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Abstract. Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions
with deuterons and halo nuclei (frozen halo approximation)as projectiles. The different ways the approximation should be
implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the
theory’s validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is
outlined and the connection between the adiabatic and CDCC methods is reviewed .
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1. ADIABATIC APROXIMATIONS

The use of adiabatic approximations1 in nuclear reaction theories has a long history. The key ideais to separate the
relevant degrees of freedom into ‘slow’ and ‘fast’ categories. The ‘slow’ variables are treated as fixed during the colli-
sion and the associated scattering problem for the ‘fast’ variables is treated quantum mechanically or semiclassically
depending on the masses and energies involved in the reaction. This is the analogue of the Bohr-Oppenheimer approx-
imation for bound states of molecules, where the electronicmotion for fixed nuclear positions is calculated quantum
mechanically.

An early example is Barrett’s treatment of neutron scattering by a nucleus regarded as a rigid rotor[1]. He calculated
the scattering amplitude for the scattering of a neutron by adeformed potential as a function of the orientation of
the nuclear body-fixed axes. Scattering amplitudes were then calculated by taking matrix elements of this amplitude
between the nuclear states of interest. Here the ‘slow’ motion is obviously the nuclear collective rotation and the
incident neutron motion is regarded as ‘fast’. Other applications of the adiabatic approximation to theories of elastic
and inelastic scattering in nuclear physics are reviewed inref.[2], pages 83-84 and elsewhere in that book.

The approximation in the energy domain which complements this time picture, is that the energy associated with
relevant rotational excitations is assumed to be small compared to the translational energy of the neutron. In the
adiabatic limit all excited rotational states are assumed to be effectively degenerate on a scale determined by the
incident energy. We will see how this comes about formally below. This way of thinking tends to give too conservative
an idea of the usefulness of the adiabatic approximation because it fails to take into account the crucial role played
by absorption in nuclear reactions. In addition, we now havea better understanding of the spatial regions in which
adiabatic solutions of the few-body Schrodinger equation are expected to be most valid and how to exploit this
knowledge in applications to particular reaction channels.

Historically an important feature of the adiabatic approximation was that it is a cheap way of doing a complicated
coupled channels calculation. For example, in Barrett’s calculation, channels with a fast neutron and the rotor in any
one of its excited states are taken into account coherently and non-perturbatively. With modern computing power this
may not be a big advantage, but when the projectile is looselybound and the relevant excitation spectrum is in the
continuum the adiabatic approximation can be a powerful tool as well as frequently providing important insight and
checks of more complete calculations. CDCC calculations, which were pioneered and developed in [3],[4],[5],[6],
discretise the continuum and are in principle an improvement over the adiabatic approximation, but CDCC codes are
generally available only for 2-body projectiles. See [7] and [8] for recent reviews. The first CDCC calculations for a 3-
body projectile have only just been published[9]. An adiabatic code which treats 3-body projectiles has been available
for some time[10].

1 in "Reaction Mechanims for Rare Isiotope Beams", 2nd Argonne/MSU/JINA/INT RIA Workshop, MSU, East Lansing, 9-12 March. 2005 (ed.
B.A.Brown, AIP Conf Procs. Vol 79) pp128-139.



In this historical context we note that the adiabatic approximation in the sense we use here is the basis of Glauber’s
theory[11] of high energy composite particle scattering which has been widely used in the analysis of reaction experi-
ments with halo and other light nuclei[7],[12]. In these calculations selected co-ordinates are treated adiabatically and
the eikonal approximation is used to describe the scattering of the frozen object. In his development of a microscopic
theory of the nucleon optical potential, Glauber goes further and treatsall the internal co-ordinates of the target nu-
cleus as frozen during the scattering. The resulting 2-bodyproblem for a set of frozen internal nuclear co-ordinates is
then solved using the eikonal approximation. It is one of thepurposes of the present paper to advertise the fact that the
adiabatic approximation can be useful even when the eikonalapproximation breaks down.

2. DEUTERON-NUCLEUS COLLISIONS

This section discusses a 3-body model of the systemn + p + A, whereA is a heavy nucleus in its ground state. The
theory we describe can, and has been, applied to other systems and we shall mention several in passing. Some cases, for
which the adiabatic approximation is potentially useful, have special problems, e.g., Coulomb and antisymmetrisation
effects. These are best discussed separately and will be ignored here.

In a 3-body model of deuteron-nucleus collisions, for example, channels corresponding to elastic deuteron scattering
and elastic deuteron break-up in which the target is left in its ground state are all included in a unified way. Excited
states of the targetA do not appear explicitly. The relation between this model and the underlying many-body problem
will be discussed below.

In a widely used notation we use~r for the position of the neutron relative to the proton and~R for the position of the
centre-of-mass ofn andp relative toA. The Hamiltonian of the model is

H = TR + Hnp +V(~R,~r), V (~R,~r) ≡VnA(~R+~r/2)+VpA(~R−~r/2) (1)

whereHnp = Tr +Vnp is the Hamitonian for relative motion of then− p system. TheT ’s are kinetic energy operators.
For the purpose of this talk we assume that all Coulomb interactions are screened at large distances. We useφ0(~r) for

the ground state of the deuteron with energy−ε0 < 0, andφ (+)
~k

(~r) for the continuum ofn− p scattering states which
are eigenstates ofHnp with energyεk > 0 and satisfy outgoing wave boundary conditions. It is the purpose of the
adiabatic approximation to treat the coupling between the deuteron and the scattering state continuum in as accurate
and transparent a way as possible. In the 3-body model this coupling comes from the tidal forces generated by the fact
that, over the volume of the deuteron,VnA(~R +~r/2) andVpA(~R−~r/2) generate forces on the nucleons which differ in
magnitude and direction.

2.1. Time dependent picture

Under the transformation

Ψtrans = exp(− iHnpt
h̄

)Ψ. (2)

the time dependent Schrodinger equation forΨ(~R,~r,t) becomes

(TR +V(~R,~r(t)))Ψtrans(~R,~r,t) = ih̄
∂Ψtrans

∂ t
. (3)

In eq.(3) then− p relative co-ordinate~r(t) has acquired a time dependence through the relation

~r(t) = exp(
iHnpt

h̄
)~rexp(− iHnpt

h̄
). (4)

The adiabatic approximation assumes that the collision time T is so short that we can replace~r(t) by~r(0) =~r. A
sufficient condition for this step to be valid is thatT satisfy
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where< Hnp > is the maximum eigenvalue ofHnp excited in the collision through the tidal forces. For the strong
interaction this maximum is related to the shape of the nuclear surface and is insensitive to the incident deuteron
energy. Hence for sufficiently high energy the collision time will always become small enough that the condition (5)
is satisfied.

Implementation of the adiabatic approximation for a stationary state requires the solution of the adiabatic
equation[13]

(TR +V(~R,~r)−Ed)Ψad(~R,~r) = 0, (6)

which for fixed~r is a 2-body problem. Note that even for centralVnA andVpA the potential in eq. (6) is not central when
considered as a function of~R for fixed~r so coupled equations still have to be solved in general.

2.2. Solution of the adiabatic equation

The solution of the adiabatic equation can be reduced to a manageable set of coupled equations by either of two
methods which are based on different truncation schemes. Both methods assume the nucleon potentialsVnA andVpA
are central.

(i) In this method[3],[4],[14][15] the adiabatic wavefunction is expanded in the basis[Yl(r̂)×YL(R̂)]JM and uses the
fact thatVnA +VpA is diagonal inJ,M, although not inl andL. Truncation in these angular momenta is required.

(ii) The method used by Barrett[1] uses the fact thatVnA +VpA is diagonal in~L.r̂ and proceeds by making a truncated
multipole expansion of the potentials.

Method (ii) is well adapted to the case of scattering by a deformed nucleus when a natural truncation of the multipole
expansion occurs. In the present context, convergence inl is found to be very rapid and truncation is linked with the
adiabatic assumption of low excitations in the~r co-ordinate.

The adiabatic wavefunction corresponding to a deuteron incident with momentum~Kd has the structure

Ψad
~Kd

(~R,~r) = φ0(~r)χad(+)
~Kd

(~R,~r), (7)

whereχad(+)
~Kd

satisfies

(TR +V(~R,~r)−Ed)χad(+)
~Kd

(~R,~r) = 0, (8)

with the boundary condition (~r fixed)

χad(+)
~Kd

(~R,~r)
R→∞→ exp(i~Kd .~R)+ f (R̂,~r)

exp(iKdR)

R
. (9)

The functionχad(+)
~Kd

and the scattering amplitudef (R̂,~r) both depend on~r. The physical meaning off (R̂,~r) is that it

describes the elastic scattering in the directionR̂ of ann− p pair with fixed separation~r by the potentialV (~R,~r). The

factorφ0 in (7) ensures that the coefficient of the plane wave in eq.(7)and the exact 3-body wave functionΨ(+)
~Kd

(~R,~r)

coincide. The formula (9) can be derived by taking the adiabatic limit of formal expressions for the exact three-body
wavefunction[16].

The adiabatic equation must be solved for as many values of~r as is required for the application. For example, for
elastic deuteron scattering we have to evaluate the scattering amplitudef (R̂,~r) for as many values of~r as is required
for the accurate evaluation of the integral

felastic(R̂) =

∫

d~rφ∗
o (~r) f (R̂,~r)φo(~r), (10)

i.e., for 0< r < rd , whererd is a measure of the size of the deuteron.
This formalism can be simplified considerably in several interesting cases. When the conditions are such that eq. (6)

can be solved in the eikonal approximation an explicit formula for f (R̂,~r) in terms of a path integral ofVnA +VpA can



be obtained. This is Glauber’s theory of deuteron-nucleus scattering. The method has been extensively applied to the
calculation of elastic scattering and reaction cross-sections of halo nuclei with 2 or more clusters[7],[17]. The integral
in (10) is carried out numerically without further approximation of the expression using the best available models for
the ground state wave functionφ0.

There are also considerable simplifications in the zero range limit of deuteron stripping or when one of the potentials
VnA andVpA vanishes. These cases will also be discussed below.

The non-eikonal adiabatic method has been applied to the elastic scattering of6Li in an α + d model[18],7Li in an
α + t model[19] and to the scattering of11Li in a n + n+9Li 3-body model[10].

It is shown in[16] that estimates based on eq.(5) are too conservative. For short range forces the collision time
decreases as the impact parameter increases. Hence for a given range of excitation energies the worst violations of the
inequality (5) tend to occur at low impact parameters. Underconditions of strong absorption these are just the impact
parameters whose contributions to the excitation are suppressed. A revised adiabatic condition which includes this
effect is given in ref.[16]. By comparison with CDCC calculations in a special case the revised condition is shown to
give an excellent idea of the accuracy of the adiabatic approximation for a model of11Be scattering.

2.3. An instructive special case

We show the result for deuteron scattering as an example. When one of the interactionsVnA, VpA vanishes (or is a
constant) the adiabatic equation can be solved exactly in a very simple way. We takeVnA = 0 for definiteness. This
is obviously not a very realistic model of elastic deuteron scattering in general, but it is very relevant to Coulomb
break-up of the deuteron[23]. Eq.(6) becomes

(TR +VpA(~R−~r/2)−Ed)Ψad(~R,~r) = 0. (11)

For a deuteron incident with momentum~Kd this has the exact solution[20][21][22]

Ψad
~Kd

(~R,~r) = φ0(~r)exp(i~Kd .~r/2)χ (+)
~Kd

(~R−~r/2), (12)

whereχ (+)
~Kd

is the distorted wave for a particle with the mass of the deuteron by the potentialVpA and evaluated at the

argument~R−~r/2 i.e., at thep−A relative co-ordinate.
In this limit the elastic deuteron cross-section is simply expressed in terms of the deuteron ground state form factor

and the deuteron elastic cross-section generated byVpA. In the generalisation to the case of a projectile with unequal
mass clusters the factors of 1/2 are replaced by ratios involving the masses of the clusters[20]. The generalisation
gives a good account of some features of11Be scattering[20].

The explicit form (12) also makes a deficiency of the adiabatic wavefunction very clear. It predicts that for any~R,
Ψad

~Kd
→ 0 exponentially forr → ∞, i.e, in regions of space where we look for outgoing waves in the stripping and

break-up channels. We therefore cannot expect the adiabatic wavefunction to be accurate for larger even though it
may be perfectly adequate for finite values ofr. The reason for this shortcoming can be traced to the treatment of
the break-up continuum as degenerate. It is then not possible for the 3-body wavefunction to carry the phase relations
between theR andr dependence which are essential to generate the correct asymptotic form in rearrangement and
break-up channels. We must use the adiabatic wavefunction in ways which respect this observation. We do this by
using it as the basis for an iterative solution to the Schrödinger equation.

2.4. Iteration of the adiabatic solution

We re-write the 3-body Schrödinger equation in the form

(E −TR −Tnp−VpA−VnA)Ψ~Kd
= VnpΨ~Kd

, (13)

where we have transferred theVnp term to the right-hand-side. This term requiresΨ~Kd
only within the range ofVnp,

and for which we can therefore use the adiabatic wavefunction if the adiabatic conditions are satisfied[13].



The method proceeds by treating the equation

(E −TR −Tnp−VpA−VnA)Ψ~Kd
= VnpΨad

~Kd
, (14)

as an inhomogeneous equation forΨ~Kd
with the right-hand-side given. In particular, by examining the outgoing Green’s

function for the operatorE −TR−Tnp−VpA−VnA it is found that the iterated solution has the correct asymptotic form
in the stripping and break-up channels with outgoing waves with momenta correctly given by the conservation of
energy, i.e., without the assumption of degenerate break-up channels used in the adiabatic wavefunction. In the exact
solution of the inhomogeneous equation the coefficients of the outgoing waves in the stripping and break-up channels
(transition amplitudes) are given by

Td,p = 〈χ (−)
p φn |Vnp | Ψad

~Kd
〉, (15)

Td,np = 〈χ (−)
p χ (−)

n |Vnp | Ψad
~Kd
〉, (16)

where theχ (−)
p andχ (−)

n are distorted waves generated byVpA andVnA, respectively, andφn is a neutron bound state,
all evaluated at the correct energies predicted by energy conservation.

Strictly speaking, to deduce (15) and (16) from eq.(14) requires the additional assumption that the target has infinite
mass,A → ∞. It is only then that the kinetic energy separates inton and p terms and solutions of the homogeneous
equation have a product form. Recoil terms of order 1/A can mix in terms in the final state in which the neutron is
excited out of the stateφn. These corrections (Recoil Excitation and Break-up (REB) effects) can be very significant
for light nuclei[24].

All the quantities in (15) and (16) are solutions of 2-body problems and are readily calculated. The evaluation of
the amplitudes requires techniques similar to those used inthe evaluation of DWBA amplitudes. We emphasise that
this iterated theory goes far beyond DWBA. No Born approximation is involved. Couplings between 3-body channels
are included to all orders inΨad

~Kd
. It should be clear that ifΨad

~Kd
were replaced in equations (15) and (16) by the exact

three-body wavefunctionΨ~Kd
then these expressions would give the exact reaction amplitudes. The approximations

(15) and (16) assume that all coupling effects in the wavefunction for r less than the range ofVnp can be adequately
accounted for by the adiabatic wavefunction. In principle this whole procedure could be iterated by calculating the
complete solution of the inhomgeneous equation (13) (not just the asymptotic form as explained above) and then using
the solution to re-calculate an improved inhomogeneous term. As far as I know this has never been done.

In the zero range limit forVnp the evaluation of equations (15) and (16) becomes particularly simple because then
we can use[13]

VnpΨad
~Kd

(~R,~r) = Vnpφ0(~r)χad(+)
~Kd

(~R,~r) = Vnpφ0(~r)χad(+)
~Kd

(~R,0).. (17)

From eq.(8) we see thatχad(+)
~Kd

(~R,0) satisfies

(TR +V(~R,0)−Ed)χad(+)
~Kd

(~R,0) = 0, (18)

and is, therefore, simply a distorted wave generated by the central potentialVnA(R)+VpA(R).
We see that in this limit the adiabatic theory of stripping looks even more like a DWBA theory, but this is misleading

because the functionχad(+)
~Kd

(~R,0) includes outgoing waves in break-up channels and the potentialVnA(R)+VpA(R) may

have very little to do with elastic deuteron scattering.
When s-wave break-up dominates at smallr the formalism can be modified to correct for a finite rangeVnp[13]. We

expand the three-body wavefunction in terms of the completeset ofn− p relative motion states{φ0,φ
(+)

~k
} introduced

earlier. Provided the continuum states which contribute donot have very high energy we can safely assume that only
s-wave states will overlapVnp and we can write

Ψ~Kd
(~R,~r) = φ0(r)χo(~R)+

∫

d~kφ (+)
k (r)χk(~R), r < rnp, (19)

wherernp is the range ofVnp. For continuum energies less than roughly 10 MeV the shape ofthes-wave stateφ (+)
k (r)

does not depend strongly on energy forr < rnp and we can write

φk(r) ≃ g(k)φ0(r), r < rnp, (20)



whereg(k) is independent ofr. Inserting this approximation into (19) gives

VnpΨ~Kd
(~R,~r) ≃Vnpφ0(r)χ̄~Kd

(~R), (21)

where

χ̄~Kd
(~R) = χo(~R)+

∫

d~kg(k)χk(~R). (22)

We emphasise that the form implied by (21) for the 3-body wavefunction is generally only valid inside the range of
Vnp. Ther andR dependence of the adiabatic wavefunction does not factorise in this way in general (see, e.g., eq.(12)).

In the next subsection we will show how these qualitative ideas can be systematically exploited to give an equation
for χ̄~Kd

(~R).

2.5. The method of Johnson and Tandy

A more general approach to obtainingVnpΨ, the projection of the 3-body wavefunction which is most relevant to the
transition amplitude for stripping, and break-up according to (15) and (16), is to expand in terms of a set of functions
which are complete within the range ofVnp.

A convenient set for this purpose is the set of Weinberg states, or Sturmians,̄φi(r), i = 0. . .∞, used by Johnson and
Tandy[25]. They satisfy

(Tr + αiVnp)φ̄i = −ε0φ̄i (23)

where theαi’s are Sturmian eigenvalues. Fori = 0, α0 = 1 andφ̄0 is proportional to the deuteron ground stateφ0.
These states all look like the deuteron asymptotically, butasi andαi increase they oscillate more and more rapidly at
short distances.

An expansion in terms of this set converges rapidly if the dependence onr of the three-body wave function inside
the range ofVnp is similar toφ0. Coupled equations for the coefficients are readily derivedusing the orthogonality
property

〈φ̄i |Vnp | φ̄ j〉 = −δi, j. (24)

The first term in the expansion has the formφ0χ̄ with χ̄ defined by

(Ed −TR − V̄(R))χ̄~Kd
(~R) = 0, (25)

where the potential̄V is given by

V̄ (R) =
〈φ0 |Vnp(VnA +VpA) | φ0〉

〈φ0 |Vnp | φ0〉
. (26)

The bra and ket in this equation imply an integration over~r with fixed~R. V̄ reduces to the zero-range resultV (R,0) of
eq.(18) if the variation of the nucleon optical potentials over a distance of the order ofrnp can be neglected. For nucleon
potentials with a Wood-Saxon shape the effect of the finite range correction in eq.(26) is to increase their diffuseness
slightly. A simple way of incorporating these modifications, which can be important for light nuclei, can be found in
refs.[26],[27]. Results that take into account terms in theexpansion inφ̄i’s beyondi = 0 are given in refs.[25],[28] in
specific cases. They show that this is a promising approach tothe calculation of break-up effects in stripping which go
beyond the adiabatic approximation.

An interesting feature of this derivation is that it makes noreference to the incident energy but only the assumption
that the break-up states excited have low enough excitationthat the 3-body wave function is well approximated by
the formφ0(r)χ̄(~R) inside the range ofVnp. This suggests that a stripping theory which takes into account break-up
effects can be based on the use ofχ̄ as a distorted wave even at low energies where the adiabatic condition is not well
satisfied.

The situation for elastic deuteron scattering is quite different because there the adiabatic wave function is needed
out to distances of the order of the size of the deuteron wherethe formφ0(r)χ̄(~R) has no justification. The use of
Sturmians is not then appropriate.



There have been many comparisons between theory based on eqs. (15) withVnpΨad given by (21), (25), (26) and
stripping experiments. We call this the Adiabatic Distorted Wave Approximation (ADWA). Over a wide range of
energies the ADWA has gives angular distributions for differential crosssections and polarization observables which
agree with stripping and pick-up experiments more convincingly and consistently than the DWBA and without the
extra ambiguities associated with the use of a deuteron optical potential in the DWBA. Everything in an ADWA
calculation is determined bynucleon optical potentials for the appropriate energy and target. Some early examples are
given in ref.[2], pages 732-734 but there have been many others since,e.g.[45]. The method has also been successfully
used for (p,d*) [29] and (d,2He)[30] charge exchange reactions.

The study of Cadmus and Haeberli[31] is particularly noteworthy. These authors measured a large number of
deuteron and proton elastic scattering observables to pin down optical model parameters so that the DWBA could
be applied unambiguously. It was found to fail badly. They were able to use their measurements of deuteron and
proton polarization parameters to identify the source of the failures and how these were remedied by the ADWA.

A more recent example of how the ADWA can be used to give an improved account of the systematics of a particular
(d, p) transition as function of energy is ref.[32].

Although the ADWA goes well beyond the DWBA and includes effects due to coupling between the elastic deuteron
channel and other 3-body channels to all orders it is nevertheless an approximate theory which is expected to need
correction at some level. An important example of a clear indication from experiment of the need to go beyond the
ADWA theory and the nature of those corrections is the work ofthe Indiana-Surrey collaboration[33].

One way of going beyond the ADWA for stripping and pick-up is to use the Sturmian expansion method of
refs.[25],[28]. An alternative is to use the CDCC wavefunction in (15). For deuteron stripping this is done in
refs.[44],[46]. Ref.[47] reports a surprisingly large discrepancy between measured proton polarisation and CDCC
predictions for208Pb(d,p)209Pb at 20 MeV incident energy. Other observables are well reproduced.

2.6. Elastic Coulomb break-up

An interesting application of the expression (16) is the case of Coulomb break-up of a 2-body projectile where one
body is uncharged and we can neglect its interaction with thetarget. In the deuteron case, for example, we can then
use eq.(12) and the matrix element factorises[23] as

T ADWA
d,np =

(

∫

d~rexp(i(~kn −
1
2
~Kd).~r)Vnpφ0(~r)

)

∫

d~rpχ (−)∗
~kp

(~rp)exp(−i~kn.~rp)χ (+)
~Kd

(~rp). (27)

whereχ (+)
~Kd

andχ (−)
~kp

are distorted waves describing the scattering of a point deuteron and a proton by the Coulomb

field of the target. For a very large screening radius the second factor has the form of an unobservable phase factor
which goes to infinity with the screening radius, multipliedby an integral which is similar to that which occurs in the
theory of Bremsstrahlung and can be evaluated analyticallyfor a point target. The first factor is easily evaluated for
anyVnp. The restriction toA → ∞ is easily lifted[23].

This theory has been applied successfully to Coulomb break-up of the deuteron[23],11Be[34], 6He [35] and
19C[34],[36]

We emphasise that the theory which leads to (27) is not perturbation theory. Terms of all orders inVpA andVnp
are included. The effects of coupling between Coulomb break-up channels are included in all orders with the 2
assumptions that the adiabatic approximation is valid and that the nuclear interaction between the neutron and the
target can be neglected.

A DWBA theory which is often used for Coulomb break-up startsfrom the expression

T DWBA
d,np = 〈χ (−)

p ~kn |Vnp | Ψelast
~Kd

〉, (28)

where the elastic deuteron wavefunctionΨelast
~Kd

has the form

Ψelast
~Kd

(~R,~r) = φo(~r)χ (+)
~Kd

(~R). (29)

For the case of Coulomb break-upχ (+)
~Kd

(~R) is a Coulomb wavefunction describing the scattering of a point deuteron in

the Coulomb field of the target.



The input data required for the 2 expressions (27) and (28) are identical, i.e.,Vnp, and the Coulomb potential of
the target, although they are based on very different physical assumptions. The DWBA expression assumes that the
coupling between deuteron elastic and break-up channels issmall and can be treated in first order. The adiabatic
expression makes no such approximation but instead makes the assumption2 that any break-up channels that are
relevant for the 3-body scattering wavefunction inside therange ofVnp have low energy compared with the incident
deuteron energy.

The DWBA amplitude for Coulomb break-up involves a 6-dimensional integration. Various approximations, in-
cluding the zero-range approximation forVnp, have invariably been made to simplify its evaluation. Recently
Zadro[36],[37] has published a momentum-space technique for the exact evaluation of the DWBA amplitude with
a finite rangeVnp. This has enabled a meaningful comparison to be made with theADWA theory. He studied
11Be→10Be+n and 19C→18C+n elastic break-up on a208Pb target at energies near 70 MeV/nucleon. Both theo-
ries give very similar projectile-fragment relative energy distributions in quite good agreement with experiment[38]
but the predicted DWBA crosssection magnitudes for a 2-bodyprojectile model are up to 50% bigger. Crosssections
for break-up into states of more than a few MeV are very small.The adiabatic approximation therefore ought to be
excellent at 70MeV/nucleon[16]. This suggests that spectroscopic factors obtained by comparison of predicted DWBA
crosssections with break-up data may be significantly underestimated.

3. THE UNDERLYING MANY-BODY THEORY

Our presentation so far is based on the 3-body Hamiltonian (1) in which VnA andVpA are optical potentials. These
are usually taken at12 of the incident deuteron kinetic energyEd . This is reasonable if any break-up components in
the 3-body wave function have a small fraction ofEd and is certainly consistent with the adiabatic assumption.More
generally the1

2Ed prescription can be justified[39] by detailed calculation if the energy dependence arises purely from
non-locality and break-up effects are negligible. A deeperquestion is why the effective interaction in the 3-body model
should have anything to do with the nucleon optical potential.

To study this further we recall that the 3-body wavefunctionin eq.(3) is the projection of the full many-bodyA +2
wavefunction onto the target ground state. In a standard fashion[40] we can show that the effective Hamiltonian which
governs this component when the target is in its ground statein the incident channel is

He f f = TR + Hnp + 〈φA |U | φA〉, (30)

where the bra-ket notation implies integration over the target nucleus co-ordinates to leave an operator inn and p
co-ordinates only. The complicated many-body operatorU satisfies

U = (vnA + vpA)+ (vnA + vpA)
QA

e
U, vNA =

A

∑
i=1

v(N, i). (31)

ThevNA’s, N = p,n, are the sums of the 2-body interactions between the incidentp andn and the target nucleons 1...A.
The operatorQA projects on to excited states of the target.U sums up all processes via excited states which begin and
end on the target ground state.

U can be separated into itsp andn contributions by using manipulations from multiple scattering theory. We obtain

U = (UnA +UpA)+UnA
QA

e
UpA +UpA

QA

e
UnA + ....., (32)

where

UnA = vnA + vnA
QA

e
UnA, UpA = vpA + vpA

QA

e
UpA, (33)

and the dots in (32) are terms of 3rd or higher order inUnA and/orUpA, always with an excited target (though not
necessarily excited deuteron) as intermediate state.

2 Note that because we use the solution (12) in this case we haveno need for the extra assumptions about the break-up spectrum which lead to (21).



The above expressions forUnA andUpA are strongly reminiscent of Feshbach’s[40] expressions for the operator
which gives the nucleon optical potential when sandwiched between the target ground state. Note however that the
energy denominatore which appears everywhere is not the denominator one expectsto see in the nucleon operator. It
is given (for an infinitely massive target) bye = E + i0−Tn −Tp −Vnp −HA whereHA is the target Hamiltonian. It is
plausible that if low energy weakly correlated break-up states dominate, then inUnA, for example, we can neglectVnp

and replaceE −Tp by 1
2Ed on the average.〈φA |UnA | φA〉 then reduces to a formal expression for the neutron optical

potential at energy12Ed .
The higher order terms in (32) still have to be dealt with, however. The second order terms describe a process in

which the neutron excites the nucleus and the proton subsequently de-excites it, and vice versa. The magnitude of
such effects will be small for weakly correlatedn− p configurations such as in the deuteron or low energy break-up
configurations. Their neglect is consistent with approximations already made.

We learn from this analysis that the validity of the 3-body model as usually assumed is intimately bound up with
the assumption of dominance of low energy break-up configurations. However, all the arguments given above are very
qualitative. Very little work has been done to give substance to them and estimate any corrections to the usual model.
It would seem to be hardly worth while to go much beyond the adiabatic or CDCC treatments of three-body effects,
both of which assume that break-up excitations can be truncated, without investigating many-body corrections to the
3-body Hamiltonian, eq.(1), more thoroughly.

Finally in this section, note that even in the lowest order version of the effective interaction one expects to see
corrections arising from the identity ofn andp and the target nucleons. There are essentially two distinctapproaches
to these antisymmetrization effects. The RGM methods starts from a many-body Hamiltonian with an assumed N-N
interaction and puts in antisymmetrization right from the start, treating the nucleons in the deuteron and in the target
on the same footing. On the other hand it is difficult in practice to treat all possible open channels and absorption
has to be inserted by hand. RGM calculations have been published[41] which include deuteron break-up effects
using discretisation methods similar to the CDCC (next section). Antisymmetrisation effects are very important in
this approach[41].

The alternative approach of refs.[13],[42],[43] is based on the idea that because of the loosely bound extended spatial
nature of the deuteron, the nucleons in the deuteron see the target nucleus much as if they were completely independent
and so much of the effects of antisymmetry and coupling to excited target states are contained in the complex optical
potentials of the 3-body model.In this way one automatically generates a total deuteron reaction cross section which is
close to that observed even when deuteron elastic break-up is neglected. New effects arise for deuteron collisions only
because the nucleons in the deuteron may scatter off each other into occupied target states (Pauli blocking). These
effects are included through a generalisation of the Bethe-Goldstone equation. The role of break-up channels is to
re-adjust the flow of flux into inelastic channels involving excited target states as well as transfering flux into break-up
channels. For some impact parameters the effect of the break-up channel may even be todecrease the partial reaction
crosssection because in the break-up configuration the nucleons may overlap spatially less well with the imaginary
parts of the nucleon optical potentials. Tostevin, et al[43] found that absorption tends to suppress Pauli blocking and
no new major qualitative effects were found. Aoki[44], using a formula for these effects due to Pong and Austern[42],
reported that Pauli blocking effects gave a 10% repulsive correction to the deuteron optical potential and improved
CDCC fits to elastic deuteron scattering on208Pb at 20 MeV. The effect on (d,p) crosssections was negligible.

3.1. Many-body theory of stripping

One advantage of a theory of stripping and elastic break-up based on the matrix elements (15) and (16), which
we have here derived within a 3-body model, is that they generalise easily to include important many body effects.
One starts from formulae analogous to these but with target nucleus co-ordinates still explicit. The wavefunctionΨad

~Kd
is replaced by the full many-body scattering state corresponding to a deuteron incident on the target ground state.
The final state wavefunction describes scattering of a proton incident on the residual nucleus and scattered by the
target nucleons. There is noVnp involved in this state (see [49], pages 838-839, and [24]). The effect of the identity
of the neutron in the deuteron and theN target neutrons is included exactly by multiplying the T-matrix by the factor
√

(N +1) and using properly antisymmetrised wavefunctions for the target and residual nucleus (see [49], pages
836-838).

To obtain the connection with the 3-body theory we



(i) Ignore explicit contributions from channels in which the target is excited by the incidentn− p pair.3

(ii) Ignore Recoil Excitation and Break-up of the final nucleus by elastic scattering of the proton by the target
nucleons in the final state4.

Because the operatorVnp in the matrix element is independent of the target internal co-ordinates these two steps
automatically give a matrix element which involves the projection of the final nucleus state onto an un-excited target
state.

(iii) Ignore the identity of the protons in the target and incident deuteron.
Very little is known about the validity of step (iii). The usual qualitative argument is that proton exchange terms in a

(d,p) reaction involve the overlap of bound and continuum proton states instead of the continuum-continuum overlap
which contributes to the direct term. The exchange term is therefore expected to be small.

The result of these steps is simply that in the expressions (15) φn is replaced by theoverlap function ([2], page710)

φBA
n (~rn) =

√
N +1

∫

dξAφ∗
B(ξA,~rn)φA(ξA), (34)

whereφA, φB are wavefunctions of the initial and final states in the stripping reaction and~rn is the coordinate of the
neutron relative to the centre-of-mass of the target. By definition the spectroscopic factorSAB is the norm of the overlap
function.

If approximation (ii) is relaxed the(d, p) transition matrix will be a linear combination of terms involving the overlap
function for different statesB,A, but always with the target ground state. If approximation (i) is relaxed overlaps and
spectroscopic factors for many different statesA andB will enter, reflecting the many different paths between the initial
and final states which then become possible. The corresponding generalisation of the DWBA is referred to as Coupled
Channels Born Approximation (CCBA) but the theory described here is not Born approximation because of the way
couplings in the n-p space are treated.

4. LINK WITH THE CDCC METHOD

In the CDCC method the 3-body wave function for deuteron-nucleus scattering,Ψ(~R,~r), is expanded in a set of
orthonormal functionsφs(~r), s = 0,1,2......, which diagonaliseHnp with eigenvaluesεs and discretise then − p
continuum. The set are usually defined so thatφs=0 is the deuteron ground state. Coupled equations are then derived
as a technique for solving the 3-body Schrödinger equation.See the talk by I J Thompson for further details of the
CDCC method.

We can expand the adiabatic wavefunctionΨad(~R,~r) in a volumeV in ~r space in terms of an orthonormal set
ψs(~r), s = 0,1,2...... which is complete inV :

Ψad(~R,~r) =
∞

∑
s=0

ψs(~r)χs(~R), (35)

and derive coupled equations for theχs’s of the form

(Ed −TR)χs(~R) = ∑
s′
〈ψs |V | ψs′〉χs′(~R), (36)

whereV is defined in eq.(1) and the coupling matrix elements involvean integration overV .
If we identify theψi’s andφi’s (to obtain the CDCC equations theφi’s must diagonaliseHnp) these equations are

similar to the CDCC equations with all the channel energies set equal to−ε0. We can put this another way. If the set
ψs(~r), s = 0,1,2......, is complete inV , and the functionsχs(~R) satisfy the coupled equations (36) then these equations
show that, for~r in V , ∑s ψs(~r)χs(~R) satisfies

(Ed −TR)∑
s

ψs(~r)χs(~R) = ∑
s

ψs(~r)
∫

d~r′ψ∗
s (~r′)∑

s′
V (~R,~r′)ψs′(~r

′)χs′(~R)

= V (~R,~r)∑
s′

ψs′(~r)χs′(~R), (37)

3 The implicit effects of target excitation are, of course included in the nucleon optical potentials.
4 See [24] for an estimate of these effects for some light targets.



where the completeness of theψs’s has been used. Eq.(37) is just the adiabatic equation. Hence∑s ψs(~r)χs(~R) is the
adiabatic solutionΨad(~R,~r).

We see that the Adiabatic approach can be regarded as an approximation to the CDCC method. Thompson[8]
describes how this result can be used as a check of CDCC calculations by talking the limit when all the channel energies
(the εs’s) are set equal. In making these comparisons note that the adiabatic method does not take into account any
restrictions imposed by the Pauli Principle on the states which should be included in the setφs. For example, in the case
of 11Be scattering the adiabatic calculations include transitions into a state in which the neutron is in a nodeless s-state
with respect to the10Be core. Such contributions are easily excluded in the CDCC calculation or in the Johnson-Tandy
approach[25], but it is not obvious how to do this in an adiabatic calculation without introducing non-local projection
operators with the consequential loss of some of the characteristic simplicity of the adiabatic equation.

At first sight it is puzzling that the adiabatic calculation can take into account effects due to excited deuteron states
when only the deuteron ground state wave function appears explicitly. In CDCC calculations the wave functions
of all excited states deemed to be important must be insertedexplicitly into the calculation of the coupling matrix
elements. Our derivation above shows how this puzzle can be resolved but it is also helpful to note that the ground
state wavefunctionφ0 determines the Hamiltonian through the identity (see the Appendix to [16])

Hnp = −ε0−
h̄2

2µnp
φ−1

0 ∇rφ2
0 .∇rφ−1

0 , (38)

where the∇r operators act on everything to the right of them.
We note that the CDCC method uses a basis which is complete in large volumes of~r space. As we have seen the

stripping and break-up matrix elements (15) and (16) explore a very restricted part of this space, i.e., within the range
of Vnp. For this purpose the complete set used by Johnson and Tandy[25] and its generalisations may be more efficient.

In their exploration of the adiabatic approximation Johnson and Soper[13] proposed an approximation to the CDCC
method which replaced the deuteron continuum by a single pseudo state. In their method the componentVnpΨ of the 3-
body wave function is still governed by equations (21), (25)and (26), but the deuteron elastic scattering wavefunction
and the pseudo break-up state satisfy a pair of coupled equations. This method was critically examined in great detail
by Rawitscher[3],[4] within the CDCC framework. A more sophisticated version of the single pseudostate method was
developed by Amakawa, Austern and Vincent[48] and is known as the quasi-adiabatic method.

5. CONCLUDING REMARKS

Some of the clearest evidence for the importance of deuteronbreak-up effects and the failure of the DWBA for (d,p)
and (p,d) reactions has been obtained by using the adiabaticapproximation as implemented in the ADWA. However,
we have seen that the adiabatic approximation can be regarded as an approximation to the CDCC, so it might be
argued that the adiabatic approximation no longer has a role. It is only recently, however, that the CDCC method has
become available for projectiles with more than 2 clusters and, when coupled with the eikonal approximation where
applicable, the adiabatic approximation is a powerful toolfor the analysis of reactions with composite projectiles.

An attractive feature of the adiabatic approach which it shares with CDCC is that it provides a framework for
inserting the systematics of the interaction of the constituents of the projectile with the target into reaction analyses.
This means that the need for optical potentials for unstableprojectiles can often be avoided, but it still requires reliable
information about the constituents’ optical potentials and hence good elastic scattering data for appropriate energies
and targets.

An advantage of the adiabatic method over CDCC is that its implementation does not need detailed wavefunctions of
strongly coupled excited bound and continuum states of the projectile. The construction of these states may introduce
considerable uncertainties into a CDCC calculation. It is important therefore to understand the limitations of the
adiabatic approximation.

Perhaps the most important feature of the adiabatic approximation is its ability to provide insights into the mecha-
nism of complex reactions. It can be used to provide checks ofCDCC and other theories as well as being a relatively
easy and transparent way to take into account complicated effects of channel coupling in some important special cases.
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