therefore re-
jected.

The procedure outlined above yields only one set
of parameters for the Yamaguchi potential for a
given P,. The triplet effective range correspond-
ing to these sets varies little with P, and has a
reasonable value.

The calculated parameters for the Yamaguchi
potential and the corresponding triplet effective

B(a+yy +4(8*+ Ay)(Az+3A~/+72)+16A37(A+7)}]

(A2)

r

range are shown in Table I for a number of D-state
probabilities. We have used the following values3" 38
for A, a, and Q:

A=0.2316 fm™ (B! =2,226 MeV),
2=5.378 fm,
Q=0.2739 fm?,

The value of @ quoted above®® has been recently
reestimated® at @ =0.2860 +0.0015 fm?. A positive
contribution to @, due to exchange current effects,
has been recently estimated® to be of order 0.01
fm?, The classical part of @, relevant to the pres-
ent discussion, is therefore expected to be close
to the value employed.
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