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Derivation of a formula for the A(d, p)B transition amplitude from the Faddeev equations of
three-body scattering theory
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I rederive the formula for the B(p, d)A and A(d, p)B transition amplitudes used by Timofeyuk and Johnson
[Phys. Rev. C 59, 1545 (1999)] in their study of reactions involving halo nuclei. The method of derivation is to
use the coupled equations for the three-body problem in the version of the Faddeev equations reported by Alt,
Grassberger, and Sandhas [Nucl. Phys. B2, 167 (1967)].
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I. INTRODUCTION

The aim of this work is to make a connection in the
context of A(d, p)B and B(p, d)A reactions between the
three-body formalism of Alt, Grassberger, and Sandhas [1]
and the formalism of distorted-wave potentials and three-body
wave functions customarily used in nuclear reaction theory.

In the theory of Alt et al. [1] transfer amplitudes appear
as the matrix elements between plane-wave channel states
of a set of operators Uα,β , where α and β label all possible
channels in the three-body system. These operators satisfy
coupled integral equations that are particularly convenient
when an exact solution of the three-body Schrödinger equation
is required. A major recent advance is the extension of this
approach so that charged particles can be handled in a practical
way [2], and this has increased the interest in applications to
nuclear reaction theory [3].

Three-body models of nuclear reactions involving
deuterons and massive nuclei have proved invaluable in
increasing our understanding of the key role of deuteron
breakup effects, but we are usually interested in extracting
nuclear structure information from data in a credible fashion
and therefore a key issue is the link between the three-body
models and the underlying many-body problem. Three-body-
model Hamiltonians will always be an approximate image of
the many-body system. From the point of view of the nuclear
structure practitioner, therefore, we must learn how to use the
exact solutions of three-body models to provide guidance on
how deuteron breakup effects can be included in a way that
can be generalized to the many-body case. This means, for
example, that emphasis is placed on determining an adequate
representation of the three-body scattering wave function in
restricted regions of the six-dimensional configuration space
rather than calculating an accurate version everywhere; for the
latter purpose the coupled equations of Alt et al. [1] are well
adapted.

The 1999 paper by Timofeyuk and Johnson [4] was moti-
vated along these lines. Thus they used a particular formula
for the (d, p) and (p, d) transition amplitude that enabled
breakup effects to be taken into account approximately. At the

*r.johnson@surrey.ac.uk

same time, because their formula did not contain the “remnant
term” that appears in standard many-body theories of deuteron
stripping and pickup (see, e.g., Ref. [5], p. 151), there was
a transparent link to many-body concepts such as overlap
functions, spectroscopic factors, and asymptotic normalization
factors [6,7]. In this paper we show how this particular formula
can be derived from the coupled equations of Alt et al. [1].

The three-body problem of interest refers to p, n, and a
target nucleus A. We do not use the traditional “odd man out”
notation of three-body theory because we are only interested in
the operator for the transition between a single pair of channels:
channel p, in which the proton is far from a bound state, B, of
n and A; and channel d, in which A is far from a bound state,
d, of n and p. The relevant transition operator is defined by [1]

Upd = G−1
0 + VpA + (VpA + Vpn)G(VpA + VnA), (1)

where Vpn is the proton-neutron interaction, VnA the neutron-A
interaction (assumed to be real for the purposes of this article),
and VpA the proton-A interaction. All Coulomb interactions are
assumed to be screened at large distances. G0(z) = (z − K)−1

and G(z) = (z − K − V )−1 are the Green functions associated
with the free and the full three-body Hamiltonians, respec-
tively. K is the total kinetic energy operator and V is the
total potential energy. The dependence on the complex energy
parameter z has been suppressed in Eq. (1) for simplicity.

Our aim is to prove that the operator Upd satisfies

Upd = ŪpdG0VnpGpUpd, (2)

where Ūpd is what Upd reduces to when Vnp vanishes and
Gp(z) = (z − K − VnA)−1 is the Green function appropriate
to the asymptotic Hamiltonian in the outgoing proton channel.

The identity is valid when both sides operate on a plane-
wave deuteron state,

φ�kd ,d = exp(ı�kd · �R) φd (�r), (3)

and for an energy parameter E + ıε, ε → 0+, with E =
(h̄2k2

d2mdA) − εd , that is, on-shell.
The operator Ūpd is defined by

Ūpd = G−1
0 + VpA + VpAḠ(VpA + VnA), (4)

where Ḡ is the Green function corresponding to a Hamiltonian
with Vnp = 0 everywhere.
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An alternative expression for Ūpd is

ŪpdG0 = 1 + VpAḠ. (5)

This identity and Eq. (2) are proved in Sec. III, but first we
discuss the significance of these results.

II. DISCUSSION

There are several features of the result, Eq. (2), that are
important for practical applications to nuclear reactions. At
first glance formula (2) does not appear to be very useful
because the operator Upd appears on both sides of the equation.
We see in the following that an important advantage is that the
right-hand-side expression emphasizes a particular projection
of Upd where the neutron and proton are within the range of
the short-range potential Vnp.

(i) The operator Ūpd has a simple significance when it acts
on a proton-channel plane wave,

φ�kp,B = exp(ı�kp · �rpB)φB(�rnA), (6)

and when mn/mB → 0. In this limit the kinetic energy
operator separates in the coordinates �rpA and �rnB and we find〈
φ�kp,B

∣∣ŪpdG0

= 〈
φ�kp,B

∣∣ [1 +
(

VpA

1

E+ − KnA − VnA − KpA − VpA

)]

= 〈
φ�kp,B

∣∣ [1 +
(

VpA

1

E+
p − KpA − VpA

)]

= 〈
χ

(−)
�kp

φB

∣∣, (7)

where χ
(−)
�kp

(�rpA) is a distorted-wave solution of the two-body

Schrödinger equation,

(E − KpA − V ∗
pA)χ (−)

�kp

(�rpA) = 0, (8)

and φB satisfies

(−εB − KnA − VnA) φB(�rnA) = 0. (9)

The proton energy Ep and the neutron binding energy εB are
related to the total energy E by E = Ep − εB .

For finite values of mn/mB the operator Ūpd is the
solution of a special three-body problem with one of the
two-body interactions absent. For practical applications to
many nuclear reactions of interest the ratio mn/mB is small and
perturbation methods with mn/mB as the expansion parameter
may be convenient. It has been argued elsewhere [6,7] that
the application of continuum-discretized coupled-channels
(CDCC) methods to the evaluation of Ūpd may not be
appropriate in the context of the evaluation of Eq. (1), although
CDCC methods may be quite appropriate for the evaluation of
VnpGpUpd .

(ii) Matrix elements on the right-hand side of Eq. (2)
between on-shell channel states express the (d, p) transfer
amplitude in exactly the form used as the starting point of
the analysis of (d, p) and (p, d) reactions by Timofeyuk and
Johnson [4]. To see this we use the on-shell identity (with the

limit ε → 0+ understood),

GpUpd

∣∣φ�kd ,d

〉 = ∣∣�(+)
�kd ,d

〉
, (10)

where �
(+)
�kd ,d

is the exact solution of the three-body Schrödinger
equation corresponding to an incident plane-wave deuteron
and outgoing scattered waves in all channels. This result
follows from one of the relations between G and Upd given in
Ref. [1]:

G = GpUpdGd, (11)

where Gd is the Green function appropriate to the asymptotic
Hamiltonian in the deuteron channel. The result, Eq. (10), then
follows from the on-shell result,

ıεGd

∣∣φ�kd ,d

〉 = ∣∣φ�kd ,d

〉
, (12)

and the standard (see, e.g., Ref. [8], p. 176) expression for
�

(+)
�kd , d

in terms of G,

∣∣�(+)
�kd , d

〉 = ıεG
∣∣φ�kd , d

〉
, (13)

in the limit ε → 0+.
A consequence of formula (2) is, therefore,〈

φ�kp,B

∣∣Upd

∣∣φ�kd ,d

〉 = 〈
φ�kp,B

∣∣ŪpdG0VnpGpUpd

∣∣φ�kd ,d

〉
= 〈

�̄
(−)
�kp,B

∣∣Vnp

∣∣�(+)
�kd ,d

〉
, (14)

where 〈�̄(−)
�kp,B

| is defined by

〈
�̄

(−)
�kp,B

∣∣ = 〈
φ�kp,B

∣∣(1 + VpAḠ) (15)

and satisfies the differential equation,

(E − K − VnA − V ∗
pA)�̄(−)

�kp,B
= 0. (16)

As already explained, when mn/mB → 0 the function �̄
(−)
�kp,B

has the factored form given in Eqs. (7)–(9) and does not require
the solution of a three-body problem.

Formula (14) for the (d, p) transition amplitude, as well as
the analogous formula for (p, d), was used by Timofeyuk and
Johnson [4]. This has the advantage that it requires accurate
knowledge of the scattering wave function inside the range
of Vnp only where CDCC methods may be appropriate [4,7].
The result (14) was also derived by Goldberger and Watson [8],
pp. 833–841, using manipulations of the Lippmann-Schwinger
equation for |�(+)

�kd , d
〉, but only in the mn/mB → 0 limit.

III. PROOFS

A. Proof of Eq. (5)

From the definition (4) we have

ŪpdG0 = 1 + VpAG0 + VpAḠ(VpA + VnA)G0

= 1 + VpAG0 + VpA(Ḡ − G0)

= 1 + VpAḠ, (17)

which is the required result.
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In going from the first to the second line in Eq. (17) we
have used the operator identity

Ḡ − G0 = Ḡ
(
G−1

0 − Ḡ−1
)
G0

= Ḡ[(z − K) − (z − K − VnA − VpA)]G0

= Ḡ(VnA + VpA)G0. (18)

B. Proof of Eq. (2)

Starting from Eq. (1) for Upd we first extract the part that
is independent of Vnp so that

Upd = G−1
0 + VpA + VpAG(VpA + VnA)

+VpnG(VpA + VnA)

= G−1
0 + VpA + VpA(Ḡ + ḠVnpG)(VpA + VnA)

+VpnG(VpA + VnA)

= Ūpd + VpAḠVnpG(VpA + VnA)

+VpnG(VpA + VnA)

= Ūpd + (VpAḠ + 1)VnpG(VpA + VnA), (19)

where Eq. (4) has been used for Ūpd . In going from the second
to the third line we have used a formula analogous to Eq. (18)
for the difference G − Ḡ.

Using the identity, Eq. (5), we can replace the last line in
Eq. (19) with

Upd = Ūpd [1 + G0VnpG(VpA + VnA)]. (20)

From the relation between G = GpUpdGd given in Ref. [1],
Eq. (2.11), we deduce

GpUpd = GG−1
d = G

(
G−1

d − G−1) + 1

= G(VnA + VpA) + 1, (21)

so that Eq. (20) can be written

Upd = Ūpd [1 + G0Vnp(GpUpd − 1)]

= ŪpdG0VnpGpUpd + Ūpd (1 − G0Vnp). (22)

This equation is an operator identity that is valid for any value
of the complex energy parameter. It can be regarded as an
integral equation for Upd in which the dependence on Vnp is
made explicit.

Acting on the deuteron channel state, Eq. (3), we have

(1 − G0Vnp)|φ�kd , d〉 = G0
(
G−1

0 − Vnp

)∣∣φ�kd ,d

〉
= G0

(
G−1

0 − Vnp

)∣∣φ�kd ,d

〉
= G0(E + ıε − K − Vnp)

∣∣φ�kd ,d

〉
= ıεG0

∣∣φ�kd ,d

〉
, (23)

which vanishes when ε → 0+. Hence in the same limit the
second term on the right-hand side of Eq. (23) does not
contribute and the result, Eq. (2), is obtained.

This result is easily generalized to the application of the
Uβα operator for any channels α �= β. We find

Uβα|φα〉 = ŪβαG0VαGβUβα|φα〉, (24)

when acting on an on-shell channel state φα in the limit
ε → 0+. Uβα reduces to Ūβα when Vα vanishes.

For the case of the deuteron breakup transition amplitude
we obtain a formula analogous to Eq. (14). In the limit
mn/mB → 0 the final-state wave function �̄

(−)
�kp,�kn

becomes

a product of the proton distorted-wave χ
(−)
�kp

with a neutron

distorted-wave χ
(−)
�kn

corresponding to the potential VnA instead
of the bound state φB .

IV. CONCLUSIONS

We have provided a link between the formalism used in
exact calculations of amplitudes for transfer within three-body
models and a matrix element that has been found useful for
calculating A(d, p)B and B(p, d)A cross sections on massive
nuclei.
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