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Abstract. In these lectures I describe some of the key features of halo nuclei and
how these features require a re-think of theories required to adequately describe their
collisions with stable nuclei. I provide the basic scattering theory needed to understand
few-body models of halo crosssections. The ‘frozen halo’ approximation is explained
in detail and applications of the theory to elastic scattering, break-up and transfer
reactions are discussed.

1 Introduction

Several times in the lectures at this Summer School we have been shown a picture
of the N-Z plane with the valley of stability displayed and an indication of the
position of the neutron and proton drip lines. There has been some emphasis on
the properties of medium mass and heavy nuclei far from the valley of stability.
My lectures will be mainly concerned with the neutron dripline in the region
of small N and Z where very different types of phenomena occur and theories
emphasise a different set of degrees of freedom than is usual in heavy nuclei.

One of the most exciting scientific developments in recent years has been the
advent of accelerated beams of radioactive nuclei with exotic combinations of
neutron and proton numbers. The new techniques produce beams of nuclei which
decay by the weak interaction but are stable against decay into their constituents.
Nuclear reactions induced by beams incident on targets of ordinary stable nuclei
are important sources of information about the structure of the exotic species.
For example, experiments of this type led to the discovery of the important new
class of nuclei known as halo nuclei.[1–3]

New experiments are extending our understanding of these novel systems.
The mechanisms involved in reactions involving haloes and other nuclei far from
the valley of stability present a special challenge to theorists. An important
consideration is that exotic nuclei are often very weakly bound and easily broken
up in the Coulomb and nuclear fields of the target nucleus. Halo nuclei are an
extreme case with almost zero binding energy. As a consequence, theories which
address the special features associated with strong coupling to excited states
of the projectile which may be in the continuum are a prerequisite if reliable
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information on nuclear structure is to be deduced from reaction experiments. On
the other hand, many of the relevant experiments, both current and planned,
involve projectile energies which allow simplifying assumptions to be made which
help to make the theory more transparent. I will present some of the insights
obtained in this way with illustrations from recent experiments.

1.1 One-neutron halo nuclei

Key features of halo nuclei [4] remind us of some familiar features of the deuteron.
For present purposes we can ignore the small deuteron D-state and consider the
deuteron to be a 1S state in an attractive n-p potential of depth about 30MeV
and range about 1fm. The deuteron has a binding energy of εd = 2.2MeV.
Quantum mechanics tells us that in the classically forbidden region where the
n-p separation r is bigger than 1fm the space part of the deuteron’s wavefunction
will have the form

φ0 = Nd
exp(−λdr)

r
, r > 1fm, (1)

where Nd is a normalisation constant. The constant λd is determined from the

deuteron binding energy by λd =
√

2µεd/h̄2 where µ is the reduced mass of

the n-p system. This is the functional form predicted by Yukawa for the inter-
action associated with the exchange of massive particles. Particle exchange also
proceeds through classically forbidden regions and hence gives rise to the same
functional dependence on distance.

The small deuteron binding energy results in the value 1/λd = 4.2fm which
is much larger than the range of the n-p interaction and means that in the
deuteron the neutron and proton spend a significant part of the time in the
classically forbidden region. Indeed, for many purposes its a good approximation
to approximate the deuteron wavefunction by the form (1) for all values of r.

The one-neutron halo nucleus 11Be can be described in a similar picture. It
costs 0.503MeV to remove a neutron from 11Be and leave 10Be in its ground state.
The simplest version of the halo model describes the corresponding component
of the 11Be wavefunction as a 10Be core and a neutron in an S-state. For n-core
separations r bigger than the core radius the neutron wavefunction is

φ0 = N11
exp(−λ11r)

r
, (2)

where 1/λ11 = 6.7fm as detemined by the neutron separation energy.
The key point here is that 1/λ11 is much bigger than the size of the core

so that the classically forbidden region outside the core plays a very important
role, just as in the case of the deuteron.

There are however some important differences between the d and 11Be cases.
In the first place, unlike the deuteron, 11Be has a bound excited state with a
separation energy of 0.18MeV. Secondly the Pauli principle demands that the
ground state of 11Be be a 2S state with a node in the core region in contrast with



Scattering and Reactions of Halo Nuclei 3

the nodeless function which simple potential models give for the deuteron. This
reflects the fact that underlying this 2-body picture of 11Be is a many fermion
system.

The qualitative features associated with very weak binding suggests that an
approach based on the 2-body picture might be a good starting point for study-
ing the structure of 11Be, in contrast with mean field models which emphasise
the identity of all nucleons. It is this possibility of an alternative good starting
point for models of their structure which makes halo systems interesting from
a theoretical point of view. For an excellent bibliography and a discussion of
corrections to the basic few-body models see [5]

In these lectures I will concentrate on one-neutron halos. Much of what I have
to say is also relevant to multi-neutron halos such as the famous two-neutron
halo 11Li [1,4].

2 Nuclear Reaction Theory

Nuclear reactions play a crucial role in the study of nuclei and halo nuclei are
no exception. Well developed theories of nuclear reactions already exist [7]. The
interesting questions for theory are whether these theories will work for reactions
involving halo nuclei, and if not, how should they be modified.

The weak binding of halo nuclei makes a positive answer to the first question
unlikely. The weak binding of the neutron to 11Be, for example, means that the
halo degree of freedom is easily excited by the nuclear and Coulomb fields of
a target nucleus. The weak binding also means that even a small transfer of
momentum from the relative motion of the 2 nuclei will excite the halo nucleus
into into the continuum of unbound states from which fragments may propagate
to large distances. We have to learn how to treat such configurations realistically.
This is especially difficult when the fragments are charged.

2.1 Few-body Models

It is natural to base the reaction theory for halo systems on few-body models.
Here I emphasise approaches which treat only the halo degrees of freedom ex-
plicitly, the other nuclear sub-systems being parameterised in terms of effective
2-body interactions.

As a concrete example we consider a 3-body model of reactions induced by
a 11Be projectile on a 12C target. The 3 bodies involved are the 10Be core and
the halo neutron which make up our model of the projectile and the target. This
system has been studied at GANIL at beam energies of 50MeV/A.

A suitable set of co-ordinates to describe the system is shown in Figure 1.
The Hamiltonian in the over-all centre of mass system is assumed to be

H = TR + HnC + VnT (rnT ) + VCT (rCT ), (3)
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Fig. 1. Co-ordinates used in a 3-body model of a one neutron halo nucleus interacting
with a target T

where TR is the total kinetic energy of the 3-bodies in the overall centre of mass
system and HnC is the Hamiltonian for the n − C relative motion.

TR = −
h̄2

2µPT
∇2

R, HnC = −
h̄2

2µnC
∇2

r + VnC(r), (4)

where µPT and µnC are reduced masses. The 2-body potentials VnC , VCT and
VnT are functions of the relative co-ordinates indicated as their arguments where

rnT = R + βr, β =
mC

mP
(5)

rCT = R − αr, α =
mn

mP
(6)

mP = mn + mC . (7)

These 2-body potentials depend only on relative co-ordinates and cannot excite
the internal degrees of freedom of the core and the target nucleus. Such effects
effects are taken into account implicitly by allowing VCT and VnT to be complex
optical potentials which describe the relevant 2-body elastic scattering at the
correct relative velocity. For weakly bound halo nuclei the latter can be taken
to be the relative velocity of the projectile and target.

It is important to appreciate the significance of eigenfunctions of this model
H. They are functions Ψ(r,R) which satisfy

HΨ = EΨ, (8)

and describe that component of the true many-body wavefunction in which the
target is in its ground state. The model eigenfunctions do have components
in which the projectile is excited, but only those states which correspond to
exciting the halo degrees of freedom including the continuum of break-up states.
The model wavefunction can therefore only describe cross sections for elastic
scattering, certain inelastic excitations of the projectile, elastic break-up of the
projectile in which the target and core are left in their ground states, and the
total reaction cross section.
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2.2 Two-body scattering

In order to understand our approach to the 3-body system we must first remind
ourselves of the formalism of 2-body scattering and learn how to express it in
language which can be adapted to the many-body case.

The optical potential VnT in the 3-body Hamiltonian (3) is a complex func-
tion of rnT which is taken from the analysis of n − T elastic scattering. It will
usually have a Woods-Saxon shape, i.e.,

VnT (rnT ) =
−V0 − iW0

1 + exp(rnT − R0)/a
, (9)

where a typical value of the real depth parameter V0 at low neutron energy is
40 MeV and the imaginary depth W0 is about 0.26V0. The radius parameter R0

is given by 1.2A
1/3
T fm and the diffuseness a = 0.65fm.

For VCT , where C is 10Be and T is 12C, the analogous parameters would be

V0 = 120MeV, W0 = 0.5V0, R0 = 0.75(A
1/3
C + A

1/3
T )fm, a = 0.65fm.

I emphasise that these values are quoted for illustration only. All the optical
parameters may depend on the centre of mass energy of the interacting nuclei and
may have a more sophisticated geometrical form than I have indicated above, For
nuclei with spin there may be important spin dependent terms such as he familiar
L.I interaction and we should not forget that for charged particles there will be
Coulomb terms which must be included. For ‘ordinary’ nuclei and the nucleon
the systematics of the optical potential parameters are well understood. An
important aspect of our approach is that we do not assume that these systematics
apply to halo and other weakly bound nuclei. The few-body models allow us to
input relatively well understood physics for the sub-systems which make up an
exotic projectile.

To calculate the scattering of a particle from a target represented by a central
potential V (R) we have to solve the equation

(TR + V (R))χ(R) = Eχ(R), (10)

where the kinetic energy operator TR is as defined in (4) with an appropriate
reduced mass. We require solutions which are regular at R = 0 and which for
R → ∞ in the direction R̂ satisfy

χ(R) → exp(iK.R) + f(R̂) exp(iKR)/R, (11)

where K is the incident momentum. For present purposes I have ignored Coulomb
forces (their long range introduces well understood technical complications in the
2-body problem), and spin dependence.

The elastic differential cross section is related to f by

dσ

dΩ
R̂

=| f(R̂) |2 . (12)

Calculating f for given V is a completely solvable problem. We use the fact that
for a central V angular momentum is conserved just as in classical mechanics.
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This means that we can find solutions of (10) which are eigenfunctions of L2

and Lz where L = R ∧ (i−1)∇R is the angular momentum operator (in units of
h̄) and z is an arbitrary z-axis. Such solutions have the form

χ(R, θ, φ) = χLM (R)YLM (θ, φ), (13)

where the angles (θ, φ) describe the direction of R in the chosen co-ordinate
system. The spherical harmonics YLM are angular momentum eigenfunctions
and satisfy

L2YLM = L(L + 1)YLM , (14)

LzYLM = MYLM . (15)

The radial function χLM (R) satisfies the ordinary differential equation

−
h̄2

2µPT

1

R

d2

dR2
(RχLM (R)) + [V (R) +

h̄2

2µPT

L(L + 1)

R2
]χLM (R) = EχLM (R).

(16)
This equation has a unique solution within a constant of proportionality when
the condition limR→0 RχLM (R) = 0 is imposed.

For a finite range potential satisfying V (R) = 0, R > R0 this unique solution
has the form

χLM (R)
R>R0= α(cos δL jL(KR) + sin δLnL(KR) (17)
KR≫L
→ α sin(KR − Lπ/2 + δL)/KR, (18)

where α is a constant independent of R and in the second line I have used the
asymptotic forms of the regular and irregular spherical Bessel functions:

jL(KR)
KR≫L
→ sin(KR − Lπ/2)/KR (19)

nL(KR)
KR≫L
→ cos(KR − Lπ/2)/KR. (20)

In these equations the phaseshifts δL appear. They are functions of energy
and angular momentum and contain all the interesting dependence of the scat-
tering on the potential V . The phaseshifts are complex if V is. The terminology
is easily understood from eq.(18). If V is identically zero for all R the cor-
rect solution of eq.(16) is the spherical Bessel jL(KR) with asymptotic form
eqs.(19,20). Thus δL determines the phase difference at large distance between
the free (V = 0) and the scattering wavefunction for a given L.

In order to relate the phase shifts to the scattering amplitude and hence to
cross sections we must learn how to choose the cLM so that the superposition

χ(R) =
∑

LM

cLMχ
(+)
L (R)YLM (R̂), (21)

has the asymptoic form (11). I have added a (+) superscript to χL to designate
that this function is normalized so that it satisfies eq. (17) with α = 1.



Scattering and Reactions of Halo Nuclei 7

It is easy to find the correect cLM ’s because we already know that the incident
plane wave has the expansion

exp iK.R = 4π
∑

LM

iLY ∗
LM (K̂)YLM (R̂)jL(KR). (22)

A simple calculation using eqs.(18)-(22) and (11) gives

cLM = 4π exp (iδL)iLY ∗
LM (K), (23)

and hence

f (+)(θ, φ) = 4π
∑

LM

Y ∗
LM (K̂)YLM (θ, φ) exp (iδL) sin δL/K, (24)

χ
(+)
K (R) = 4π

∑

LM

iLY ∗
LM (K̂)YLM (R̂) exp (iδL)χ

(+)
L (R), (25)

where (θ, φ) are the angles defining the direction of observation with respect to
a chosen co-ordinate system.

Eq.(24) shows explicitly the relation between the scattering amplitude and
the set of phase-shifts. The scattering amplitude is related to the elastic differ-
ential cross section by eq.(12). The phase shifts also determine the total reaction
cross section, which is a measure of the flux going into all channels except the
elastic channel and is given by

σR =
π

K2

∑

L

(2L + 1)(1 − |SL|
2), (26)

where
SL = exp 2iδL, (27)

is the elastic S-matrix (a 1x1 matrix in this special case).
Eq.(25) gives the relation between the full scattering state wavefunction in 3

dimensional space and its components with definite angular momentum L. The

radial wavefunctions, χ
(+)
L (R), have an asymptotic form which is determined by

the phase shifts. At finite distances χ
(+)
L (R) is determined obtained by solving

the radial equation (16) numerically or otherwise. The phase-shift is found by
matching the numerical value of the logarithmic derivative at some R > R0 to
the formula (17). Knowing the phase-shift the computed numerical values of the
radial wavefunction can now be re-normalized so that it satisfies eq.(17) with

α = 1, thus defining χ
(+)
L (R).

The function χ
(+)
K (R) defined in this way is an example of a ‘distorted wave’.

The subscript tells us that it is associated with an incident plane wave with

momentum K. This label does not mean that χ
(+)
K (R) is an eigenfunction of

the momentum operator with eigenvalue K! The superscript (+) indicates that

χ
(+)
K (R) asymptotically has an outgoing spherical wave component. The com-

plete asymptotic form is as in the RHS of eq.(11).
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2.3 The mysterious χ
(−)
K (R)

In formulating theories of complex collisions we frequently come across other
scattering states which asymptotically look like a plane wave plus an ingoing
spherical wave. We can construct such a state using the same radial wavefunc-
tions by making a different choice for the cLM in eq.(21) (simply change the
factor exp iδL in eq.(23) to exp−iδL .

In nuclear physics where the potentials V are frequently complex another case

occurs. χ
(−)
K (R) is defined to be a solution of eq.(10) with incoming spherical

waves and with V replaced by its complex conjugate V ∗:

(TR + V ∗(R))χ
(−)
K (R) = Eχ

(−)
K (R). (28)

It is easy to show that the radial part of this function must be the complex con-

jugate of χ
(+)
L within a multiplicative factor and hence does not require separate

calculation and a new phase-shift. We find

χ
(−)
K (R) → exp(iK.R) + f (−)(R̂) exp(−iKR)/R, (29)

f (−)(θ, φ) = 4π
∑

LM

(−1)LY ∗
LM (K̂)YLM (θ, φ) exp−iδ∗L sin δ∗L/K, (30)

χ
(−)
K (R) = 4π

∑

LM

iLY ∗
LM (K̂)YLM (R̂) exp−iδ∗L(χ

(+)
L (R))∗. (31)

With these definitions the precise relationship between χ(+) and χ(−) is

(χ
(−)
K (R))∗ = χ

(+)
−K(R). (32)

These 2 distorted waves and their multi-channel generalisations appear fre-
quently in theories of nuclear reactions.

3 Formal methods

3.1 The 2-body case

We have seen that the problem of the scattering of 2 bodies interacting through
a potential is completely solvable. We want to be able to recognise such solvable
sub-problems when they appear in the formulation of many-body theories and
to achieve this we must learn how to write the 2-body results in a more formal
way.

We define the 2-body state | χε
K > as the solution of

(E + iε − TR − V ) | χε
K >= iε | K >, (33)

where TR is the kinetic energy operator and | K > is the incident plane wave
state

< R | K >= exp iK.R (34)
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Clearly for ε → 0 the state | χε
K > satisfies the same equation as | χ

(+)
K >,eq.(10),

but unlike the latter eq.(33) has the unique solution

| χε
K >=

iε

(E + iε − TR − V )
| K >, (35)

and incorporates the correct boundary conditions for ε > 0. To show this we
re-write eq.(33) as

(E + iε − TR) | χε
K >= iε | K > +V | χε

K >, (36)

and multiply both sides of this equation by the inverse of the operator
E + iε − TR. We deduce

| χε
K > =

iε

E + iε − TR
| K > +

1

E + iε − TR
V | χε

K >

= | K > +
1

E + iε − TR
V | χε

K >, (37)

where we have used the result

(E − TR) | K >= 0. (38)

When written out in configuration space eq.(37) is an integral equation for
χε

K(R). In the same basis and for ε ≪ E and positive the matrix elements of
(E + iε − TR)−1 are

< R |
1

E + iε − TR
| R′ > = −

2µ

4πh̄2

exp iK|R − R′|

|R − R′|
exp−

εK|R − R′|

2E

R≫R′

→ −
2µ

4πh̄2

exp iKR − iK ′.R′

R
exp−

εKR

2E
, (39)

where K ′ has the same magnitude as K but points in the direction (θ, φ) of R.
The quantity µ is the reduced mass of the 2-body system.

Using (39) in (37) we find that for R well outside the range of V but not
large compared with 2E

εK

χε
K(R) → exp iK.R + fε(θ, φ)

exp (iK − εK
2E )R

R
, (40)

where

fε(θ, φ) = −
2µ

4πh̄2 < K ′ | V | χε
K > . (41)

The scattering amplitude f introduced in (11) is given by

f = lim
ε→0+

fε,

= −
2µ

4πh̄2 < K ′ | V | χ
(+)
K > . (42)
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The amplitude fε also has a physical meaning. It can be thought of as the
scattering amplitude for an incident wave packet with a spread in time of order
h̄/ε[8].

Eq.(42) expresses the scattering amplitude as a matrix element of the poten-
tial V between a plane wave describing the final observed state and the distorted

wave | χ
(+)
K > which, of course, also depends implicitly on V . This expression

does not at first sight appear very useful as a way of determining V . However
this type of expression, especially when generalised tosystems with many degrees
of freedom, lends itself well to generating useful insights and approximations.

As a simple application, let us suppose that the potential V is very weak.
Then one would expect that to first order in V the distorted wave in (42) might
usefully approximated by the incident plane wave | K >. The resulting formula
is the famous Born approximation

fBorn = −
2µ

4πh̄2 < K ′ | V | K >

= −
2µ

4πh̄2

∫

dR exp (iQ.R)V (R), (43)

where Q is the momentum transfer, Q = K − K ′.
Another way of looking at the matrix element in (42) it to relate it to a

matrix element of a new operator T (E + iε) defined by

T (E + iε) = V + V
1

E + iε − TR − V
V. (44)

Acting on a plane wave with momentum K related to E by

K =

√

2µE

h̄2 , (45)

we find

T (E + iε) | K > = V
1

E + iε − TR − V
[(E + iε − TR − V ) + V ] | K >

= V
iε

E + iε − TR − V
| K >

= V | χ
(+)
K >, (46)

where we have used the result (35) to identify | χ
(+)
K > in the 2nd line in (46).

Taking the innerproduct of both sides of (46) with a plane wave state | K′ >,
where K ′ has the same magnitude as K and is given by (45), we obtain

fε(θ, φ) = −
2µ

4πh̄2 < K ′ | T (E + iε) | K > . (47)

The operator T (E + ε) has matrix elements between plane wave states with
arbitrary momentum. It is only when the initial and final momenta are related
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to E by [45] that these so-called on-shell matrix elementa are related to the
scattering amplitude. The half-on-shell matrix elements with Kand E related

by [45] but K ′ arbitrary determine the distorted wave | χ
(+)
K >. To see this we

use the last line in (37) and the result (46) to obtain

| χε
K > = | K > +

1

E + iε − TR
T (E + iε) | K >

= | K > +

∫

dK ′ | K ′ >< K ′ | T (E + iε) | K >

E + iε − E′
, (48)

where

E′ =
h̄2(K ′)2

2µ
. (49)

We see that all quantities of physical interest are determined by the T -operator.
Conversely, both the on-shell and half-off-shell matrix elements of T can be
found by solving the Schrödinger equation for | χ+

K >.
An important advantage of the formal methods we have introduced in this

section is that they allow us to manipulate explicit expressions for wavefunctions
and scattering amplitudes using the rules of operator algebra without having to
deal with singular operators. For ε 6= 0 operators like (E + iε − H)−1 exist for
any real E and for Hamiltonians H of physical interest. Boundary conditions
have been taken care of once and for all by the ε prescription. The price we have
to pay is that in carrying out these manipulations we have to remember thet the
scattering states satisfy inhomogeneous equations such as eq.(33) rather than
eigenvalue equations like eq.(10).

Of course at the end of the day we are interested in the limit ε → 0+. In the
many-body case this limit has to be taken with care, but in practical nuclear
reaction calculations this does not usually cause a problem. Difficulties with this
limiting process can arise, for example, in the formulation of exact numerical
solutions of the 3-body scattering problem.Aa re-formulation in terms of the
Faddeev equations is then an advantage, but for the purpose of exposing the
structure of many body theories this step and its generalisations to more than
3 bodies is not necessary.

3.2 Target with internal degrees of freedom

For definiteness we consider the scattering of a neutron from a target A which has
a set of bound states φ0(ξ), φ2(ξ), . . . , φN (ξ) where ξ denotes the set of internal
co-ordinates of A. By convention 0 labels the ground state, 1 the first excited
state, and so on. The generalisation of the eq.(10) is

(TR + HA + V (R, ξ))χ(R, ξ) = Eχ(R, ξ), (50)

where HA is the Hamiltonian which describes the internal motion of A. TR is
the total kinetic energy operator of the neutron and the target in the overall
centre of mass system and is defined in eq.(4) with a reduced mass µnT . R is the
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relative co-ordinate of the neutron and the centre of mass of A. The potential
term V (R, ξ) depends on both R and ξ. It describes the interaction between the
neutron and the target and at the most basic level can be expressed as the sum
of the 2-body interactions between the neutron and the target nucleons. The ξ
would then denote the co-ordinates of the target nucleons relative to its centre
of mass.

One approach to solving eq.(50) is to expand χ as a superposition of the set
of states φi which form a complete set if all possible states of A are included.
The coefficients in the expansion are functions of R which are the solution of a
set of coupled differential equations.

The expansion is

χ(R, ξ) = χ0(R)φ0(ξ) + χ1(R)φ1(ξ) + . . . (51)

Coupled equations are obtained by substituting the expansion (51) into (50),
multiplying by φi and integrating over all ξ for i = 0, 1 . . . , N . The resulting
equations for i = 0, 1 . . . , N are

(Ei − TR − Vii)χi =
∑

j 6=i

Vijχj , (52)

where we have used the eigenvalue equations satisfied by the φi and their or-
thonormality relations

HAφi = ǫiφi, (53)
∫

dξφ∗
i φj = δij . (54)

The energies Ei are defined by Ei = E − ǫi.
The coupling potentials Vij are functions of R defined by

Vij(R) =

∫

dξφ∗
i (ξ)V (R, ξ)φj(ξ). (55)

The functions χi(R) have a definite physical meaning. They tell us the rel-
ative probability as a function of R for the target A being in state i. The dif-
ferent possibilities for i are frequently referred to as ‘channels’ and the Ei are
the corresponding channel energies. If the incident channel is i = 0 the bound-
ary conditions to be satisfied by the χi for values of R outside the range of the
coupling potentials are

χ
(+)
0 → exp(iK0.R) + f

(+)
00 (R̂) exp(iK0R)/R, (56)

χ
(+)
i → fi0(R̂) exp(iKiR)/R, i 6= 0 (57)

where the channel momenta Ki are defined by

Ki =

√

2µnT Ei

h̄2 , (58)
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provided that Ei > 0. If Ei < 0 the channel is said to be ‘closed’ and the
corresponding χi vanishes exponentially at large distances. There is therefore no
outgoing flux in a closed channel and the crosssection for exciting the target into
state i will vanish.

If the potentials Vij = 0 vanish for i 6= j there will be no coupling between
channels. In this limit the regular solution of the coupled equations satisfying
the conditions (57) is χi = 0 for i 6= 0 and χ0 satisfies

(E0 − TR − V00)χ0 = 0. (59)

Only the cross section for the elastic scattering of the neutron by the target in
its ground state is non zero.

According to (59) elastic scattering in the zero coupling case is generated by
V00 which has the explicit expression (we assume the ground state has spin 0 for
simplicity)

V00(R) =

∫

dξφ∗
0(ξ)V (R, ξ)φo(ξ).

=
∑

i

∫

dξ | φ0(ξ) |
2 vni(R − ri) (60)

where the summation over i includes all the nucleons in the target and the ri

are the co-ordinates of the target nucleons relative to the target centre of mass.
If the target consists of A identical nucleons (60) reduces to

V00(R) = A

∫

dr1ρ(r1)vn1(R − r1), (61)

where ρ(r1) is the ground state one-body density of the target.
Eq.(61) is the simplest possible model for the optical potential. It relates the

effective interaction between the projectile and the target to the fundamental
2-body interactions between the projectile and the target constituents and their
density distribution in space. Eq(61) is often referred to as the folding model
because of the way the co-ordinates appear in the integral in (61). Note that if
the 2-body interaction vni is real so is V00. This model cannot account for the
imaginary part of the optical potential because it corresponds to a theoretical
model where no flux is lost to non-elastic channels. We will see below by explicit
calculation in a special case how open inelastic channels give rise to a complex
effective interaction.

3.3 Formal theory of the multi-channel case

The formal approach developed in Subsection 3.1 is easily generalised to include
the possibility that the target has internal degrees of freedom. Eq.(33) is replaced
by

(E + iε − TR − HA − V ) | χε
K0

>= iε | K0, φ0 >, (62)
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where
< R, ξ | K0, φ0 >= exp (iK0.R)φ0(ξ). (63)

is the wavefunction corresponding to a plane wave incident on the target in its
ground state.

The presence of the iε term on the right hand side of (62) means that the
coupled equations equivalent to (52) are

(Ei + iε − TR − Vii) | χε
i > =

∑

j 6=i

Vij | χε
j > +δi0 | K0 >, (64)

where the channel components are related to | χε
K0

> by

χε
K0

(R, ξ) =
∑

i

χε
i (R)φi(ξ). (65)

For N = 1 (2 channels) these equations reduce to

(E0 + iε − TR − V00) | χε
0 > = V01 | χε

1 > + | K0 >, (66)

(E1 + iε − TR − V11) | χε
1 > = V10 | χε

0 > . (67)

The second equation allows us to express | χε
1 > in terms of | χε

0 > as

| χε
1 >= (E1 + iε − TR − V11)

−1V10 | χε
0 > . (68)

Substituting this result into the first of eqs.(67) gives an equation for | χε
0 >

which is

(E0 + iε − TR − V00 − V01(E1 + iε − TR − V11)
−1V10 | χε

0 >=| K0 > . (69)

We recognise this as a 2-body elastic scattering equation for | χε
0 > with the

effective potential

Vopt = V00 + V01(E1 + iε − TR − V11)
−1V10 (70)

This analysis shows how an effective potential can always be found which gen-
erates the exact elastic scattering. Note that the second term in eq.(70) has an
imaginary part in the limit ε → 0+, but only if E1 > 0, i.e.. above the threshold
for exciting the state φ1. Furthermore this imaginary part is negative, indicating
that it is associated with a loss of probability flux from the incident channel.
Our treatment of the N = 1 problem is a special case of a general theory due to
Feshbach[6]. A discussion of effective interactions including the effect of energy
averaging and additional references can be found in Section2.9 of ref.[7].

3.4 Inelastic scattering and the DWBA

From eq.(68) we obtain an explicit expression for the amplitude for exciting the
state φ1. We use the operator identity

1

A
−

1

B
=

1

A
(B − A)

1

B
, (71)



Scattering and Reactions of Halo Nuclei 15

to deduce

1

(E1 + iε − TR − V11)
=

1

(E1 + iε − TR)

[

1 + V11
1

(E1 + iε − TR − V11)

]

, (72)

and therefore

| χε
1 >=

1

(E1 + iε − TR)
Ω

(−ε)†
1 V10 | χε

0 >, (73)

where

Ω
(−ε)
1 =

[

1 +
1

(E1 − iε − TR − V11)
V11

]

. (74)

Following similar reasoning as in the analysis surrounding eq.(40) we find that
for R → ∞ and ε → 0+

< R | χ+
1 >→ f

(+)
10

exp iK1R

R
, (75)

where

f
(+)
10 = −

2µ

4πh̄2 < K1 | Ω
(−)†
1 V10 | χ

(+)
0 >, (76)

and the wave number K1 is in the direction of observation and has magnitude

K1 =

√

2µ

h̄2 E1. (77)

Note that in eq.(76), χ
(+)
0 is the exact elastic scattering distorted wave as gen-

erated by Vopt, or by solving the coupled equations (67).
It can be shown that for ε → 0 through positive values

< K1 | Ω
(−)†
1 =< χ

(−)
K1

|, (78)

where | χ
(−)
K1

> is a distorted wave of the type defined in Sub-section 2.3 and gen-
erated by the potential V11. The inelastic scattering amplitude (76) can therefore
be written

f
(+)
10 = −

2µ

4πh̄2 < χ
(−)
K1

| V10 | χ
(+)
K0

>, (79)

where we have written χε
0 as χ

(+)
K0

to conform to our earlier notation in the limit
ε → 0.

The DWBA as originally formulated can be obtained from this exact expres-
sion by replacing the initial distorted wave by the distorted wave generated by
the potential V00 instead of Vopt. This approximation includes the diagonal ele-
ments V11 and V00 to all orders but the potential V10 responsible for coupling the
2 channels is included in first order only. The usual Born approximation of inelas-
tic scattering corresponds to replacing the 2 distortred waves by plane waves.
The DWBA attempts to do better than that by recognising that the target-
projectile interaction will scatter the 2 nuclei and convert the plane waves into
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distorted plane waves. The DWBA is a consistent way to take this physical ef-
fect into account when the channel coupling is weak enough to be treated to 1st
order.

We emphasise that in the realistic multi-channel situation we frequently meet
in nuclear physics the DWBA as just defined is rarely used. An expression with
a structure similar to (79) is used but with the 2 distorted waves generated by
complex potentials which fit elastic scattering data. This is called the ‘Distorted
Wave Method’ by Satchler[7]. Modern computer methods emphasise exact so-
lutions of coupled channels models although Distorted Wave ideas often still
underlie much qualitative thinking about nuclear reactions.

3.5 Practical evaluation of DW matrix elements

It is useful to have some insight into how expressions such as (79) are actually
evaluated. For central distorting potentials the 2 distorted waves have expansions
of the form introduced in subsection 2.2. We can write

χ
(+)
K0

(R) = 4π
∑

L0M0

iL0Y ∗
L0M0

(K̂0)YL0M0
(ΩR) exp (iδ0

L0
)χ

(+)
L0

(R), (80)

(χ
(−)
K1

(R))∗ = 4π
∑

L1M1

(−1)L1iL1YL1M1
(K̂1)Y

∗
L1M1

(ΩR) exp (iδ1
L1

)χ
(+)
L1

(R).(81)

Inserting these expressions into (79) we obtain

f
(+)
10 = −

8πµ

h̄2

∑

L0M0L1M1

iL0−L1Y ∗
L0M0

(K̂0)YL1M1
(K̂1) exp i(δ0

L0
+ δ1

L1
) (82)

×

∫ ∞

0

R2dRχ
(+)
L1

(R) < L1M1 | V10 | L0M0 > χ
(+)
L0

(R), (83)

with summation over L0,M0, L1,M1. Integration over the direction of R and
the internal co-ordinates of the target are contained in the matrix element
< L1M1 | V10 | L0M0 >

< L1M1 | V10 | L0M0 >=

∫

dΩR dξ Y ∗
L1M1

(ΩR)φ∗
1(ξ)V10(R, ξ)φ0(ξ)YL0M0

(ΩR).

(84)
By making a multipole expansion of the interaction V10 this matrix element
can be factorised into reduced multipole matrix elements, which contain all the
dependence on the structure of the target states φ0 and φ1, Clebsch-Gordan
coefficients which carry the implications of angular momentum conservation and
form factors which depend on the radial co-ordinate R (see,e.g., Section 5.6 of
ref.[7]). We do not have space to expand further on these important ideas here.

Standard codes exist which evaluate DW amplitudes such as (83) and solve
the coupled equations (52) exactly for given poentials and target wave functions
as a routine matter[12].



Scattering and Reactions of Halo Nuclei 17

We note that most of the formulae in this section have to be modified when
the nuclei involved are charged. The formal expressions we have used are per-
fectly valid when all the Coulomb interactions are screened at large distances.
The correct expressions to be used for partial wave expansions when the uninter-
esting dependence on the screening radius is extracted are given in many stan-
dard texts, eg, [7]. Recent reviews which include Coulomb and spin-dependent
effects can be found in [13] and [14].

3.6 Many-body T -operator

As in the 2-body case we introduce an operator T whose on-shell matrix elements
are proportional to the inelastic and inelastic scattering amplitudes. The key
difference is that this operator now acts in the space of the variables ξ as well
as R. The definition of T is

T (E + iε) = V + V
1

E + iε − TR − HA − V
V. (85)

This expression has exactly the same formal structure as (44) in the 2-body
case, but the presence of the target Hamiltonian, HA in the denominator in (85)
makes this T a much more complicated operator.

In terms of T the elastic and inelastic scattering amplitudes are given by

fε(θ, φ)i0 = −
2µ

4πh̄2 < Ki, φi | T (E + iε) | K0, φ0 >, (86)

and the scattering state is expreessed in terms of the off-shell matrix elements
of T through

| χε
K0

>=| K0, φ0 > +
∑

i

∫

dK ′ | K ′, φi >< K ′, φi | T (E + iε) | K0, φ0 >

E0 + ǫ0 + iε − E′ − ǫi
.

(87)
The point about these formal expressions is that they help us to recognise quan-
tities that are calculable using standard techniques when they are buried in a
complicated theory of a nuclear reaction. To calculate a matrix element of a T
operator in practice one usually, but not always re-expresses the calculation in
terms of coupled differential equations.

4 Scattering of Halo Nuclei

We now return to the consideration of few-body models of the scattering of halo
systems introduced in Section 2.1. As in that Section I will take as a specific
example a 3-body model of reactions induced by a 11Be projectile on a 12C
target. The 3 bodies involved are the 10Be core and the halo neutron, which
make up our model of the projectile, and the target.
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The Hamiltonian in the over-all centre of mass system is that given in eq.(3)
which I repeat here for convenience.

H = TR + HnC + VnT (rnT ) + VCT (rCT ). (88)

Possible states of the halo are eigenstates of HnC and satisfy

(HnC − ǫi)φi(r) = 0, i = 0, 1, 2 . . . ,

(HnC − ǫk)φk(r) = 0, ǫk =
h̄2k2

2µnC
, (89)

where we have distinguished between discrete bound states labelled by i and the
continuum states labelled by momentum k. Transitions to the latter correspond
to elastic break-up.

One approach to finding scattering state solutions to eq.(8) is to proceed as
in Section 3.2 and look for solutions as an expansion in the complete of functions
of r defined in eq.(89):

Ψ(R, r) = φ0(r)χ0(R) + φ1(r)χ1(R) + · · · ,

+

∫

dkφk(r)χk(R). (90)

The functions χi(R), χk(R) in eq.(90) give the amplitudes for exciting the
various halo states. All of them have the form of outgoing spherical waves at large
R with amplitudes which determine the corresponding excitation cross sections.
The function χ0(R) also includes a plane wave describing the incident beam.

The χ’s satisfy a set of coupled differential equations which, if we ignore the
continuum terms in eq.(90), have the form

(E0 − TR − Vii(R))χi(R) =
∑

j 6=i

Vij(R)χj(R)

i, j = 0, 1, . . . , (91)

where Ei = E − ǫi and the coupling potentials Vij(R) are given by

Vij =

∫

drφ∗
i (r)[VnT (R + βr) + VCT (R − αr)]φj(r). (92)

The coupling potentials describe the way tidal forces generated by the interac-
tions between the components C and n of the projectile and the target can cause
excitations of the projectile. It is the variation of the potentials on a scale of the
order of the size of the projectile which generate terms with i 6= j which would
otherwise vanish by the orthogonality of the φj(r).

When the continuum terms on the right hand side of eq.(90) are included the
generalisation of eq.(91) now includes coupling terms which couple discrete and
continuum terms as well as terms coupling the continuum to itself. These terms
involve coupling potentials like eq.(92) but with at least one of the φi(r) replaced
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by a φk(r). These are the couplings which induce break-up of the halo and which
are expected to play a prominent role in reactions involving halo nuclei.

One way of handling these equations when continuum couplings are impor-
tant is to map the continuum onto a discrete square-integrable basis which is
orthogonal to the bound states φi. This CDCC method pioneered by the Kyushu
Group [15,16] makes use of this idea. This approach has been successfully applied
to the scattering of deuterons and other loosely bound nuclei but has difficulties
when long range Coulomb couplings are included[17]. This approach will not be
considered in detail here. Instead we will discuss a widely used approximation
to the many-body scattering problem which is sometimes much simpler to im-
plement than the CDCC method and provides interesting insights into the role
of the continuum in the scattering of halo nuclei.

4.1 Adiabatic approximation

The adiabatic approximation is based on the observation that at sufficiently high
incident energy the halo degrees of freedom may be regarded as ‘frozen ’ over
the time needed for the projectile to traverse the target. This does not mean
that we assume that the projectile remains in the same eigenstate φ0 of HnC ,
but rather that the co-ordinate r is frozen. This approximation is at the basis
of Glauber’s theory of composite particle scattering [18], versions of which have
been widely used in the analysis of reactions involving halo nuclei. The adiabatic
approximation retains its usefulness, however, even when the other assumption
of Glauber’s theory, i.e., the eikonal approximation, is not invoked.

We can get some insight into the validity of the adiabatic approximation and
how it can be implemented by considering the time dependent version of eq.(8)

HΨ(R, r, t) = ih̄∂Ψ(R, r, t)/∂t. (93)

The substitution
Ψ = exp(−i(HnC − ǫ0)t/h̄)Φ, (94)

transforms eq.(93) into the equivalent form

(TR + ǫ0 + VnT (R + βr(t)) + VCT (R − βr(t)))Φ = ih̄∂Φ/∂t, (95)

where the term in HnC has been removed at the expense of a time dependent
r(t) satisfying

r(t)) = exp(i(HnC − ǫ0)t/h̄) r exp(−i(HnC − ǫ0)t/h̄). (96)

The adiabatic approximation replaces r(t) by r(0) = r in eq.(95). A sufficient
condition for this to be accurate over the collision time tcoll is

(HnC − ǫ0)tcoll/h̄ ≪ 1. (97)

When this adiabatic condition is satisfied, stationary state solutions of eq.(95)
satisfy

(TR + VnT (R + βr) + VCT (R − βr))Φ = EKΦ, (98)
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where EK = E − ǫ0 is the incident kinetic energy and we have assumed a time
dependent factor exp(−iEt/h̄) for times satisfying eq.(97).

In eq.(98) r is no longer a dynamical variable but a parameter. The 3-body
problem we started with has been reduced to a set of 2-body problems, one for
each value of r. The resulting solution φAdia(R, r) is a superposition of all the
projectile states (φi(r), φk(r)).

The adiabatic approximation to the transition amplitude to a particular pro-
jectile state is calculated by projecting onto that state and examining the coef-
ficient of the outgoing wave for R asymptotically large. If f(θ, φ, r) is the scat-
tering amplitude in the direction θ, φ calculated from eq.(98) for a fixed value of
r, then the scattering amplitude for exciting state i is

fi0 =

∫

drφ∗
i (r)f(θ, φ, r)φ0(r). (99)

Examples of the application of this method to composite particle scattering
including several frozen degrees of freedom can be found in the refs. [19,20,23,21,22].
When the 2-body scattering problem eq.(98) is solved using the additional as-
sumption of straight line trajectories in R-space the results are equivalent to
Glauber’s [18] theory. Calculations along these lines [1,2,39,24,25,42] have been
of great importance in the interpretation of reaction cross sections for halo nuclei
in terms of nuclear sizes. Some of the earlier calculations used a further approx-
imation to Glauber’s many body theory theory known variously as the ‘optical
limit’, the ‘static limit’, or the ‘folding model’. It has been proved recently [27]
that for a given halo wave function the ‘folding model’ always overestimates the
total reaction cross section for strongly absorbed particles. Published complete
Glauber calculations [24,25,42] are consistent with this theorem.

It is clearly desirable to convert the adiabatic condition eq.(97) into a quan-
titative estimate expressed in terms of the parameters of the collision process
of interest and to devise methods of calculating the leading corrections to the
adiabatic scattering amplitudes. It is clear that eq.(97) requires small projectile
excitation energies (slow halo degrees of freedom) and high incident energies
(short collision times). Qualitative estimates along these lines can be found in
refs. [18,32,33], and some progress has been made in deriving correction terms
for transfer reactions [28] and elastic scattering [34]. Here we shall assume that
the adiabatic approximation is adequate and confine ourselves to the scattering
of halo nuclei at energies for which a simple estimate indicates there is a good
case for this to be a valid starting point.

The adiabatic approximation can also be regarded as an approximate solution
of the coupled equations eq.(91) when all the channel energies Ei are assumed to
be degenerate and equal to E0. Multiplying the ith equation by φi(r), summing
up all the equations over i using the completeness of the φi(r), one obtains
an equation equivalent to eq.(98) with φ identified as

∑

φiχi. This derivation
does not give an immediate indication of the conditions for the validity of the
approximation.

A recent review of many applications of the adiabatic approximation to few-
body models of the scattering of halo nuclei can be found in [29].
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4.2 Special cases

Implementation of the adiabatic approximation requires the calculation of scat-
tering solutions φAdia(R, r) of eq.(98). Eq.(98) for fixed r is equivalent to a
2-body problem in a potential which is non-central, even if Vnt and VCT are
themselves central, and an exact solution requires the solution of coupled equa-
tions [19,20,23]. There are 2 cases when an enormous simplification occurs:

1. When φAdia(R, r) is required at the point r = 0 only.
Eq.(98) then reduces to a 2-body central force problem in the potential
VnT (R)+VCT (R). This insight has been exploited [19,30,28] to give a theory
of deuteron stripping and pick-up which includes deuteron break-up effects
in a simple way.

2. When one of the interactions, VnT say, between the constituents of the pro-
jectile and the target is zero [31].
We shall refer to this special case as ‘the recoil model’ because the only
way the projectile can be excited or broken up is through recoil of the core
following scattering by the target. Note that the other 2 interactions VnC

and VCT can be of arbitrary strength or range and may include Coulomb
terms.

In case 2 the exact solution of eq.(98) corresponding to a projectile in its ground
state φ0 incident with momentum K on a target T is [31,33,32]

φ
(+)Adia
K (r,R) = φ0(r ) eiαK·rχ

(+)
K (R − αr), (100)

where χ
(+)
K is a distorted wave which describes the scattering of a particle of

mass µPT (the projectile-target reduced mass) from the potential VCT ,i.e.,

[TR′ + VCT (R′))] χ
(+)
K (R′) = EKχ

(+)
K (R′),

χ
(+)
K (R′)

R′→∞
→ exp(iK · R′) + fCT exp(iKR′)/R′. (101)

Note that in eq.(100) the distorted wave has the argument (R − αr), which is
just the C − T separation. The distorted wave corresponds to a model in which
all effects due to the halo neutron are ignored apart from its contribution to the
mass of the projectile. In the following we will refer to this limit as the scattering
of a ‘no-halo’ projectile.

We emphasise that the three-body wave function, eq.(100), includes compo-
nents which describe break-up and excitations of the projectile. This is clear

from the complicated dependence on r, through the argument of χ
(+)
K and the

exponential factor exp(iαK · r) which will result in a non-vanishing overlap with
any of the states (φi(r), φk(r)).

4.3 Applications of the adiabatic ‘recoil model’

The exact elastic scattering transition amplitude for the projectile, from initial
state K into final state K ′, is

Tel(K
′,K) =

∫

dr

∫

dR φ∗
0(r ) e−iK′·R VCT (R − αr ) Ψ

(+)
K (r,R), (102)
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where Ψ
(+)
K (r,R) is the exact scattering state solution of eq.(8)

Using the adiabatic approximation to Ψ
(+)
K , eq.(100), and making the change

of variable from R to R′ = R − αr this factorises as

Tel(K
′,K) =

[
∫

dr |φ0(r )|2 eiα(K−K′)·r

] [
∫

dR ′ e−iK′·R ′

VCT (R ′) χ
(+)
K (R ′)

]

.

(103)
The second integral here is just the transition amplitude Tno−halo(K

′,K)
for a ‘no-halo’ projectile scattering by the core-target potential VcT . The same
result for Tel is obtained by examining the asymptotic form of eq.(100) in the
elastic channel.

The effects of projectile excitation and structure in eq.(103) arise entirely
through the first integral, the form factor

F (Q) =

∫

dr |φ0(r )|2 exp(iQ · r), (104)

where Q = α(K − K ′).The corresponding elastic scattering differential cross
section is therefore

(

dσ

dΩ

)

el

= |F (Q)|2 ×

(

dσ

dΩ

)

no−halo

, (105)

where (dσ/dΩ)no−halo is the cross section for a projectile, with mass µ, scat-
tering by the core-target interaction and is therefore very closely related to the
experimental core-target elastic scattering.

The importance of eq.(105) is that it clarifies the relevant scattering angles
and incident energies at which a halo of a given size and structure will be manifest
as a deviation from the scattering due to a projectile which does not have the
spatial extension associated with a loosely bound halo particle.

Eq. (105) is reminiscent of factorisations which occur in electron scattering
when Born approximation and approximate distorted wave theories are used.
Note, however, that the present analysis does not involve Born approximation in
any sense. Only if all intermediate states are included do the second and higher
order terms in the Born series factorise in this way [33]. The same argument
obtains for the factorisation of the wavefunction in eq.(100).

11Be is a good example of a binary, 10Be+n, single neutron halo nucleus
and 19C is also a single neutron halo candidate [35]. Both systems have small
α = mn/mP ratios. For 11Be+12C, there are small angle elastic scattering data
[36] for both the 10Be core and the 11Be composite, but at energies of 59.4
MeV/A and 49.3 MeV/A, respectively. Ideally these data are required at the
same energy per nucleon to provide the necessary information on VCT , which is
an essential ingredient in applications of eq.(105).

According to eq.(105) the formfactor |F (Q)|2, which multiplies the point par-
ticle cross section, reflects the modifications to the scattering due to the compos-
ite nature of the projectile. In Figure 2 we show calculated squared formfactors
as a function of the centre-of-mass angles which are appropriate for the elastic
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scattering of 11Be (upper part) and 19C (lower part) from 12C at 49.3 MeV/A
and 30 MeV/A, respectively. These calculations demonstrate the sensitivity of
the formfactor to the halo properties. Conversely, they demonstrate the infor-
mation about the halo-core relative motion wavefunction which is available in
principle from halo nucleus elastic scattering data.

The strong deviations from unity shown in Figure 2 reflect in momentum
space the long exponential tails of the halo wavefunctions we discussed in Section
1.1. In the notation of that Section, a neutron wavefunction with a λ-value
corresponding to a typical non-halo nucleus the formfactor would hardly deviate
at all from unity over the angular range of Figure 2.

For 11Be, the halo is seen to result in a reduction in the elastic differential
cross section by a factor of between 2 and 4 at 20◦, compared to that for ‘no-halo’
scattering. There is also a significant sensitivity to the assumed rms separation
of the valence and core particles.

For 19C, the squared formfactors which result from a pure 2s1/2 (solid curve)
or 1d5/2 (dashed curve) neutron state are shown. The departures from ‘no-halo’
scattering are predicted to be significantly different for a 2s1/2 and 1d5/2 valence
neutron, with almost a factor of 2 difference in the cross sections at 20◦. We note
that, although the leading term in the expansion of the formfactor about Q = 0
gives a deviation from unity proportional to the mean squared separation of the
core and valence particles in the projectile, the values of Q which enter in the
examples above are such that this leading order term is inadequate and there is
sensitivity to higher order moments except at the very smallest angles.

For 11Be the wavefunctions were taken to be pure 2s1/2 neutron single par-
ticle states, with separation energy 0.503 MeV, calculated in a central Wood-
Saxon potential [37]. By changing the binding potential geometry we generate
11Be composites with different rms matter radii and hence |F (Q)|2. For 19C the
ground state structure is presently uncertain with speculations of it being a pure
2s1/2 state, 1d5/2 state or a linear combination of such configurations [38]. The
neutron separation energy was 0.240 MeV.

Figure 3 shows the elastic differential cross section angular distributions (ra-
tio to Rutherford) for 11Be+12C scattering at 49.3 MeV/A calculated with a
number of different models of the scattering mechanism.

The dashed curve shows the ‘no-halo’ projectile differential cross section
(dσ/dΩ)no−halo calculated using the core-target potential. It might be expected
that the main effect of the extended size of the projectile could be accounted for
by calculating the scattering by a potential Vfold(R) which averages VnT (R +
βr) + VCT (R − αr) over the probability density for r predicted by the ground
state halo density, i.e.

Vfold(R) =

∫

dr[VnT (R + βr) + VCT (R − αr)]|φ0(r)|
2. (106)

The dot-dashed curve in Figure 3 shows the cross section calculated using the
folding model interaction, eq.(106) . The similarity of the folding and ‘no-halo’
calculations makes clear that the effects associated simply with folding the core
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Fig. 2. Calculated |F (Q)|2, as a function of centre-of-mass scattering angle for the
elastic scattering of 11Be (upper part) and 19C (lower part) from 12C at 49.3 MeV/A
and 30 MeV/A, respectively.

and valence particle interactions over the size of the halo are relatively minor
compared with the effects taken into account in the solid curve. The latter is
obtained using the result eq.(105) with the squared formfactor shown by the
short dashed line (the 2.9 fm rms case of Fig.2).

The physical difference between the theory which produces the solid line and
the ‘folding’ result is that the former does not assume that the projectile remains
in its ground state during the scattering but correctly takes into account (insofar
as the adiabatic approximation is adequate) the large projectile excitation and
break up effects induced by the target. It is remarkable that such complicated
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Fig. 3. Calculated elastic differential cross section angular distributions (ratio to
Rutherford) for 11Be+12C scattering at 49.3 MeV/A. The curves are discussed in the
text.

multistep processes are fully accounted for by eq.(105) when the interaction
between the halo and the target is ignored. Note, however, that at small angles
the ‘folding’ diffraction pattern is shifted to smaller angles as one would expect
for the more spatially extended potential of eq.(106).

We recall that the special case under discussion ignores the interaction be-
tween the valence neutron and the target. In fact this interaction is not negligible
and must be taken into account in a detailed comparison with experiment. This
is not a difficulty since exact adiabatic calculations which include the interac-
tion between all the halo particles and the target are possible for both two and
three-body projectile systems [23,22]. Such calculations have also been carried
out for 4- and 5-body projectiles within the eikonal approximation [40,41].

In Figure 4 we show the results of such adiabatic calculations for 11Be+12C
scattering at 49.3 MeV/A. These include the neutron+12C optical potential
tabulated in [43], and correspond to the four 11Be wavefunctions with different
rms radii discussed in connection with Figure 2. The data are from [36]. We note
that the behavior of the cross sections expected on the basis of the formfactors
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Fig. 4. Calculated elastic differential cross section angular distributions (ratio to
Rutherford) for 11Be+12C scattering at 49.3 MeV/A calculated using the adiabatic
approximation and including the neutron-target interaction.

of Figure 2 and the insights the ‘recoil model’ provides are not effected in any
major way by the neutron-target interaction. These results suggest that elastic
scattering data of sufficient quality could yield independent information on halo
structures.

The full circle symbols in Figure 3 are also full adiabatic model calculation
including VnT . They can be compared with the solid line results which are also
adiabatic but do not include VnT . The agreement is reasonable and suggests that
VCT dominates in this system, although the effects of the valence neutron-target
interaction are not negligible.

The ‘recoil model’ teaches us that halo nucleus elastic scattering angular
distributions are strongly affected by projectile excitation channels and the spa-
tial size of the halo. These effects are principally manifest through a formfactor
which depends only on the halo ground state wavefunction and whose square
multiplies the ‘no halo’ cross section. The latter is defined to be the cross sec-
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tion for a particle with the mass of the projectile but which interacts with the
target through the core-target potential with no folding in of the halo density.
This potential is in principle to be obtained from core-target scattering at the
same energy per nucleon as that of the halo nucleus scattering of interest. In
fact to a good approximation at the energy used in Figure 2 the ‘no halo’ cross
section can be evaluated directly from the core-target cross section at the same
energy per nucleon and momentum transfer.

5 Other applications of the ‘recoil model’

We have already mentioned the application of the adiabatic approximation to
the calculation of reaction cross sections for halo nuclei in Sub-section 4.1. The
approximation has also been widely used to treat deuteron break-up effects in
stripping and pick-up reactions (see [28] and [48] and references therein). The
special case of the ‘recoil model’ has had some other interesting recent applica-
tions.

5.1 Coulomb break-up of neutron halo nuclei

One situation when the neglect of the interaction between the halo neutron
and the target can be justified is when Coulomb forces dominate. We will now
explain how the ‘recoil model’ can be used used as the starting point of a non-
perturbative quantum mechanical theory of the Coulomb break-up of neutron
halo nuclei. [45–47].

Some care is required in using the adiabatic wavefunction to calculate break-
up amplitudes. The explicit form of the solution eq.(100) makes it clear that
at large core-neutron separations, r → ∞, the presence of the factor φ0 means

that, independently of the details of the 3-body Hamiltonian, φ
(+)Adia
K (r,R)

vanishes exponentially. The large r region is where one would expect to look for

breakup flux and therefore φ
(+)Adia
K (r,R) can not be used to calculate break-up

amplitudes by looking at its asymptotic form.
It follows that to use the three-body wave function of eq.(100) to calculate

a Coulomb breakup amplitude we must restrict its use to regions of the six-
dimensional (r,R) space where r is finite. In particular, we do not attempt to
extract the breakup amplitude from the asymptotics of our approximate adia-
batic solution. Ref [45] procceeds instead as follows.

We first rewrite the exact three-body Schrödinger equation of eq. (8), prior
to having made any adiabatic approximation, as

[E − TRn
− TRC

− VCT (RC)] Ψ
(+)
K (r,R) = VnC(r)Ψ

(+)
K (r,R) . (107)

where TRn
and TRC

are the kinetic energies in the coordinates Rn and RC .
These Jacobi co-ordinates are defined so that Rn connects n with the centre-
of-mass of C and T , and RC is the C − T separation (see Figure 5). They are
particularly suitable when VnT = 0.
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Fig. 5. Definition of the co-ordinate system adopted for the core, valence, and target
three-body system.

Because of the short ranged factor VnC(r) the right-hand-side eq.(107) re-

quires the wqavefunction Ψ
(+)
K (r,R) only for finite separations r. We can there-

fore justifiably evaluate it using the adiabatic wavefunction φ
(+)Adia
K (r,R) as a

good approximation to Ψ
(+)
K . This yields the inhomogeneous equation

[E − TRn
− TRC

− VCT (RC)] Ψ̂
(+)
K (r,R) = VnC(r)φ

(+)Adia
K (r,R) (108)

For a given adiabatic wavefunction eq.(108) can be solved using Green func-
tion techniques to give a solution which has the correct 3-body asymptotics [45]
and from which an expression for the break-up amplitude into any final state
can be read off. The break-up amplitude calculated in this way for a three-body
final state with Jacobi momenta qC and qn corresponding to Rn and RC , is
found to be [45]

T̄AD(qnqC ,K) =
〈

eiqn·Rnχ(−)
qC

(RC) |VnC(r)| Ψ̄
(+)
K (r,R)

〉

, (109)

where χ
(−)
qC

is an Coulomb distorted wave with in-going scattered waves describ-
ing the scattering of the outgoing core by the target.

It is shown in [45] that the break-up amplitude T̄AD of eq.(109) is exactly the
same as the expression obtained by using the adiabatic wavefunction directly in
the exact post-form transition amplitude.
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Note that although the adiabatic approximation neglects the projectile exci-

tation energy in the calculation of the adiabatic three-body wavefunction Ψ̄
(+)
K ,

this does not mean that the break-up amplitude is calculated using the the zero
adiabaticity parameter ξ = 0 limit, of semi-classical theories [49]. As the analysis
above shows, T̄AD includes a final state wavefunction with the correct kinematics
and excitation energies required by energy conservation, unlike analogous ξ = 0
semi-classical calculations.

5.2 Breakup transition amplitude

It is shown in [45] that the amplitude T̄AD of eq.(109) factorises exactly as

T̄AD(qnqC ,K) =

[
∫

dr e−iP n·rVnC(r)φ0(r)

] [
∫

dRC e−iQn·RC χ(−)∗
qC

(RC)χ
(+)
K (RC)

]

,

= 〈P n|VnC |φ0〉
〈

Qn, χ(−)
qC

|χ
(+)
K

〉

, (110)

where we have defined P n = qn − αK and Qn = mT

mT +mC
qn.

The two factors in Eq.(110) separate out the structure and dynamical parts of

the calculation. The overlap of the three continuum functions, 〈Qn, χ
(−)
qC

|χ
(+)
K 〉,

can be evaluated in closed form and expressed in terms of the bremsstrahlung
integral [45]. This factor now contains all the dynamics of the breakup process
and is readily calculated for given incident and outgoing momenta in terms of
the charges and masses of C and T .

The structure of the projectile enters through the vertex function 〈P n|VnC |φ0〉
and is also simply evaluated given any structure model for the projectile. In
Coulomb dissociation, momentum can be transferred to the valence particle only
by virtue of its interaction VnC with the core. Since the term αK in P n is the
fraction of the incident momentum of the projectile which is carried by the va-
lence particle, this structure vertex displays explicitly this momentum transfer
from the ground state via VnC .

The result (110) allows a fully finite-range treatment of the core-neutron
particle interaction VnC without any approximation additional to the adiabatic
assumption. The theory is thus applicable to projectiles with any ground state
orbital angular momentum structure, and also includes breakup contributions
from all contributing Coulomb multipoles and relative orbital angular momenta
between the neutron and core fragments. Unlike DWBA theories it includes the
initial and final state interactions VCT and VnC to all orders.

The theory has been successfully applied to the break-up of high energy
deuterons in the forward direction [45,50], and with appropriate generalisation,
to the Coulomb break-up of one- and two-neutron halo nuclei [46,47]. Here we
briefly mention the case of deuteron break-up.

The (d, pn) elastic breakup data have been measured at the RIKEN Acceler-
ator Research Facility, Saitama, at 140 and 270 MeV, and at the Research Centre
for Nuclear Physics (RCNP), Osaka, at 56 MeV in a kinematical condition of
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θp ≈ θn ≈ 0◦. The targets were 12C, 28Si, 40Ca, 90Zr, 118Sn, 165Ho and 208Pb at
Ed=140 and 270 MeV and 12C, 40Ca, 90Zr, and 208Pb at Ed=56 MeV.

The calculations and data at 140 MeV are compared in Figure 6 for all mea-
sured targets. The errors shown in the figure are statistical only. The solid lines
show the elastic breakup cross sections, as a function of the detected (laboratory)
proton energy, calculated using eq.(110). The overall agreement of the calculated
magnitudes, ZT -dependence, and the proton energy dependence, with the data
is good and improves with increasing target charge. The factor of 40 increase in
the magnitudes of the measured cross sections in going from 12C to 208Pb is seen
to be well reproduced as a function of ZT . Figure 6 does not, however, reveal the
complex way that the calculated cross sections are built up in the integrations
over the experimental solid angle acceptances. We refer to refs. [45,50] for these
crucial considerations and for a full discussion of the results at all 3 incident
energies.

We emphasise again that these calculations are non-perturbative and fully
quantum mechanical. They are based on a theory which is very different from
the DWBA both in principle and in terms of the numerical results obtained.
These differences are discussed in detail in ref. [45]. Final state interactions
between the outgoing fragments are fully taken into account, apart from the
nuclear interaction between the neutron and the target. The nuclear interaction
between the neutron and the proton is accounted for to all orders.

The results of ref.[45,50] are consistent with an underlying physical picture in
which Coulomb breakup is the dominant mechanism. There are, however, indica-
tions of a missing and interfering contribution, particularly on the lighter targets
which may result from breakup by the nuclear forces between the projectile and
the target which are ignored in the model of refs. [45,50].

5.3 Deuteron stripping and pick-up on halo nuclei

We have already mentioned the use of the adiabatic approximation to treat
multi-step processes via deuteron break-up channels in stripping and pick-up
reactions. This is special case 1. of Sub-section 4.2. A recent development has
been to use the adiabatic approximation to additionally treat excitations of a
halo nucleus produced as the final state in a (d,p) reaction. It is shown in ref. [48]
how the simplicity of the ‘recoil model’ can be exploited to give a very convenient
way of evaluating what would otherwise be a very complicated multi-channel
calculation. See also [34] for an application to recent 11Be(p,d)10Be data from
GANIL[51].

6 Conclusions

I hope I have conveyed to you some of the fascination of nuclear reactions with
halo and other weakly bound nuclei. New experiments are giving a new challenge
to theory. Groups in Surrey and elsewhere are working very hard to meet this
challenge.
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Fig. 6. Experimental and calculated adiabatic model (solid curves) triple differential
cross sections for deuteron break-up near 0◦ in the laboratory frame at Ed =140MeV.
The calculations are averaged over the neutron and proton solid angles actually used
in the experiment. The data are from ref.[50].
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A particular challenge to theory is to understand and evaluate the leading
corrections to the adiabatic theory and to learn how to apply them to transfer
and break-up reactions. There is also a need to understand how the few-body
models of reactions described here can be related to the underlying many-fermion
structure of the halo nucleus.
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