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Abstract: A treatment of deuteron stripping is developed in which the three-body effects associated 
with deuteron break-up in the nuclear field are included explicitly. The essence of the method 
is the choice of a convenient discrete set of n-p eigenfunctions as a representation of the three- 
body continuum effects. This approach leads to a distorted wave stripping matrix element 
similar to that of the DWBA, except that the elastic deuteron wave is replaced by a three-body 
wave function given as the solution of a set of coupled two-body Schrodinger equations. The 
adiabatic theory of Johnson and Soper appears as the solution in a suitable first approximation. 
This new formalism should prove useful in the evaluation of corrections to three-body models 
of the deuteron-nucleus system, in particular those models in which the nucleon-target inter- 
action is represented by a complex local optical potential. 

1. Introduction 

The weakly bound structure of the deuteron strongly suggests the relevance of 
three-body effects in the mechanism of deuteron stripping. However the question of 
deuteron break-up in the nuclear field is usually ignored, and cannot be explicitly 
treated by the conventional DWBA approach, which employs a deuteron-target 
elastic scattering wave function ’ ). Neve~he~ess this prescription has been very success- 
ful in accounting for much of the angular distribution and polarization data from 
stripping reactions “). The accuracy and validity of the DWBA description has 
recently been the subject of several studies of three-body models of stripping. 

A practical prescription for including break-up effects in the analysis of stripping 
data has been given by the adiabatic theory of Johnson and Soper “). This theory 
gives rise to a distorted wave calculation similar to the DWBA, except that the elastic 
deuteron wavefun~tion is replaced by a three-body wave function of similar form in 
which the low energy relative S-wave n-p break-up effects are treated in an effective 
range theory manner. This prescription has been used to anafyse (p, d) and (d, p) 
reactions on a wide variety of targets and for several bombarding energies, and in 
most cases results in a systematic improvement of the fit to experimental angular 
distributions, and reasonable absoIute spectroscopic factors are obtained without the 
use of arbitrary parameters such as a cut-off radius 3* “). 

A key feature of the adiabatic theory is the derivation of an effective potential - the 

t Present address: Dept. of Physics, University of Maryland, College Park, Maryland 20742, USA. 
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adiabatic potential - which generates the appropriate three-body wave function by 
an effective two-body SchrSdinger equation. The adiabatic potential is derived from 
neutron and proton optical potentials obtained from fits to nucleon elastic scattering. 
The inclusion of break-up effects gives to this potential a geometry differing signifi- 
cantly from that of conventional deuteron phenomenological optical potentials. This 
feature is largely responsible for eliminating the need for arbitrary suppression of the 
interior contributions to stripping integrals when the adiabatic wave function is 

used “). 
Although the adiabatic theory has provided a systematic improvement over the 

conventional DWBA, a number of stripping and pick-up transitions are not well 
fitted by either theory 3t “) . It is natural to ask whether an improved treatment of the 
three-body aspects can help in this respect before greater attention is paid to the 
many-body nature of the reaction. An u~derstan~ng of the nature and magnitude of 
any significant corrections to this approach is also necessary to facilitate extensions 
to similar reactions, e.g. (6Li, cz). 

In this paper, which addresses itself to processes dominated by a direct reaction 
mechanism only ‘), we attempt to go some way towards this goal by developing an 
approximate three-body theory of stripping as an extension of the ideas and methods 
of the adiabatic approach. Our method is based upon a representation of the n-p 
continuum in terms of a complete set of discrete eigenfunctions. A feature of this new 
approach is that the adiabatic prescription appears as the solution of lowest order ?. 
Close connections with distorted wave methods are retained, and the method leads 
to a stripping matrix element similar to that of the DWBA, except that the elastic 
deuteron wave is replaced by the solution of a set of coupled channel two-body 
SchrGdinger equations. The n-p system is treated in an approximate way, while the 
the nucleon-nucleus systems are described by an effective interaction which in the first 
approximation is taken to be appropriate optical potentials. 

Other approaches ‘* “) to the three-body aspects of stripping reactions have been 
formulated in terms of the exact three-particle scattering techniques that have enjoyed 
so much success in describing the three-nucleon problem. In particular the work of 
Bouldin and Levin “) has close connections with several aspects of the present 
approach. However with a view to fitting data, the relevance of a direct carry-over of 
the present three-nucleon techniques into the realm of direct reactions upon a heavy 
target is not obvious. For practical necessity, the interactions must be described by 
separable potentials of low rank, and the number of partial waves in each two-body 
system must be severely limited. Since a substantial portion of the physics of a (d, p) 
reaction resides in the complexity of the optical potential of the two-body channels, 
and the importance of surface partial waves, it seems desirable to develop an approx- 
imate three-body theory to accommodate these features. As far as deuteron stripping 
is concerned, the adiabatic theory, and its extension in this paper may contribute 
towards this goal. 

* The sense in which the term “lowest order” is to be interpreted will become clear later. 
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In sect. 2 we describe the three-body model of the reaction, and outline the three- 
body effects in which we are interested. The basic approximation of the theory is 
introduced by developing an appropriate expansion for the wave function. The result- 
ing coupled equations are reduced to convenient form in sect. 3, and the properties 
of the coupling potentials and the solutions are illustrated. A simple estimate of the 
convergence of the method is presented. In sect. 4 our appro~mate theory is discussed 
in the light of related work. 

2. The ~ppro~~~~ three-body method 

We are interested in the many-body problem appropriate to a deuteron incident 
upon a heavy nucleus in its ground state, and in particular we require the (d, p) transi- 
tion amplitude to the ground state of the residual nucleus. In the limit of weak 
coupling between the ground and excited states for both target and residual nuclei, 
we will treat the target as an inert core, and the residual as a neutron-core bound state. 
It will be convenient to discuss such a three-body model as if the nucleon-core 
interactions are static real potentials. The relevance of this model to the deuteron- 
nucleus problem with a realistic nuclear target will be discussed in subsect. 2.3. 

2.1. THE THREE-BODY MODEL 

The three-body wave function initiated by an incident deuteron beam of kinetic 
energy Ed (= (h2[4rn)_K~) and internal binding energy + a& satisfies (E = &-Ed) 

~E+ie-T,-TR-~‘V,(R-~r)-V,(R+~r)-~~,,(~)]~’+)(~, R) = ie+d(r)e”Kdd’R, (I) 

where 

The coordinates r, R are respectively the relative and cm. coordinates of the neutron 
and proton, P = pP-rn, R = +(r,+rP), and the origin of coordinates has been taken 
at the c.m. of the target nucleus which we assume is infinitely heavy. The n-p inter- 
action is V,, and Y,,, VP are the nucleon-core potentials which we have taken to be 
local, although a small non-locality would not hinder the following developments. 
The term on the r.h.s. of (1) specifies the incident boundary condition of a deuteron 
with internal wave function $d, and the physical total wave function is to be calculated 
inthel~it~~O+. 

The (d, p) stripping amplitude in this model is given by 

where Cp, is the neutron-core bound state wave function with binding energy - E,, 
and xi-’ is the proton distorted wave generated by VP and describing proton-core 
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elastic scattering with incoming boundary conditions at the proton energy E--E, = 

(h2/2m) ki. The existence of the exact expression (4) is crucial to the development of 
our approximate three-body treatment. To compute (4) we only require $(+)(u, R) 
for r < r. and R < Ro+&r,, where ro, R, are measures of the ranges of V,, and @,, 
respectively. In the limit of a zero-range approximation ‘) for Vnp, only r/(+)(0, R) 
is required, and we expect that this wave function which satisfies much simpler 
boundary conditions than the full three-body wave function, would be amenable to 
an effective two-body treatment ‘). In the present work we develop an effective two- 
body method for the projected wave function V,,~$(~‘), where V,, is of short range. 

To consider the details of the exact wave function $(+) we write the integral equation 
equivalent to (l), in the form 

where 
I$‘+‘> = /A,>IKA>+G,~(~+)[V,+ vpll$“‘>, (5) 

G&Y+) = (We-T,-I”-li,,)? (6) 

The break-up components of $ (+I that we are concerned with, can be seen explicitly 
by introducing the spectral representation of the three-body Green function G,, in 
terms of the complete orthonormal set of eigenstates of the n-p Hamiltonian 

Kp = T,+vl3,, 

G,,(E+) = Md><4dl + & ld+,+‘><&‘l 
E+is+cd--TTR s E-f-is-ck--TTR ’ 

(7) 

where F~ = (h2/m)k2 and the eigenstates are defined by 

K&h> = -Mb>, K&4c+:‘> = %b$i+‘>. (8) 
The use of (7) in (5) yields the following formal representation of the wave function 

I$‘+‘> = l4cJlx(df)> + s dWi+;t)>lh+)>, 

where xr)(R) is the elastic deuteron c.m. scattering wave function given by 

Ixil+‘> = I&>+ E 
d 

(10) 

(+) The continuum components xk ( R) describe the motion of the c.m. of an n-p pair 
scattering with relative energy ak, and are formally given by 

I#,“) = l 
E+is-zk-TTR 

<&+)‘I v + v I$‘+‘> 
n ’ * 

(11) 

The exact wave function has outgoing waves corresponding to elastic deuterons given 
by the first term of (9) plus “outgoing” waves in which the neutron and proton are 
not bound together and which are represented by the second term of (9). The two 
stripping components which leave one nucleon bound to the core are implicitly 
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included in this second term. The conventional DWBA ignores break-up effects in 
the sense that the second term of (9) is neglected, and xi+‘(R) is approximated by 
using a suitable optical potential and is substituted into the amplitude (4). We wish 
to include effects due to both terms of (9), but not necessarily in that form. 

We will restrict our attention to the 3S states of the n-p system. This restriction is 
not expected to be unduly severe, since the zero-range approximation ‘) has proved 
quite successful in stripping calculations. In this limit other spin triplet states only 
contribute to the product VnPl$“‘) through second and higher order terms, and 
although it is by no means obvious that such effects are negligible ‘), it is reasonable 
to ignore them in the first approximation. Contributions from singlet spin states arise 
from the relatively small spin dependence of V, and Y,, . There are no effects due to ‘S 
states unless the nucleon optical potentials have isovector spin-orbit components. 
Such effects have been investigated by Harvey and Johnson “) and found to be small. 

2.2. THE WEINBERG EXPANSION OF THE WAVE FUNCTION 

Since any approximate wave function, say l$y)), which satisfies V,,,I$~‘) = 
V nP I$‘+‘>, will give the correct amplitude (4), we will not attempt to preserve the 
correct form of the wave function for large n-p separations such as the asymptotic 
form in the stripping channels. From (9) we have for the projected wave function, 

P&,irl/‘+‘> = K&h>lxi+‘>+ dk Y,,l#i+‘>lxi+‘>~ s w 

If the dominant break-up effects are associated with low n-p relative energies, then 
application of effective range theory yields 

~~(~)~~)(~) = ~(~)~~(~)~~(~)Y (13) 

and the projected wave function takes on the simple form 

V,,(+P-% R) x K&)&&)xV)7 (14) 
where 

(15) 

The utility of the above low-energy assumption lies in the demonstration that a 
product form (14) of the three-body wave function can be used in the stripping ampli- 
tude. The calculation of the amplitude parallels that of the DWBA, except that the 
low-energy break-up effects can be included in j'+)(R) which replaces the elastic 
xr'(R). The existence of the product form (14) provided the motivation for the 
adiabatic theory “). 

We note that the projected wave function reduces exactly to the product form (14) 
in the special case in which V,, is taken to be a rank one separabie potential. If we 
write 

v,, = -If><fL f 16) 
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and require that this potential supports a bound state +d, then 

If> = - K,l&I%flda>* (17) 

fn this case it is easiIy seen that the relations (13)-(15) are exact, and 

g(k) = <~[#~)>~(~I#~>, 

I?+‘) = <flP’XfI#d>* (9 

The definition (18) of Ix’+‘) is seen to be identical to that of the spectator wave 
function studied by Bouldin and Levin 6). The calculation of I~“‘) however still 
remains a three-body problem. Bouldin and Levin took V,, , VP to be also of rank one 
separable form, and exploited the solubility of such a three-body model. 

If the deuteron binding energy was so large that the low energy n-p scattering was 
not dominated by the bound state pole, we could replace (13) by 

v,,(%sr”($ a s,(V&>&)(+ (9 

where &~‘(Y) is a typical low-energy continuum state. The approximation (14) would 
then read 

~~(~)~(~)(~, RI * It;lp(~))fQjd(r)X(d+)(R)+(b(k:)(Y)1C(1+)(RIl. (20) 

A technique analogous to this is used by Harvey and Johnson “) to investigate “S 
break-up effects. We seek to develop a general method for the representation and 
calculation of the projected wave function F&,l$(+)). 

The essence of our method t is to discretize the n-p spectrum by obtaining an 
expansion for $(+) in terms of a discrete set of n-p states. The exact n-p ipectrum 
given by (8) is orthogonal with respect to integration over all n-p separations. How- 
ever a restriction in the size of the domain to that of the projector YnP, will allow 
the choice of a discrete set of eigenfun~ions. A convenient choice for this purpose is 
the set of Weinberg lo) eigenstates defined by 

C-Q - Tr-CliKp(r)14i(r) = O, i = 1,2,*.., (20 

for which the orthonormality relation is 

<#ilv*pl#j> = -6fj. (221 
The normalisatio~ is of course arbitrary, but we have chosen unity for conve~ence, 
and the negative sign is due to the assumption of a purely attractive VnP, also for 
convenience. The first member of this set, apart from normalisation, is the deuteron 
bound state, such that +1 z +d and tlI = 1. The Weinberg states so defined have the 
desirable property that the weight function for the orthogonality relation (22) is 
precisely the weighting that we wish to give to $(+) in the stripping matrix element. 
The member #i has i nodes within the range of YnP, and tends to zero exponentially 

t A pr~li~ina~ account of our method has been published in Proc. of the Int. Conf. on nuclear 
physics, Munich, ed. J. de Boer and H. J. Mang ~o~h-Ho~~d, Amsterdam, 1974) p. 422. 
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after a turning point Yi given by 

aiV,,(ri) = -Ed I (23) 

The eigenvalues cli are real, and mo~0tonical~y increasing with i, such that for large 
&, cli M i2 for any finite range VnP. 

Since the energy in (22) is fixed negative, these Weinberg states form a complete set 
of square integrable functions 11, ‘“). Our expansion for the wave function is therefore, 

where, because of (22) 

X!+‘(R) = -(9ilKpl4+‘+‘>* 12-V 

We expect that unless very high n-p contintnnn energies make a significant contribu- 
tion to V,,~$“>, either directly or indirectly through coupiing in the three-body 
Schr0dinger equation, we may truncate the sum (24) to N terms. Substituting into the 
Schrijdinger equation (l), we obtain (i = 1,2, , . . N), 

[~+i~+~~-~~~~~~~)> 

= i&l NdifZd>-(~ilt/‘,p(vnev,)i~“‘>-<rpilV,,(N,,4Ed)l~‘f’>, W 

where Nd = --(q!~~/F&,~q5~>. The second term on the r.h.s. of (26) wili require +Q(+) 
only in the region where the truncated expansion (24) is valid, provided V, and VP 
are local or have only a small non-locality. ~suming for the present that in the third 
term of (26) we may also use the truncated expansion, we obtain the following set of 
N coupled-channel two-body SchrGdinger equations, 

[-Ed+iE-TR-U_ii(R)lIX~+)> = ic8,~N,,~~)+~~~U,(R),di’). (27) 

In deriving this result we have employed the following definitions 

u$j(R) = &j(RJ+Bij(olj-l), (W 

&j(R) = -<#ilK,(K+ f$)l+i>, (29) 

Bii(aj-1) = _(~~l~~(~~~~~~)l#j} ( 301 

= (4il v$l#j>(aj-ll* (31) 

The coupling potentials V,j describe the interaction of an n-p pair with the core 
while undergoing a transition from the relative motion state ~j to (i, i. The real constant 
coupling terms in (28) and (30) arise because the Weinberg states are not eigenfunctions 
of the true n-p ~a~ltonian Hn,. Thus H,, itself can cause transitions between Weinberg 
states, and its representation in this discrete basis is not diagonal. However we will see in 
the next section that this situation is not a drawback of the method. The third term on 
the r.h.s. of (26) has been evaluated by using the Weinberg expansion of the wave func- 
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tion, and allowing Hn,, to operate to the right term by term. Such a procedure is valid 
in the present context because of the exponential fall-off of the Weinberg states at 
large r, so there can be no surface terms due to the kinetic energy operator in HnP. 
This situation is to be contrasted with that arising from the use of R-matrix type states 
to describe the n-p spectrum, wherein surface contributions would arise from the 
matching radius 13). Integration of the third term of (26) by parts confirms the above 
procedure provided that we restrict Vnp(r) to be less singular than r-’ at the origin. 

We can immediately discuss several general properties of the effective two-body 
coupled channel formulation (27). It can be seen that only the first channel component 
lx?‘> contains the elastic deuteron component of I$‘+‘). This follows immediately 
from the definition (25) and the property (22) of the Weinberg states. However every 
channel wave function contains break-up effects. This situation can be summarised 
by applying the projection (25) to eq. (9) to obtain formally, 

In the coupled equations (27), the diagonal elements of the constant coupling matrix 
aii(~i- 1) have the effect of redefining the channel energy. The energy of the first 
channel (i = 1, CQ = 1) however remains unchanged at the elastic deuteron value 
Ed. Lowe assume that only the first term of the expansion (24) is a sufficiently accurate 
representation, then the set of coupled equations truncate to the single equation 

A comparison with the adiabatic theory “) shows that (33) is almost precisely the 
prescription for the adiabatic wave function, the difference being that F’,,(R) defined 
in (29) is not identical to the adiabatic potential “) defined by 

The numerical difference between these two potentials is however negligible for the 
same V, and I’,. The important feature of both is the folding of the nucleon-core 
potentials over the shape of the short-ranged Vnp . The resulting geometry in the c.m. 
coordinate R has important differences from that of phenomenological elastic 
deuteron optical potentials, and it is these differences which are responsible for the 
improved description of stripping provided by the adiabatic theory ‘* “). The type of 
break-up effects included in the approximation (33) are those that can be represented 
by taking a single Weinberg state (the deuteron) in the expansion of the wave function, 
and we have seen this form to be consistent with an effective-range theory description 
of the n-p system. An expansion extended to several Weinberg states can simulate 
those high n-p relative momentum components that introduce successively more radial 
nodes within the range of I’,,, . A solution of the coupled equations (27) will then, in 
principle, provide an improvement upon the adiabatic theory in the sense that, firstly 
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1x$“> will be modified by the coupling to the higher order channels, and secondly 
these channels themselves will be available to compute the stripping element if 
necessary. The number of Weinberg states necessary to obtain v,pl$‘f’> and so the 
stripping matrix element accurateIy, can only be finally settled by a numerical calcula- 
tion, as indeed can the question of whether the method will converge as Nis increased. 
In the next section we attempt to lay the foundation for such investigations by demon- 
strating a technique for reducing the coupled equations to a more readily soluble 
form. The nature of both the solutions and the coupling potentials will be discussed. 

2.3. OPTICAL POTENTIALS IN THE THREE-BODY MODEL 

The relevance of a purely three-body model of the deuteron-nucleus system, to the 
true many-body problem has been discussed by several authors 14-16). An important 
result is that such a model can be made formally eq~valent to the many-body system, 
if suitable effective interactions are introduced by systematically eliminating the 
internal coordinates of the target nucleus. It was shown in ref. ““) that in the limit of 
weak coupling to excited states of the target, the three-body wave function I$“‘) can 
be taken to be the projection of the full many-body wave function onto the target 
ground state. In such a situation it has been shown 14) that the formula (4) is still 
exact if we interpret xi-’ as the proton-target elastic wave generated by the proton- 
target optical potential, and 4, as the target~residual nucleus overlap function. The 
wave function I$“)> is to be calculated from equation (1) with (Y, i- V,) replaced by 
an energy-dependent non-local interaction &r&n, p). 

It is shown in refs. 14-16) that an important class of contributions to V,, can be 
interpreted as the sum of the neutron and proton optical potentials evaluated off the 
energy shell in a specified way. These contributions are referred to as one-body terms. 
The nature of corrections to these contributions is discussed in ref. ’ “). Even in lowest 
order the Pauli principle introduces two-body corrections peculiar to the effective 
interaction for composite projectiles, and estimates have been made of these contribu- 
tions to elastic deuteron scattering “) and break-up 2”). In higher order, terms arise 
which require both incident nucleons to excite the nucleus. Attempts i5) have been 
made to take these into account in elastic deuteron scattering in a semi-phenomeno- 
logical manner but a detailed calculation of their magnitude does not appear to be 
availabIe. It is known ““1 on theoretical grounds that these terms must play a r61e 
at very low energies because the off-shell prescription in the one-body terms proposed 
in 14) does not give a correct amount of the role of open channels involving excited 
states of the target. However, it has been already pointed out in ref. “) (sect. 1V.C) 

that at 20 MeV by far the major part (within 3 “/o) of the observed deuteron absorption 
cross sections for medium mass targets can be accounted for in terms of the imaginary 
parts of the nucleon optical potentials evaluated at *Ed. 

For the purposes of illustrating the treatment of the three-body probIem given in 
earlier subsections it will be assumed that 

K&z,, E, ; p, q,) = v,#% , c,) + ~p(Si 9 q,) + Kz@>, (35) 
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where the first two terms are the local phenomenological optical potentials describing 
nucleon-target elastic scattering evaluated at half the incident deuteron kinetic energy, 
and V, is the Coulomb field of the target. In terms of the discussion of ref. 14), this 
ignores all two-body terms and Pauli corrections. As far as the off-shell prescription 
for the one-body terms is concerned it is assumed that the parts of the three-body 
wave functions that dominate the stripping amplitude, eq. (4), have nucleons with 
kinetic energy close to their values in the incident deuteron. This has been shown 27) 
to give a good account of the Hartree-Fock contribution to V, and V,, when deuteron 
break-up is neglected and should be a reasonable first approximation for break-up 
components involving low relative momentum. An obvious inadequacy of the right- 
hand side of eq. (35) is the fixed energy dependence resulting in fixed imaginary 
components 16). Thus th ose parts of the total three-body wave function involving 
nucleon-target bound states cannot be generated correctly by this form for V,,,. 
However, only the projection V,,l$“‘> is required accurately in the matrix element 
(4). The interaction (35) may indeed generate inaccuracies in I$“‘) in regions where 
the neutron and proton are widely separated, as for example, the asymptotic stripping 
regions. However these components of [I/&“) are not directly relevant to the matrix 
element (4). Information concerning the asymptotic stripping regions is supplied by 
the independent calculation of (xi-‘+,1 using neutron and proton potentials corre- 
sponding to the correct final state energies. 

These remarks are not meant to imply that corrections to the model (35) are 
negligible. Work aimed at elucidating this question is in progress 2”). The method of 
treating three-body effects generated by a given three-body Hamiltonian developed 
in this paper is well adapted to an exploration of these points. Thus in the present 
method only certain matrix elements of V,, appear and these can be evaluated in 
principle for a I$,, of arbitrary complexity. In particular, since it is unlikely that an 
exact and tractable form for V,,, will ever be realised, it is important that the current 
method requires matrix elements of V,,, between a finite number of Weinberg states 
only. 

It has been shown “) that the effective interaction (35) can provide an understanding 
of elastic deuteron scattering at 20 MeV on medium mass nuclei, and has been used 
with some success in the adiabatic approach to stripping 2-4). The attitude taken here 
is that this does provide a basis from which a more accurate theory of stripping can 
be developed. 

3. Details of the method 

3.1. A TECHNIQUE FOR SOLUTION 

To demonstrate that the approximate coupled-channel method can be solved in 
practice, it will prove convenient to use a matrix notation. We define the column of 
solutions 

Ix”‘> = co1 {lxi”) . . . gp)}, 
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and the matrix of constants C, whose elements are 

Cjj = P,j(~j-l), Ci, = 0. (37) 

The coupled equations (27) can then be written 

[E*+i&-T&(+f) = C/$‘“‘>+V~x”)), (38) 

where the elements of V are the coupling potentials given in (29). The incoming 
deuteron boundary condition for the first channel has been omitted for convenience. 
The solutions can be properly defined by specifying the outgoing boundary conditions 
in each channel. This can be done once it is recognised that the matrix C can always 
be diagonalised. Defining 

we have 

where 

a = diagonal (1, (Ed - 1)” . . _ (z~ - I)“), 

c = fx-lBbz, 

(39) 

(40) 

B 
ox 

= ,o b ( ) (41) 
and 

x = row &(Q - 1)” PI&x3 - I)* . . - ~~~(~~- l)*>, (42) 

bij = (ai-l>~~ij(~j-i~~, i, j = 2,. . . N. (43) 

The submatrix b is real and symmetric, and therefore can always be diagonalised by 
a similarity transformation. Thus the matrix B is similar to a triangular matrix with 
diagonal eIements (0, /2, . . . AN> where the ai are the real eigenvalues of b. A sufficient 
condition for a triangtiar matrix to be similar to a diagonal matrix is that its eigen- 
values be distinct. However in the special case of B it is sufficient that none of the 
a, (i = 2, . . . N) be zero. This condition is always satisfied due to the positive- 
definiteness of b. 

We can therefore write 

C = A-‘IZA, (44 

where 

ic. = diagonal (0, & . . . a), (49 

and A is non-singular but not unitary. Therefore it is always possible to find a basis 
in which the coupled equations have no constant coupling terms. In this basis the 
equations become 

where 

[E,+ iE-TJp+)) = ;Z~P'+')fWp), (46) 

jr;(+)> = A/#+)), (47) 

W(R) = AV(R)A? (48) 
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The coupling potentials in the new basis are, explicitly, 

W,j(R) = lfz Al %5,(R)(A-1)nj 2 

= -<!2”~v”P(~+~+ v;)J&, 

where the new n-p basis states are 

(50) 

(51) 

with orthonormality relation from (22) 

The representation 

where 

(sZ”lImpldr> = -6ij. 

of the wave function, using (24), (47) and (52), is now 

I$“‘> =igm~l”>~ 

(54 

(55) 

IF!“> = -(Q”lV c I nP 
I$“‘>. 

(56) 

The nature of the approximation that we have now arrived at can be seen in a 
different light. The effect of using N Weinberg states to describe the n-p spectrum can 
be summarised by the replacement of Hnp by the approximate Hamiltonian 

such that in the N-dimensional basis of Weinberg states, Hfp and Hnp have the same 
matrix representation. The approximate Hamiltonian HFp is not an hermitian opera- 
tor, but we have already seen that its matrix representation is similar to a diagonal 
matrix of its real eigenvalues. In the new basis (52) and (53), H& has the representation 

= - 2 jLl”>[;li-&,]<a”lv”,. 
i=l 

A similar situation will occur if the Weinberg states are used to represent the n-p 
spectrum in a channel which does not contain a bound state. By suitable choice of 
normalisation of the Weinberg states the matrix representation of Hfp can always be 
made hermitian. Thus the method can be extended to treat n-p channels other than 3S. 
The only requirement necessary to preserve the property of similarity to an hermitian 



.&py)2.] = !X “Aj t !x 

(f9) 
.?y_Pg = ix !$ 

(29) 
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amplitude to a given accuracy must be determined by a numerical calculation. Note 
that eq. (23), with i replaced by N gives a qualitative relationship between N and the 
domain 0 5 I 5 r, over which we expect the truncated Weinberg representation of 
the wave function to be accurate. The above expected behaviour of the eigenvalues 
hi as N is increased, has been borne out in a preliminary calculation in which V,, 
was taken to be of IIulth& form and N c 8. This potential is convenient since the 
Weinberg states are known analytically. 

The exact three-body wave function has break-up asymptotic outgoing components 
associated with n-p relative energies in the continuous range [0, El., The approximate 
method we have developed for the projected wave function V,,JJ/(‘)) is capable only 
of selecting a discrete number of open break-up channels with n-p relative energies 
and eigenstates given by (59). We emphasise that the number (N) and therefore the 
nature of these discrete n-p eigenvalues and eigenstates is determined solely by the 
accuracy required for V,,ltf”) in the stripping amplitude. We are thus not concerned 
with obtaining an accurate representation of II/J”‘) in the asymptotic non-interacting 
region where the form (62) is clearly inadequate. The amplitude a, in (62) cannot be 
interpreted as the elastic deuteron amplitude since those break-up effects that have 
been included by the projector (@l V,, are present. Even if the channel i = 1 is the 
only open channel (a situation which is quite likely if only a few n-p eigenstates are 
used as a basis), P:“(R) will differ from the elastic component (+d/ll/‘i’). 

3.2. THE COUPLING POTENTIALS 

To complete this section we discuss some general properties of the coupling poten- 
tials and give an approximate formula for their computation. The considerations here 
are independent of whether the potentials are required in the basis of Weinberg states 
(29) or in the new basis (51). Ignoring the Coulomb component for the present, (29) 
becomes in the space of the n-p c.m. momenta 

where Q = K’- K, and we have used the locality of I’,, VP in coordinate space to 
make this factorization. Now if the significant values of Q required to compute V, 
accurately in coordinate space are such that in the integral over Y we may expand 
the term sin xf_x about x = 0, we obtain 

Kj(Q) z [K(Q)+ vp(Q)1[sij-~~Qz<rz>iji~(Q4r4)ij+ - - *I* (66) 
The parameters <rn)ij are dependent only upon properties of the n-p interaction and 
are given by 

<rn>ij = -<4ilV,p(f”)r’*l#j>. (6-9 

Transforming into coordinate space and retaining only terms to second order, (65) 
yields the approximate formula 

(68) 
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The ,accuracy of this approximation depends only upon the n-p interaction being 
of shorter range than the nucleon optical potentials. In the case that V,, VP are to 
have simple analytic forms, for example a Woods-Saxon shape for the real parts, and 
a derivative Woods-Saxon shape for the imaginary parts, the prescription (68) is quite 
accurate and represents a considerable saving in computational labour. The variation 
with the channel indices i, j is contained solely in the constants <~‘>ij, whereas an 
exact calculation would require a different double folding integration for each set 
(i,j). Two properties of the exact potentials, preserved by the approximate form (68), 
are the volume integrals and mean square radii, which are given by the relations 

It is easily verified that the above results are equally true for the coupling potentials 
Wij(R), defined in the transformed basis, with the parameters (r2)ij replaced by 
their transformed values 

Since the Coulomb component of our effective interaction (3.5) depends only on R, 

the Coulomb contribution to the coupling potentials is just 2iij V,(R). In fact, for R > 

half of the range of yhP , this contribution is also obtained to high accuracy when the 
folding of the more obvious choice V,(r,) is considered. The corrections to this treat- 
ment are associated with Coulomb break-up of the deuteron, and above the Coulomb 
barrier these effects are generally small compared to the nuclear effects 17)_ 

3.3. A SIMPLE ESTIMATE OF CONVERGENCE 

We have previously remarked that the number of basis states to be used in our 
representation of the three-body wave function is to be determined from the accuracy 
required of the stripping amplitude. This will be. possible only if the coupled Schrii- 
dinger equations (60) do not admit significant contributions from coupling to channels 
of extremeiy high order. The fact that we have been guided the successful adiabatic 
theory, and have resolved the wave function into discrete components associated 
with increasingly higher n-p relative energies, is not in itself an immediate guarantee 
that the coupled equations (60) can be truncated without loss of accuracy. In this 
subsection we make use of an extremely idealized situation to obtain an estimate of 

the magnitude of the extremely high order components of the wave function. The basic 
requirements for this estimate is a knowledge of the behaviour of the ingredients of 
the coupled equations with increasing channel index. In particular we require simple 
estimates of the eigenvalues li, and the strengths of the coupling potentials which we 
take from (68) to be given by the parameters (r2>ij. These quantities are properties of 
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the n-p interaction only. We will assume that the dominant physics of the problem 
will not be seriously altered, if for the purposes of the convergence estimate, we take 
the n-p interaction to be a square well with strength -ZIP and radius ~c. 

We note immediately that for this interaction the Weinberg states form a complete 
set only in the domain 0 S r 5 ro, and consequently surface contributions from the 
edge of the well will in principle arise in our derivation of the coupled channel method 
in subsect. 2.2. However we only wish to use the resulting forms for the parameters 
Ai, (r’>ij as a guideline to the behaviour expected for a more physical interaction. The 
square well Weinberg states are from (21) 

cji(r) N i sin kir, r <I-~, 

- 1 e-Yar, r>ro, (72) 
r 

where 

and the eigenvalues tli are determined from the matching condition at r. 

k,cot kjr, = -yd. (74) 

Since yd/ki << 1, the approximate solution ki M (2i- l)n/2r, yields the following 
form for the eigenvalues 

cli --, i>>l. 

The parameters (r2)ij from (67) are given by the approximate formula 

(751 

(r’>ij M 2 (:) ‘CA l>i-j [&2 + ( 
i 
+j’ ly] 3 i # j, (76) ~ , 

0 

2 

<r2>ii 

1 M +ri+2 I!? ~ 
7r (2i-1)” 

(77) 

The calculation of the eigenvalues /2i is especially simple for the square well, since 
H,,,, is already diagonal in the basis of Weinberg states. The result is 

and therefore for Iarge i 

Izj = v,(a,-l), (78) 

1. 2” L --, 0 - i-c 2.2 z , i >> 1. 
m x0 

(79) 



72 R. C. JOHNSON AND P. C. TANDY 

Because of (68) and (77), the strength of the diagonal potentials Wii approaches a 
constant value as i -+ co, and thus the only term on the 1.h.s. of (60) of any conse- 
quence in this limits is &. The magnitude of the channel wave functions for large i 
can therefore be estimated from (60), using (68), (76), (77) and (79) as 

The slowest rate of fall-off of Pi+’ with i is provided by the coupling to the first channel 
j = 1. Taking only this term, we can make an estimate of the ratio of the sum total 
of all higher order channels to the first channel 

(81) 

For typical strengths of the optical potentials this ratio has the estimate A. It thus 
seems plausible to expect that detailed calculations with the truncated set of coupled 
equations can provide a meaningful solution. 

4. Discussion 

We have seen that the Weinberg eigenstates of the n-p system provide a convenient 
basis for the representation of the three-body wave function when the (d, p) stripping 
amplitude is required. A coupled channel method has been developed for the wave 
function calculation, and break-up effects are explicitly included. The method provides 
a convenient framework in which to numerically test the accuracy of the adiabatic 
theory of deuteron strippjng, and to compute any si~ni~cant corrections. The channel 
coupling potentials describing the interaction of a continuum n-p pair with the nuclear 
target are of finite range in the c.m. coordinate of the pair, and are readily calculable 
in terms of the nucleon optical potentials and the parameters (r2>ij of the n-p system. 
These n-p parameters are dependent upon the details of the n-p interaction, e.g. the 
shape of YnP(r). This shape dependence is to be expected since the adiabatic theory, 
which appears as a suitable lowest order solution to the present theory, employs only 
the shape-independent properties of the n-p system. We have treated only the 3S n-p 
states, but have indicated that our basic method can be applied to the other states of 
the n-p system. 

We note that the Weinberg states that we have employed as a basis are identical to 
the eigenstates used in the construction of the unitary pole expansion ‘*) of the two- 
body 3S t-matrix into separable terms. This procedure is equivalent to a generalisation 
of (16) to several terms whose form factors are Ifj) = VJ#i>. A representation of 
the half-shell t-matrix by this method is equivalent to a representation of the projected 
two-body wave function V&&+)> in the basis of Weinberg states. The known 



DEUTERON STRIPPING 73 

numerical convergence of these t-matrix expansions for n-p scattering ‘s) demon- 
strates the ability of the Weinberg eigenstates to represent the n-p continuum effects. 
For the three-body problem however, these expansion techniques have been used 
chiefly within the context of the exactly soluble models of the Amado type ““). If the 
approximate method developed here is found successful, it would indicate that for 
stripping and similar rearrangement processes on a heavy nuclear target, a strict 
application of these exact models is not absolutely necessary to account for the major 
three-body physics of these reactions. 

Within the context of deuteron stripping this situation can arise because the pro- 
jected wave function V,,l$“)) that is required, satisfies much simpler boundary 
conditions than the full wave function /+(f)). In particular the asymptotic stripping 
components are eliminated. The exact three-body models, by design, take full account 
of the three-body boundary conditions in a11 possible asymptotic channels by means of 
the primary singularity structure 21). In contrast V&?‘+‘> has only outgoing elastic 
deuteron waves which are preserved by our method, and outgoing continuum n-p 
components which are treated approximately in our method. Theoretical considera- 
tions 2x1 22) indicate that the spectator wave function(4,l YnPl$“)) [see the discussion 
after eq. (18)] wilt have besides the asymptotic elastic deuteron component, an 
asymptotic continuum component whose slowest rate of fall-off is R-@h(R). The 
function h(R) is oscillatory with a c.m. wave number (4mE/@)*. This continuum 
component is treated in an approximate fashion in our method for expanding the 
projected wave function. In a numerical study of deuteron stripping within an exact 
three-body model, by Bouldin and Levin 23), a comparison of the elastic and spectator 
wave functions in R-space indicated significant differences only inside the nucleus. 
The extent to which this result is model dependent however is not clear. In applica- 
tions of the adiabatic theory, the elastic and adiabatic wave functions differ by a phase 
in the nuclear surface “1. We expect that similar behaviour will result from use of our 
approximate three-body method. 

Recently the technique of employing a discrete representation of the n-p continuum 
has been studied by Rawitscher “> and Austern and Farrell 24) in the related problem 
of deuteron elastic scattering. The exact scattering eigenstates of HnP, chosen at 
several discrete values of low relative n-p energy, are used to represent the continuum 
components, and a coupled channel form~ation of the problem is obtained. The 
essential difference between elastic deuteron scattering and stripping is that different 
projections of the three-body wave functions are required in each case. For stripping 
we have been able to exploit a basis ideally suited to the required projection 
V,,,l$c’)). The elastic projection (&lJI(‘)> requires information about I$“‘> over 
a much more extended region, and could well be sensitive to three-body effects that 
lie outside of the scope of the present treatment. Rawitscher’s calculation has indicated 
that coupling to continuum d-states of the n-p system has a significant effect in 
elastic scattering. The effects of such states in stripping could be investigated within 
the framework we have developed in this paper. 
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