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with deuterons and halo nuclei (frozen halo approximatemprojectiles. The different ways the approximation sthdng
implemented in a consistent theory of elastic scatteritipmng and break-up are explained and the conditions Her t
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1. ADIABATIC APROXIMATIONS

The use of adiabatic approximatidris nuclear reaction theories has a long history. The key isiéa separate the
relevant degrees of freedom into ‘slow’ and ‘fast’ categsriThe ‘slow’ variables are treated as fixed during the-colli
sion and the associated scattering problem for the ‘fasialées is treated quantum mechanically or semiclasgicall
depending on the masses and energies involved in the neattics is the analogue of the Bohr-Oppenheimer approx-
imation for bound states of molecules, where the electromation for fixed nuclear positions is calculated quantum
mechanically.

An early example is Barrett’s treatment of neutron scattgbly a nucleus regarded as a rigid rotor[1]. He calculated
the scattering amplitude for the scattering of a neutron ligfarmed potential as a function of the orientation of
the nuclear body-fixed axes. Scattering amplitudes were ¢hkeulated by taking matrix elements of this amplitude
between the nuclear states of interest. Here the ‘slow’ ano obviously the nuclear collective rotation and the
incident neutron motion is regarded as ‘fast’. Other agins of the adiabatic approximation to theories of etasti
and inelastic scattering in nuclear physics are reviewedfif2], pages 83-84 and elsewhere in that book.

The approximation in the energy domain which complemerisstiime picture, is that the energy associated with
relevant rotational excitations is assumed to be small @agpto the translational energy of the neutron. In the
adiabatic limit all excited rotational states are assunuetie effectively degenerate on a scale determined by the
incident energy. We will see how this comes about formallplweThis way of thinking tends to give too conservative
an idea of the usefulness of the adiabatic approximatioaumeeit fails to take into account the crucial role played
by absorption in nuclear reactions. In addition, we now haetter understanding of the spatial regions in which
adiabatic solutions of the few-body Schrodinger equatimn expected to be most valid and how to exploit this
knowledge in applications to particular reaction channels

Historically an important feature of the adiabatic appnoaiion was that it is a cheap way of doing a complicated
coupled channels calculation. For example, in Barretfsutation, channels with a fast neutron and the rotor in any
one of its excited states are taken into account coheremtiynan-perturbatively. With modern computing power this
may not be a big advantage, but when the projectile is lodselynd and the relevant excitation spectrum is in the
continuum the adiabatic approximation can be a powerfulasavell as frequently providing important insight and
checks of more complete calculations. CDCC calculatiortickvwere pioneered and developed in [3],[4],[5],[6],
discretise the continuum and are in principle an improveroeer the adiabatic approximation, but CDCC codes are
generally available only for 2-body projectiles. See [74 §8] for recent reviews. The first CDCC calculations for a 3-
body projectile have only just been published[9]. An adiabeode which treats 3-body projectiles has been available
for some time[10].
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In this historical context we note that the adiabatic apjpnation in the sense we use here is the basis of Glauber’s
theory[11] of high energy composite particle scatteringohithas been widely used in the analysis of reaction experi-
ments with halo and other light nuclei[7],[12]. In thesectdédtions selected co-ordinates are treated adiabgtimadi
the eikonal approximation is used to describe the scatjerfithe frozen object. In his development of a microscopic
theory of the nucleon optical potential, Glauber goes frtind treatsll the internal co-ordinates of the target nu-
cleus as frozen during the scattering. The resulting 2-podiglem for a set of frozen internal nuclear co-ordinates is
then solved using the eikonal approximation. It is one ofghigoses of the present paper to advertise the fact that the
adiabatic approximation can be useful even when the eilap@ioximation breaks down.

2. DEUTERON-NUCLEUS COLLISIONS

This section discusses a 3-body model of the systenp+ A, whereA is a heavy nucleus in its ground state. The
theory we describe can, and has been, applied to other syarehwe shall mention several in passing. Some cases, for
which the adiabatic approximation is potentially usefalyé special problems, e.g., Coulomb and antisymmetrisatio
effects. These are best discussed separately and will becidere.

In a 3-body model of deuteron-nucleus collisions, for exEnghannels corresponding to elastic deuteron scattering
and elastic deuteron break-up in which the target is leftamgiround state are all included in a unified way. Excited
states of the targét do not appear explicitly. The relation between this modelt#ue underlying many-body problem
will be discussed below.

In a widely used notation we ugdor the position of the neutron relative to the proton &hfor the position of the
centre-of-mass afi and p relative toA. The Hamiltonian of the model is

H=Tr+Hnp+V(RT), V(RT) =Vea(R+T7/2) +Vpa(R—T/2) (1)

whereHnp = Ty + Vi is the Hamitonian for relative motion of thre— p system. Thd'’s are kinetic energy operators.
For the purpose of this talk we assume that all Coulomb intimas are screened at large distances. Wegy§8 for
the ground state of the deuteron with energg < 0, andq:}é+> (7) for the continuum oh — p scattering states which

are eigenstates dflnp with energye, > 0 and satisfy outgoing wave boundary conditions. It is thgppse of the
adiabatic approximation to treat the coupling between #hgelon and the scattering state continuum in as accurate
and transparent a way as possible. In the 3-body model thigliog comes from the tidal forces generated by the fact
that, over the volume of the deuterdfa(R+T7/2) andVpa(R—T/2) generate forces on the nucleons which differ in
magnitude and direction.

2.1. Time dependent picture

Under the transformation
h

Wrans — exp(— —=)W. )

the time dependent Schrodinger equation®gR, F,t) becomes

N N al_ptrans
(TR+V(RF(1))WaS(RTt) = iR T (3)
In eq.(3) then — prelative co-ordinaté(t) has acquired a time dependence through the relation
F(t) = exp( 'ngt rexp— 'ngt ) @)

The adiabatic approximation assumes that the collisioe fimis so short that we can replacg) by r(0) =t. A
sufficient condition for this step to be valid is thasatisfy

<Hpp>T
h

‘ < 1. )



where < Hpp > is the maximum eigenvalue ¢f,p excited in the collision through the tidal forces. For thesy
interaction this maximum is related to the shape of the rauctairface and is insensitive to the incident deuteron
energy. Hence for sufficiently high energy the collisiondimill always become small enough that the condition (5)
is satisfied.

Implementation of the adiabatic approximation for a staity state requires the solution of the adiabatic
equation[13]

(Tr+V(RF) —Eq)W¥(RF) =0, (6)

which for fixedr'is a 2-body problem. Note that even for centigl andVpa the potential in eq. (6) is not central when
considered as a function 8ffor fixed ¥ so coupled equations still have to be solved in general.

2.2. Solution of the adiabatic equation

The solution of the adiabatic equation can be reduced to ageable set of coupled equations by either of two
methods which are based on different truncation schemets. ethods assume the nucleon potentglsandVpa
are central.

(i) In this method[3],[4],[14][15] the adiabatic wavefuiiun is expanded in the bagi§ (f) x Y_(R)]su and uses the
fact thatVha + Vpa is diagonal ind, M, although not i andL. Truncation in these angular momenta is required.

(if) The method used by Barrett[1] uses the fact ¥at+Vpa is diagonal in_.f and proceeds by making a truncated
multipole expansion of the potentials.

Method (ii) is well adapted to the case of scattering by aeéal nucleus when a natural truncation of the multipole
expansion occurs. In the present context, convergenkcisifound to be very rapid and truncation is linked with the
adiabatic assumption of low excitations in theo-ordinate.

The adiabatic wavefunction corresponding to a deuterddémt with momentuny has the structure

ad (B » ad(+) B
wherexéj(” satisfies
(et V(RT) ~Eg)xg (R7) =0, (8)

with the boundary conditiorr (fixed)

exp(iK4R)

- ©)

xfgj‘“(ﬁ, 7) "2 exp(iKq.R) + F(R )

The function)(l‘;‘:(+> and the scattering amplitudéR ) both depend ofi. The physical meaning df(R,F) is that it

describes the elastic scattering in the directoof ann — p pair with fixed separatiofi by the potentiaV (R,F). The
factor @ in (7) ensures that the coefficient of the plane wave in equid)the exact 3-body wave functiurg)(ﬁ, T

coincide. The formula (9) can be derived by taking the adiabianit of formal expressions for the exact three-body
wavefunction[16].

The adiabatic equation must be solved for as many valuéssfis required for the application. For example, for
elastic deuteron scattering we have to evaluate the scaftemplitudef (R, ) for as many values df as is required
for the accurate evaluation of the integral

fuaaic(R) = [ drgg (N f(RN@(1), (10)

i.e., for 0<r < rq, wherery is a measure of the size of the deuteron.
This formalism can be simplified considerably in severatiesting cases. When the conditions are such that eq. (6)
can be solved in the eikonal approximation an explicit folarfar f(R,T) in terms of a path integral &f,a 4 Vpa can



be obtained. This is Glauber’s theory of deuteron-nucleatiering. The method has been extensively applied to the
calculation of elastic scattering and reaction crossi@esdf halo nuclei with 2 or more clusters[7],[17]. The intal

in (10) is carried out numerically without further approxtion of the expression using the best available models for
the ground state wave functigg.

There are also considerable simplifications in the zerogdingt of deuteron stripping or when one of the potentials
Vha andVpa vanishes. These cases will also be discussed below.

The non-eikonal adiabatic method has been applied to tsée&zattering ofLi in an a 4 d model[18],"Li in an
a +t model[19] and to the scattering bfLi in a n+ n+°Li 3-body model[10].

It is shown in[16] that estimates based on eq.(5) are tooerwatve. For short range forces the collision time
decreases as the impact parameter increases. Hence fenaange of excitation energies the worst violations of the
inequality (5) tend to occur at low impact parameters. Urnderditions of strong absorption these are just the impact
parameters whose contributions to the excitation are ggspd. A revised adiabatic condition which includes this
effect is given in ref.[16]. By comparison with CDCC caldiites in a special case the revised condition is shown to
give an excellent idea of the accuracy of the adiabatic agimation for a model of'Be scattering.

2.3. Aninstructive special case

We show the result for deuteron scattering as an examplenWhe of the interactiong,a, Vpa vanishes (or is a
constant) the adiabatic equation can be solved exactly erasimple way. We tak¥,a = O for definiteness. This
is obviously not a very realistic model of elastic deuteroattering in general, but it is very relevant to Coulomb
break-up of the deuteron[23]. Eq.(6) becomes

(TR+Vpa(R—TF/2) — Eq)W4(RT) = 0. (11)
For a deuteron incident with momentufy this has the exact solution[20][21][22]

WE (R T) = @(7) expliKy. r/z) (R r/2), (12)

Wherexé? is the distorted wave for a particle with the mass of the deutby the potentia¥,n and evaluated at the

argumenf — r/2i.e., at thep — Arelative co-ordinate.

In this limit the elastic deuteron cross-section is simplgressed in terms of the deuteron ground state form factor
and the deuteron elastic cross-section generatathyin the generalisation to the case of a projectile with uaéqu
mass clusters the factors of 2are replaced by ratios involving the masses of the cluf2®is The generalisation
gives a good account of some feature$'@e scattering[20].

The explicit form (12) also makes a deficiency of the adiabativefunction very clear. It predicts that for aRy
LIJ"" — 0 exponentially for — oo, i.e, in regions of space where we look for outgoing waveshadtripping and

break -up channels. We therefore cannot expect the adialvatiefunction to be accurate for largeven though it
may be perfectly adequate for finite valuesrofThe reason for this shortcoming can be traced to the tredtofe
the break-up continuum as degenerate. It is then not pedsibthe 3-body wavefunction to carry the phase relations
between thek andr dependence which are essential to generate the correcpamicrform in rearrangement and
break-up channels. We must use the adiabatic wavefuncatiorays which respect this observation. We do this by
using it as the basis for an iterative solution to the Schrgeli equation.

2.4. Iteration of the adiabatic solution
We re-write the 3-body Schrédinger equation in the form

(E —_ TR— Tnp—VpA—VnA)LIJK‘d == VanPK'd, (13)

where we have transferred thfg, term to the right-hand-side. This term requiliképgd only within the range oVpp,
and for which we can therefore use the adiabatic wavefumdtihe adiabatic conditions are satisfied[13].



The method proceeds by treating the equation
(E—Tr—Top—Voa— Vo)W, = vnpng , (14)

as aninhomogeneous equation\lq{'d with the right-hand-side given. In particular, by examinihe outgoing Green'’s
function for the operatdE — Tr — Thp — Vpa — Va it is found that the iterated solution has the correct asptiptorm

in the stripping and break-up channels with outgoing wavigés momenta correctly given by the conservation of
energy, i.e., without the assumption of degenerate brgathiannels used in the adiabatic wavefunction. In the exact
solution of the inhomogeneous equation the coefficienta@butgoing waves in the stripping and break-up channels
(transition amplitudes) are given by

Tap = <Xé)7)¢h | Vip | Lpagi% (15)
Tanp = <Xl()7)Xr(17) |Vnp | LP%(:% (16)

where '[he)(éf> and Xr(f) are distorted waves generated\iy, andVpa, respectively, andgy, is a neutron bound state,
all evaluated at the correct energies predicted by enengserwation.

Strictly speaking, to deduce (15) and (16) from eq.(14) regithe additional assumption that the target has infinite
mass,A — . Itis only then that the kinetic energy separates im&nd p terms and solutions of the homogeneous
equation have a product form. Recoil terms of ordéA tan mix in terms in the final state in which the neutron is
excited out of the stat@,. These corrections (Recoil Excitation and Break-up (RER)cts) can be very significant
for light nuclei[24].

All the quantities in (15) and (16) are solutions of 2-bodglgems and are readily calculated. The evaluation of
the amplitudes requires techniques similar to those usétkigvaluation of DWBA amplitudes. We emphasise that
this iterated theory goes far beyond DWBA. No Born approsiorais involved. Couplings between 3-body channels
are included to all orders M’ad It should be clear that MJad were replaced in equations (15) and (16) by the exact

three-body wavefunctiok’, K, then these expressions Would give the exact reaction ardpht The approximations
(15) and (16) assume that all coupling effects in the wawetfan forr less than the range &, can be adequately
accounted for by the adiabatic wavefunction. In principlis tvhole procedure could be iterated by calculating the
complete solution of the inhomgeneous equation (13) (rsbthe asymptotic form as explained above) and then using
the solution to re-calculate an improved inhomogeneous.t8s far as | know this has never been done.

In the zero range limit fo¥,p the evaluation of equations (15) and (16) becomes partiguidample because then
we can use[13]

VapWZ (RT) = Voo (F)Xg, (RT) =Vep@ (N (R O).. (17)
From eq.(8) we see th;xET”(F?, 0) satisfies
(TR+V(RO) - )X~ '(R0)=0, (18)

and is, therefore, simply a distorted wave generated byahtral potential/na(R) + Vpa(R).
We see that in this limit the adiabatic theory of strippingke even more like a DWBA theory, but this is misleading

because the functioxﬁjm(ﬁ, 0) includes outgoing waves in break-up channels and the pat¥hi(R) +Vpa(R) may

have very little to do with elastic deuteron scattering.
When s-wave break-up dominates at smale formalism can be modified to correct for a finite rangg13]. We

expand the three-body wavefunction in terms of the completefn — p relative motion statesg, qoé” } introduced

earlier. Provided the continuum states which contributeatchave very high energy we can safely assume that only
s-wave states will overlayhp and we can write

We, (RT) = (1) Xo(R) + / kgl (0)X(R), T < Top, (19)

wherern, is the range o¥yp. For continuum energies less than roughly 10 MeV the shagieesfwave statarqi*) (r)
does not depend strongly on energyfet rn, and we can write

@&(r) ~g(K)@(r), I <Tnp, (20)



whereg(k) is independent of. Inserting this approximation into (19) gives

VanPKd(ﬁ, r)~ Vnqu(r))azd(ﬁ)v (21)

where
Ko, (R = xo(R) + [ dkg(x«(R (22)

We emphasise that the form implied by (21) for the 3-body iavetion is generally only valid inside the range of
Vhp. Ther andRdependence of the adiabatic wavefunction does not faetoridis way in general (see, e.g., eq.(12)).
In the next subsection we will show how these qualitativagdean be systematically exploited to give an equation

for X, (R).

2.5. The method of Johnson and Tandy

A more general approach to obtainiig¥, the projection of the 3-body wavefunction which is mosgveint to the
transition amplitude for stripping, and break-up accogdim (15) and (16), is to expand in terms of a set of functions
which are complete within the range\éfp. _

A convenient set for this purpose is the set of Weinberg stateSturmiansq(r), i = 0...c, used by Johnson and
Tandy[25]. They satisfy

(Tr + aiVnp)ﬁa = —&@ (23)

where thea;'s are Sturmian eigenvalues. Foe 0, ag = 1 andg is proportional to the deuteron ground state
These states all look like the deuteron asymptoticallyasitanda; increase they oscillate more and more rapidly at
short distances.

An expansion in terms of this set converges rapidly if theeshelence om of the three-body wave function inside
the range olyp is similar to ¢y. Coupled equations for the coefficients are readily derivsidg the orthogonality

property

(@ | Vop| @) = —4. (24)
The first term in the expansion has the foggx with x defined by
(Ea—Tr—V(R)Xg,(R) =0, (25)

where the potential is given by

vi (@ | Vip(Vna + Vpa) | %)_

VR = o Vo T ) (26)

The bra and ket in this equation imply an integration atxith fixed R. V reduces to the zero-range redu(R, 0) of
eq.(18) if the variation of the nucleon optical potentiatsioa distance of the order o, can be neglected. For nucleon
potentials with a Wood-Saxon shape the effect of the finitgeacorrection in eq.(26) is to increase their diffuseness
slightly. A simple way of incorporating these modificatiomsich can be important for light nuclei, can be found in
refs.[26],[27]. Results that take into account terms indkpansion ing’s beyondi = 0 are given in refs.[25],[28] in
specific cases. They show that this is a promising approattietcalculation of break-up effects in stripping which go
beyond the adiabatic approximation.

An interesting feature of this derivation is that it makegef@rence to the incident energy but only the assumption
that the break-up states excited have low enough excit#timnthe 3-body wave function is well approximated by
the formgy(r)X(R) inside the range d¥np. This suggests that a stripping theory which takes into aetbreak-up
effects can be based on the use(ads a distorted wave even at low energies where the adialpatititon is not well
satisfied.

The situation for elastic deuteron scattering is quiteedéht because there the adiabatic wave function is needed
out to distances of the order of the size of the deuteron wtheréorm ¢y (r)x(R) has no justification. The use of
Sturmians is not then appropriate.



There have been many comparisons between theory based .dll&)qwithvnpwad given by (21), (25), (26) and
stripping experiments. We call this the Adiabatic Distdri#&/ave Approximation (ADWA). Over a wide range of
energies the ADWA has gives angular distributions for défeial crosssections and polarization observables which
agree with stripping and pick-up experiments more conwiglgi and consistently than the DWBA and without the
extra ambiguities associated with the use of a deuterormapiotential in the DWBA. Everything in an ADWA
calculation is determined hyucleon optical potentials for the appropriate energy and targan&early examples are
given inref.[2], pages 732-734 but there have been many®tirecee.g.[45]. The method has also been successfully
used for (p,d*) [29] and (dHe)[30] charge exchange reactions.

The study of Cadmus and Haeberli[31] is particularly notetwp These authors measured a large number of
deuteron and proton elastic scattering observables to gim dptical model parameters so that the DWBA could
be applied unambiguously. It was found to fail badly. Theyrevable to use their measurements of deuteron and
proton polarization parameters to identify the source efftilures and how these were remedied by the ADWA.

A more recent example of how the ADWA can be used to give andngat account of the systematics of a particular
(d, p) transition as function of energy is ref.[32].

Although the ADWA goes well beyond the DWBA and includes ef§edue to coupling between the elastic deuteron
channel and other 3-body channels to all orders it is neglsls an approximate theory which is expected to need
correction at some level. An important example of a cleaicitibn from experiment of the need to go beyond the
ADWA theory and the nature of those corrections is the worthefindiana-Surrey collaboration[33].

One way of going beyond the ADWA for stripping and pick-up dsuse the Sturmian expansion method of
refs.[25],[28]. An alternative is to use the CDCC wavefumctin (15). For deuteron stripping this is done in
refs.[44],[46]. Ref.[47] reports a surprisingly large clispancy between measured proton polarisation and CDCC
predictions for%8Pb(d,pf°%Pb at 20 MeV incident energy. Other observables are welbdipred.

2.6. Elastic Coulomb break-up

An interesting application of the expression (16) is theeaa@sCoulomb break-up of a 2-body projectile where one
body is uncharged and we can neglect its interaction withidhget. In the deuteron case, for example, we can then
use eqg.(12) and the matrix element factorises[23] as

g8 — ([ arexptia— 3Ko) DNop@(r)) [ dfx () expl-ike Ty () @7

Where)(lg> andxéf) are distorted waves describing the scattering of a pointelen and a proton by the Coulomb

field of the target. For a very large screening radius thersg€actor has the form of an unobservable phase factor
which goes to infinity with the screening radius, multipllgdan integral which is similar to that which occurs in the
theory of Bremsstrahlung and can be evaluated analytiéailg point target. The first factor is easily evaluated for
anyVnp. The restriction toA — o is easily lifted[23].
19This theory has been applied successfully to Coulomb bugakf the deuteron[23]'Be[34], ®He [35] and
C[34],[36]
We emphasise that the theory which leads to (27) is not geatiom theory. Terms of all orders Wa andVyp
are included. The effects of coupling between Coulomb brgakhannels are included in all orders with the 2
assumptions that the adiabatic approximation is valid &adl the nuclear interaction between the neutron and the
target can be neglected.
A DWBA theory which is often used for Coulomb break-up stémnsn the expression

T = <X§Jﬁ>|_<’n | Vinp | q’%:s% (28)
where the elastic deuteron WavefunctNJEjSI has the form

YR = w0)xy (R). (29)

For the case of Coulomb break-p(é?(ﬁ) is a Coulomb wavefunction describing the scattering of afpdeuteron in
the Coulomb field of the target.



The input data required for the 2 expressions (27) and (28)damtical, i.e.Vhp, and the Coulomb potential of
the target, although they are based on very different phyagsumptions. The DWBA expression assumes that the
coupling between deuteron elastic and break-up channaim@l and can be treated in first order. The adiabatic
expression makes no such approximation but instead makeastumptichthat any break-up channels that are
relevant for the 3-body scattering wavefunction insidertirge ofV,p have low energy compared with the incident
deuteron energy.

The DWBA amplitude for Coulomb break-up involves a 6-dimenal integration. Various approximations, in-
cluding the zero-range approximation fufp, have invariably been made to simplify its evaluation. Riye
Zadro[36],[37] has published a momentum-space techniquéhke exact evaluation of the DWBA amplitude with
a finite rangeVyhp. This has enabled a meaningful comparison to be made wittADMWA theory. He studied
11Be—10Be+n and 1°C—18C+n elastic break-up on &%Pb target at energies near 70 MeV/nucleon. Both theo-
ries give very similar projectile-fragment relative engedjstributions in quite good agreement with experimerit[38
but the predicted DWBA crosssection magnitudes for a 2-lmdjectile model are up to 50% bigger. Crosssections
for break-up into states of more than a few MeV are very snidle adiabatic approximation therefore ought to be
excellent at 70MeV/nucleon[16]. This suggests that spsctipic factors obtained by comparison of predicted DWBA
crosssections with break-up data may be significantly wexdienated.

3. THE UNDERLYING MANY-BODY THEORY

Our presentation so far is based on the 3-body Hamiltonigum(tvhich V,a andVpa are optical potentials. These
are usually taken aé of the incident deuteron kinetic ener&y. This is reasonable if any break-up components in
the 3-body wave function have a small fractionEgfand is certainly consistent with the adiabatic assumptitore
generally the% Eq prescription can be justified[39] by detailed calculatibthé energy dependence arises purely from
non-locality and break-up effects are negligible. A deepgsstion is why the effective interaction in the 3-body mode
should have anything to do with the nucleon optical poténtia

To study this further we recall that the 3-body wavefunctiorq.(3) is the projection of the full many-body+ 2
wavefunction onto the target ground state. In a standahidaBl0] we can show that the effective Hamiltonian which
governs this component when the target is in its ground Btdtee incident channel is

Heft = TR+ Hnp+ (¢ |U | @), (30)

where the bra-ket notation implies integration over thgdanucleus co-ordinates to leave an operatar and p
co-ordinates only. The complicated many-body operdtsatisfies

A
U = (VoY) (o + V) U, Wi = 5 VN (31)

Thewnya's, N = p,n, are the sums of the 2-body interactions between the incjglantin and the target nucleons.ZA.
The operatofa projects on to excited states of the targesums up all processes via excited states which begin and
end on the target ground state.

U can be separated into itsandn contributions by using manipulations from multiple scaitg theory. We obtain

U= (UnA+UpA)+UnA%UpA+UpA%UnA+ ..... , (32)
where
Una = Voa+ VnA%UnA, Upa =Vpa+ VpA%UpAa (33)

and the dots in (32) are terms of 3rd or higher ordetia and/orUa, always with an excited target (though not
necessarily excited deuteron) as intermediate state.

2 Note that because we use the solution (12) in this case werttaveed for the extra assumptions about the break-up speethich lead to (21).



The above expressions foha andUpa are strongly reminiscent of Feshbach's[40] expressionshie operator
which gives the nucleon optical potential when sandwichettvben the target ground state. Note however that the
energy denominata@which appears everywhere is not the denominator one exfmest® in the nucleon operator. It
is given (for an infinitely massive target) lgy= E 40 — T, — Tp — Vap — Ha WhereH, is the target Hamiltonian. It is
plausible that if low energy weakly correlated break-upestalominate, then idna, for example, we can negled,
and replacé& — T, by %Ed on the averag€gn | Una | @) then reduces to a formal expression for the neutron optical

potential at energyEg.

The higher order terms in (32) still have to be dealt with, begr. The second order terms describe a process in
which the neutron excites the nucleus and the proton subsdégude-excites it, and vice versa. The magnitude of
such effects will be small for weakly correlatad- p configurations such as in the deuteron or low energy break-up
configurations. Their neglect is consistent with approxiores already made.

We learn from this analysis that the validity of the 3-bodydebas usually assumed is intimately bound up with
the assumption of dominance of low energy break-up configurs. However, all the arguments given above are very
qualitative. Very little work has been done to give subsgatacthem and estimate any corrections to the usual model.
It would seem to be hardly worth while to go much beyond thalaatic or CDCC treatments of three-body effects,
both of which assume that break-up excitations can be ttadcwithout investigating many-body corrections to the
3-body Hamiltonian, eq.(1), more thoroughly.

Finally in this section, note that even in the lowest ordesion of the effective interaction one expects to see
corrections arising from the identity ofand p and the target nucleons. There are essentially two distimgtoaches
to these antisymmetrization effects. The RGM methodssstestn a many-body Hamiltonian with an assumed N-N
interaction and puts in antisymmetrization right from tkers treating the nucleons in the deuteron and in the target
on the same footing. On the other hand it is difficult in preetio treat all possible open channels and absorption
has to be inserted by hand. RGM calculations have been pedf41] which include deuteron break-up effects
using discretisation methods similar to the CDCC (nextisakt Antisymmetrisation effects are very important in
this approach[41].

The alternative approach of refs.[13],[42],[43] is basadh® idea that because of the loosely bound extended spatial
nature of the deuteron, the nucleons in the deuteron seartiet hucleus much as if they were completely independent
and so much of the effects of antisymmetry and coupling tétect¢arget states are contained in the complex optical
potentials of the 3-body model.In this way one automatyogdinerates a total deuteron reaction cross section which is
close to that observed even when deuteron elastic breakngglected. New effects arise for deuteron collisions only
because the nucleons in the deuteron may scatter off eaehioth occupied target states (Pauli blocking). These
effects are included through a generalisation of the B&bkistone equation. The role of break-up channels is to
re-adjust the flow of flux into inelastic channels involving#ed target states as well as transfering flux into bregak-u
channels. For some impact parameters the effect of the lugakannel may even be tlecrease the partial reaction
crosssection because in the break-up configuration theonslimay overlap spatially less well with the imaginary
parts of the nucleon optical potentials. Tostevin, et dIfé8nd that absorption tends to suppress Pauli blocking and
no new major qualitative effects were found. Aoki[44], usmformula for these effects due to Pong and Austern[42],
reported that Pauli blocking effects gave a 10% repulsiveection to the deuteron optical potential and improved
CDCGC fits to elastic deuteron scattering?3fPb at 20 MeV. The effect on (d,p) crosssections was negéigibl

3.1. Many-body theory of stripping

One advantage of a theory of stripping and elastic breakagedh on the matrix elements (15) and (16), which
we have here derived within a 3-body model, is that they gaisereasily to include important many body effects.
One starts from formulae analogous to these but with tangglens co-ordinates still explicit. The Wavefunctrdiﬁj

is replaced by the full many-body scattering state corredppg to a deuteron incident on the target ground state.
The final state wavefunction describes scattering of a pratoident on the residual nucleus and scattered by the
target nucleons. There is nd,p involved in this state (see [49], pages 838-839, and [24]p &ffect of the identity
of the neutron in the deuteron and tRearget neutrons is included exactly by multiplying the Ttrixaby the factor
(N+1) and using properly antisymmetrised wavefunctions for #rgdt and residual nucleus (see [49], pages
836-838).
To obtain the connection with the 3-body theory we



(i) Ignore explicit contributions from channels in whictettarget is excited by the incident- p pair.3

(ii) Ignore Recoil Excitation and Break-up of the final nugdeby elastic scattering of the proton by the target
nucleons in the final stafe

Because the operat¥h, in the matrix element is independent of the target interoadinates these two steps
automatically give a matrix element which involves the potion of the final nucleus state onto an un-excited target
state.

(i) Ignore the identity of the protons in the target andident deuteron.

Very little is known about the validity of step (iii). The uskgualitative argument is that proton exchange termsin a
(d,p) reaction involve the overlap of bound and continuuotgm states instead of the continuum-continuum overlap
which contributes to the direct term. The exchange termdestfiore expected to be small.

The result of these steps is simply that in the expressids)sglis replaced by theverlap function ([2], page710)

GEA(T) = VT 1 [ dEais (&) r(En) (34)

where@, @ are wavefunctions of the initial and final states in the ging reaction and, is the coordinate of the
neutron relative to the centre-of-mass of the target. Bynit&fn the spectroscopic fact8kg is the norm of the overlap
function.

If approximation (ii) is relaxed théd, p) transition matrix will be a linear combination of terms ifviag the overlap
function for different stateB, A, but always with the target ground state. If approximatiprs(relaxed overlaps and
spectroscopic factors for many different statemndB will enter, reflecting the many different paths between ttigsil
and final states which then become possible. The correspgpgédneralisation of the DWBA is referred to as Coupled
Channels Born Approximation (CCBA) but the theory desatibere is not Born approximation because of the way
couplings in the n-p space are treated.

4. LINK WITH THE CDCC METHOD

In the CDCC method the 3-body wave function for deuteronleux:scattering,LP(ﬁ, r), is expanded in a set of
orthonormal functiongg(r), s= 0,1,2......, which diagonaliseH,, with eigenvaluesss and discretise th@ — p
continuum. The set are usually defined so that is the deuteron ground state. Coupled equations are thareder
as a technique for solving the 3-body Schrodinger equaSee. the talk by | 3 Thompson for further details of the
CDCC method.

We can expand the adiabatic wavefunctiff(R,F) in a volume¥ in F space in terms of an orthonormal set
Ys(r), s=0,1,2...... which is complete irn/:

WA(RT) = Z)%(f’)xs(ﬁ), (35)
S=
and derive coupled equations for ties of the form
(Ea—TR)Xs(R) = 5 (s |V | ths) X5 (R), (36)
s

whereV is defined in eq.(1) and the coupling matrix elements invalvéntegration over’.

If we identify the ¢i’s and@’s (to obtain the CDCC equations tlges must diagonalisélnp) these equations are
similar to the CDCC equations with all the channel energéggqual to—&y. We can put this another way. If the set
Ys(r), s=0,1,2......,is complete i/, and the functionxs(ﬁ) satisfy the coupled equations (36) then these equations

show that, folF in 7, 5 Ws(F)xs(R) satisfies

(Ea—Tr) Z ‘mUs(r)Xs(ﬁ)

—

3 0 [ AU ) 3 VR (s (R
= VRN Y w(Oxe(R. 37)

3 The implicit effects of target excitation are, of courselimied in the nucleon optical potentials.
4 See [24] for an estimate of these effects for some light targe



where the completeness of tijg's has been used. Eq.(37) is just the adiabatic equatiome-@gws(?)xs(ﬁ) is the
adiabatic solution??(R F).

We see that the Adiabatic approach can be regarded as anxapation to the CDCC method. Thompson[8]
describes how this result can be used as a check of CDCC atidmd by talking the limit when all the channel energies
(the &'s) are set equal. In making these comparisons note thatdiadatic method does not take into account any
restrictions imposed by the Pauli Principle on the statdsm$hould be included in the s@f For example, in the case
of 11Be scattering the adiabatic calculations include tramsitinto a state in which the neutron is in a nodeless s-state
with respect to thé%Be core. Such contributions are easily excluded in the CD&utation or in the Johnson-Tandy
approach[25], but it is not obvious how to do this in an adi@baalculation without introducing non-local projection
operators with the consequential loss of some of the cheniatit simplicity of the adiabatic equation.

At first sight it is puzzling that the adiabatic calculaticanctake into account effects due to excited deuteron states
when only the deuteron ground state wave function appegcily. In CDCC calculations the wave functions
of all excited states deemed to be important must be insestplicitly into the calculation of the coupling matrix
elements. Our derivation above shows how this puzzle cardmved but it is also helpful to note that the ground
state wavefunctiogy determines the Hamiltonian through the identity (see thpefalix to [16])

ﬁZ

where theJ, operators act on everything to the right of them.

We note that the CDCC method uses a basis which is completedge volumes of space. As we have seen the
stripping and break-up matrix elements (15) and (16) expdovery restricted part of this space, i.e., within the range
of Vip. For this purpose the complete set used by Johnson and Bj@y]d its generalisations may be more efficient.

In their exploration of the adiabatic approximation Johmand Soper[13] proposed an approximation to the CDCC
method which replaced the deuteron continuum by a singledusstate. In their method the componég of the 3-
body wave function is still governed by equations (21), @3l (26), but the deuteron elastic scattering wavefunction
and the pseudo break-up state satisfy a pair of couplediegaal his method was critically examined in great detail
by Rawitscher[3],[4] within the CDCC framework. A more sagtitated version of the single pseudostate method was
developed by Amakawa, Austern and Vincent[48] and is knosvtha quasi-adiabatic method.

5. CONCLUDING REMARKS

Some of the clearest evidence for the importance of deuteneaik-up effects and the failure of the DWBA for (d,p)

and (p,d) reactions has been obtained by using the adiagioximation as implemented in the ADWA. However,

we have seen that the adiabatic approximation can be reaian approximation to the CDCC, so it might be
argued that the adiabatic approximation no longer has altateonly recently, however, that the CDCC method has
become available for projectiles with more than 2 clusted avhen coupled with the eikonal approximation where
applicable, the adiabatic approximation is a powerful foothe analysis of reactions with composite projectiles.

An attractive feature of the adiabatic approach which itrekavith CDCC is that it provides a framework for
inserting the systematics of the interaction of the comstits of the projectile with the target into reaction anedys
This means that the need for optical potentials for unstatdgctiles can often be avoided, but it still requiresaiele
information about the constituents’ optical potentiald &ience good elastic scattering data for appropriate exeergi
and targets.

An advantage of the adiabatic method over CDCC is that itsdmpntation does not need detailed wavefunctions of
strongly coupled excited bound and continuum states of thiegtile. The construction of these states may introduce
considerable uncertainties into a CDCC calculation. Itnipartant therefore to understand the limitations of the
adiabatic approximation.

Perhaps the most important feature of the adiabatic apmpEtion is its ability to provide insights into the mecha-
nism of complex reactions. It can be used to provide check¥EC and other theories as well as being a relatively
easy and transparent way to take into account complicaflectebf channel coupling in some important special cases.
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