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Measurements of the spin dependence of large /, j =1 — %, transfer reactions at medium energies
provide a stringent test of three-body reaction models. We report measurements of the cross section
(do /dQ), vector ( 4,) and tensor ( 4,,) analyzing powers, and outgoing proton polarization (p) an-
gular distributions (6. ,, =6.9°-82.3°) for the =3, j"= 3" ground-state transition in *Zn(d,p)*'Zn
measured with 88.2-MeV deuterons. Adiabatic model calculations fail to describe either interfer-
ence oscillations in the data or departures from the simple theoretical relationships,
1+3p+24,,=0and 2+ 4,,+3 4, =0, that are expected to hold for a far-side-dominated reaction.
The quasiadiabatic model, in which the center-of-mass energy in breakup configurations is not con-
strained to be degenerate with the elastic channel, is able to reproduce qualitatively these features of

the data.

I. INTRODUCTION

The coupled discretized continuum channels (CDCC)
technique for the treatment of breakup effects in the
deuteron-nucleus system has recently been the subject of
two extensive review articles."? While the CDCC
method is able to produce accurate three-body wave
functions, including the effects of the nucleon-target
spin-orbit interactions, these wave functions have yet to
be incorporated fully into transfer reaction calculations.
Only zero-range transfer reaction calculations have been
carried out so far, and these neglect the entrance channel
spin dependence. At the energies of interest here, it is vi-
tal to include this spin dependence in order to reproduce
even the qualitative features of the reaction data.

As a result, calculations of (d,p) transfer reactions
often employ the adiabatic distorted-wave approximation
(ADWA).3 If, however, we are to use such calculations
routinely to extract spectroscopic strengths or other
features of the reaction, we must be confident that they
correctly describe the major aspects of the reaction mech-
anism. A thorough study of the ''%Sn(d,p)""’Sn (E; =79
MeV) reaction was undertaken to investigate the accura-
cy of the ADWA for the momentum mismatched /=0
ground-state transition,’ which was expected to be poorly
described at intermediate energies. Instead, the adiabatic
model had much more difficulty with the better-matched
j7™=17, 1=4 transition.** The inclusion in these calcu-
lations of finite-range effects, including transfer from the
deuteron D state, and nonlocality corrections, while mak-
ing significant improvements in the reaction observables,
did not result in good agreement with the data, especially
with the angular distributions of the analyzing powers.

Further investigation showed that the transfer reaction
amplitudes obtained using the ADWA model described
flux that flowed mainly around the far side of the nucleus
(the side away from the detector), a selectivity that arose
from the attractiveness of the nuclear optical potential.
In addition, this flux and the transferred neutron orbits
populated were coplanar with the asymptotic deuteron
and proton momenta.® This feature proved to be an ex-
cellent guide to the observed j-transfer dependence of the
reaction vector (4, ) and tensor ( 4,,) analyzing powers.*
For j=I —% transitions, the dominance of flux on the far
side allows only two elements of the transition matrix (as
a function of the spin-projection quantum numbers) to
contribute significantly, with the result that simple rela-
tionships exist among the spin observables.’ In particu-
lar,

1+3p+24,,=0, (1)
2+ 4,,+34,=0, )

where p is the outgoing proton polarization, become ex-
act in the limit that only those two amplitudes are non-
vanishing. The latter relation is broken whenever there is
a spin flip in the entrance (deuteron) channel. Transfer
from the deuteron D state, a process included in the
ADWA model, is one such spin-flip mechanism. Howev-
er, for the %* transition in 116Sn(d,p )!17Sn, the violation
of Eq. (2) obtained empirically substantially exceeded the
contribution calculated due to the D state,” but it was not
clear to what extent each of the assumptions was violat-
ed. Equation (1), on the other hand, holds independently
of such spin-flip considerations, requiring only far-side
dominance and parity conservation for its validity.” It
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was thus deemed important to investigate another reac-
tion for which measurements could be performed to
check Eq. (1).

The %Zn(d,p)*’Zn reaction was chosen because the
ground-state (j"=3") transition is of j =/ —7 character,
and the transition connects two stable isotopes. This
means that measurements of the outgoing proton polar-
ization could be obtained from the equivalent analyzing
power in the time-reversed ’Zn(p,d )°®Zn reaction at an
appropriate energy. The spectroscopic factor for the
transition is also large enough (between 0.2 and 0.3) that
we did not anticipate any complications from coupling to
other discrete transitions. This new set of measurements
would allow us to check whether other spin-flip processes
not presently included in the calculations, such as tensor
distortions in the deuteron channel and transfer out of D
or higher / states in the continuum, were responsible for
the disagreement. The deuteron energy of 88.2 MeV was
selected as a balance between the desire to emphasize the
far-side character of the transition by raising the bom-
barding energy and the capabilities of the Indiana Uni-
versity Cyclotron Facility (IUCF) cyclotron for stable
operation.

A second clue to the nature of the reaction mechanism
difficulty came from the observation that interference
patterns with a period compatible with the diameter of
the nucleus were present in the measured analyzing
power angular distributions and nearly absent in the cal-
culations. This called into question the theoretical prop-
erty of far-side dominance (but not necessarily coplanari-
ty), suggesting the presence of a near-side amplitude com-
parable in strength to the one from the nuclear far side.
If there are only two large far-side amplitudes, then it
should be possible to estimate the size of the missing
near-side piece directly by fitting an empirical near-side
amplitude to the interference pattern present in

(do/dQ)y=(do/dQ)(1—A4,,)/3
and

(do/dQ)_,=(do/dQ)1—34,/2+ 4,,/2)/3

the two parts of the cross section (the index refers to the
entrance channel projection of the deuteron spin along an
axis perpendicular to the reaction plane) that originate
from the two amplitudes.® A model was constructed that
used analytic forms for the near-side and far-side terms
consistent with a single-pole approximation to the reac-
tion radial integrals (in partial-wave space). From the
spin coupling of the near- and far-side terms and the
fitting parameters, it was concluded that the missing
near-side amplitude arose from nearly central deuteron-
nucleus collisions and exhibited a very large dependence
on the spin-projection quantum number. To see whether
this characterization was peculiar to the !'%Sn transition,
a large range of scattering angles was included in the %Zn
study so that a similar empirical estimate could be made
of the missing near-side amplitude.

The empirical near-side amplitude has quantum num-
bers which, in a semiclassical picture, suggest that large
relative neutron-proton momenta are involved at the
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point of transfer, since, after transfer, the neutron and
proton orbit the nucleus in opposite directions. This puts
in jeopardy the very basis of the adiabatic approximation,
namely the assumed degeneracy of the n-p center-of-mass
energy in the breakup configurations with that of the in-
cident bound deuteron. Removing this assumption
would allow the n-p center of mass to move, on average,
with an energy less than that of the bound deuteron in
the calculation of the breakup components in the three-
body wave function. A technique for lifting this assump-
tion has been described by Amakawa, Austern, and Vin-
cent,” which they name the quasiadiabatic model. We
have extended their technique to include the effects of nu-
cleon spin-orbit interactions and to allow the n-p center-
of-mass energy to depend on the center-of-mass radius
and partial-wave number. In this paper we present the
first calculations of this sort in zero-range approximation.
Despite this simplification, we will show that the changes
to the n-p energetics are significant, and introduce near-
side amplitudes of a size comparable to those required by
the measurements. Thus both the interference pattern in
the analyzing power and the deviations from Egs. (1) and
(2) appear to be understood within the context of a
three-body model of the reaction dynamics.

To estimate the outgoing proton distorted waves, we
also measured angular distributions of cross section and
analyzing power for proton scattering from ¢’Zn at 91.8
MeV. The experimental details of this and the transfer
reaction measurements are given in Sec. II. The formal
aspects of the three-body models used and a derivation of
the quasiadiabatic formulas are presented in Sec. III.
The extraction of a suitable set of final-state optical po-
tential parameters for the proton elastic-scattering mea-
surements is described in Sec. IV. To set the basis for
comparison, standard ADWA reaction calculations are
presented in Sec. V. The interference patterns present in
(do/dQ), and (do/dQ)_, are analyzed in Sec. VI to
yield an estimate of the near-side amplitude required
empirically. This estimate is compared with the near-side
components present in both the ADWA and quasiadia-
batic models in Sec. VII. Also in Sec. VII, the new
quasiadiabatic calculations are compared with the cross
section and analyzing power angular distributions, as well
as the deviations from Egs. (1) and (2).

II. EXPERIMENTAL CONSIDERATIONS

The polarized proton and deuteron beams needed for
this experiment were generated by an atomic beam source
containing both weak- and strong-field transition units, as
reviewed in Ref. 8. The output from the ion source was
typically 6 uA.

Beam polarization measurements were made in the
transfer line between the two IUCF separated-sector cy-
clotrons, where the beam typically had 8% of its final en-
ergy. For protons, elastic scattering from “He at
01,5 =112° was used as the analyzer. The analyzing power
is known from a phase-shift analysis of measurements for
the p +*He system.” The resulting polarization measure-
ments were consistent over time with their average value,
which was 0.76x0.01 for spin up and —0.7410.02 for
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spin down. To cancel the effects of slow changes in ex-
perimental conditions (beam energy, beam spot position,
detector threshold, etc.), the spin state was reversed
periodically with an interval of 10-30 s in each spin state.

For deuterons, the analyzing reaction was
*He(d,p)*He, observed with similar geometrical con-
straints at a scattering angle of 6,,,=30°. The calibration
of the vector and tensor analyzing powers of the polarim-
eter, and the extraction of the beam polarization, are de-
scribed in Ref. 10. Four polarized spin states were used
[where maximally (p,,p,,)=(%,0), (—%,0), (—1,1), and
(=4, —1)]. The beam polarizations were again constant
with time and typically 81% of the maximum values.

The cyclotrons were tuned for 88.2-MeV deuteron en-
ergy and 91.8-MeV proton energy, values chosen to pro-
duce comparable center-of-mass energies for the (d,p)
and (p,d) reactions when the ground-state Q value is tak-
«en into account.

The %Zn and %’Zn targets were self-supporting foils
made of enriched (98.8% and 93.1%, respectively) ma-
terial and rolled to thicknesses of 6.75 mg/cm? (%Zn)
and 7.35 or 15.53 mg/cm? (¥Zn). The target thicknesses
were measured to a precision of 5-7 % by observing the
energy loss of a particles from the 232Th decay chain
passing through the area of the target sampled by the cy-
clotron beam spot.

The reaction products were detected with the IUCF
K600 magnetic spectrometer system. Dispersion match-
ing techniques were used to achieve a typical resolution
of 40 keV at the focal plane detector. At large scattering
angles, the tilt of the target to the beam was chosen so
that differences in the deuteron and proton energy losses
in traversing the target were also canceled.!'

The focal plane detector system consisted of two verti-
cal drift wire chambers'? with 6-mm sense-wire spacing
and a wire plane separation of 10.6 mm. Start timing for
the wire chambers and pulse-height information for parti-
cle identification were provided by two plastic scintilla-
tion detectors mounted behind the second wire chamber.
A focal plane position spectrum for the %Zn(d,p)*"Zn re-
action is shown in Fig. 1, where the ground-state peak is
clearly separated from the first and second excited states
of “Zn. In some cases it was necessary to subtract the
tail of the first excited state from the region of the ground
state before a peak area was calculated. This subtraction
was made using an empirical peak shape modeled on the
strong 2% excited state at 604 keV. Peak areas were
corrected for dead time in the electronics and computer
interface, and for events lost due to processing errors
originating from difficulties with the wire chamber infor-
mation. The sum of all such corrections was less than
15% of the peak area.

Cross sections and analyzing powers were calculated
from peak areas and integrated beam currents obtained
with each polarization state. At the larger scattering an-
gles, the unpolarized and (p,,p,,)=(—3%,0) states were
eliminated from the experimental protocol to save time.

Errors shown in subsequent graphs are statistical, and
represent a reasonable estimate of the point-to-point ran-
dom variations within a particular angular distribution.
In addition, the cross section may be in error by a scale
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FIG. 1. A position spectrum from the focal plane detector of
the K600 magnetic spectrometer. The horizontal axis gives po-
sition in units of 0.01 mm, and the vertical axis gives counts per
channel. The ground state and %* states are indicated.

factor of 10% due to target thickness uncertainties, er-
rors from the beam integration, and difficulties with es-
timating the electronic and wire chamber processing
efficiencies. This error is consistent with a comparison of
the (d,p) and (p,d) cross sections through detailed bal-
ance, which suggests that the (d,p) cross section is larger
than expected from its (p,d) counterpart by a factor of
1.09£0.08. Scale factor errors in the polarimeter analyz-
ing powers are 1% for protons and +3% for deuterons.
The polarizations on target may be uncertain by as much
as 5% due to precession of the quantization axis through
a small angle away from the vertical direction by longitu-
dinal magnetic fields in the cyclotron.

III. THE THREE-BODY MODELS

We discuss the deuteron-nucleus system within the
three-body (n +p +target) model. The transition ampli-
tude for the (d,p) reaction is thus denoted

T(apm<—0d)=(xi,;)¢}'}|V,,,,|¢ad) , (3)

where x! " is the outgoing proton distorted wave, ¢ the
P

transferred neutron bound-state wave function, and ¢ad
the exact three-body wave function for the deuteron-
nucleus system. Thus 1/;0‘1 satisfies the Schrodinger equa-

tion
[E—H,,p—TR—U(r,R)]tﬁad(r,R):O , 4)
where H,, is the n-p relative motion Hamiltonian, T is

the n-p center-of-mass kinetic-energy operator, and
U(r,R) is the sum

U(r,R)=U,(r,R)+U,(r,R) (5)

of the neutron- and proton-target optical potentials eval-
uated at half the incident deuteron energy. The nucleon
optical potentials will be denoted
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U,(r,R)=US|R+1/2))+ U®(|R+r /2]l -0, ,  (6)

where the plus and minus signs relate to the proton and
neutron, respectively. The purpose of three-body models
of the transfer reaction, be they adiabatic, quasiadiabatic,
or CDCC methods, is to provide an approximate solution
for the wave function ¥, for the evaluation of the transi-

tion amplitude of Eq. (3). While the CDCC technique in
principle provides the most detailed and complete calcu-
lation of the three-body wave function, including the
effects of breakup to n-p relative D waves, available cal-
culations do not include this effect or the spin-orbit dis-
tortions within a transfer reaction calculation.'> We will
concentrate here on corrections to the adiabatic approxi-
mation, including fully the effects of the spin-orbit in-
teraction in the case of S-wave breakup. We note that in
the adiabatic approximation D-wave breakup makes no
contribution to the transfer amplitude in the zero-range
limit.

A. The adiabatic approximation

A considerable simpliﬁcation in the solution of the
three-body equatlon is achieved using the adiabatic ap-
proximation.'* This makes the replacement H,,——¢,
the deuteron binding energy, in Eq. (4), under the as-
sumption that the dominant breakup configurations are
states of low relative n-p energy. Thus Eq. (4) reads

[Ecm —Tr —U(r,R)1$S%r,R)=0, @)

where E_ =FE +¢, is the energy of the incident deute-
ron in the center-of-mass frame, and

Y, R)= z v, RISI(r) . ®)

All n-p relative motion configurations in ¢;’: are thus as-

sumed to have the same center-of-mass energy. For the
evaluation of a transfer reaction amplitude, zp;‘: is re-

quired only for those values of r for which the n-p in-
teraction ¥, is significant. Johnson and Tandy'’ showed
that the adiabatic approximation for (d,p) reactions
could also be regarded as the first term in an expansion of
the three-body wave function ¥, ,(r,R) in terms of Stur-

mian states. This leads, for values of r inside the range of

Vops to
Yo L RI=P Sl RI= S 4 RIS,  ©)
oy
where § /¢ is calculated from the distorted-wave-like
equation
[Ecm — T —U*R)IP 4, R)=0 (10)

and the distorting interaction U 4% is
UAR)=(¢,4|V,, Ur,R)¢,) /{4 V,,185) . (11)

Equation (9) is particularly attractive in that, numerical-
ly, the transfer reaction calculations take on the tradi-
tional distorted-wave Born approximation form. It fol-
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lows that finite-range effects, including the deuteron
ground-state D-state component, can be readily included.
Such calculations are referred to as ADWA calculations
in this paper.

An alternative approach to the adiabatic approxima-
tion is to solve Eq. (7) directly. This is straightforward,
since the dynamical dependence of the equation upon r,
in H,,, has been removed. We will make use of this
method in our treatment of the quasiadiabatic approxi-
mation in the following subsection.

B. The quasiadiabatic approximation

The quasiadiabatic approximation of Amakawa,
Austern, and Vincent’ provides the vehicle with which to
improve our description of the center-of-mass motion of
the n-p pair. Specifically, it allows us to break the as-
sumed degeneracy of the n-p center-of-mass energy of all
breakup configurations inherent in the adiabatic approxi-
mation, Eq. (7), above. We provide a brief derivation of
the quasiadiabatic equations used since, unlike Amaka-
wa, Austern, and Vincent, we will include the effects of
nucleon spin-orbit forces consistently under the restric-
tion to S-wave relative n-p configurations.

With only S-wave n-p relative motion, the angular
average of Eq. (4) can be taken to give

[E—H,,— Tz~ U(r,R)]Y, (r,R)=0, (12)
where

—ooo 1

U(r,R)=— [dQ,U(rR). (13)

This interaction consists of central and spin-orbit contri-
butions

U(r,R)=

where L=—iRXVy; and S=1(o,+0o,) are the n-p
center-of-mass orbital angular momentum and n-p total
spin operators, respectively. Explicitly we have

U«r,R)+U*(r,R)L-S, (14)

Or,R)=4 [ dulUsx)+ Usx)], (15)

or,R)=+ [ dpUpx) : (16)
where

=(R*+r/4+rRu)'"?, (17)

and p is the cosine of the angle between r and R. To
proceed, we decompose the solution lllad of Eq. (12) into

its elastic and inelastic (breakup) components by projec-
tion, i.e.,

5, R)I=3 (R)$4(r) (18)
oy
where
el N 2,9
¥, (R) fo dr r’gg*(r)g, (r,R) (19)

and we have normalized the (S-state) deuteron wave
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function to adiabatic calculation ¢Ad ¢l, obtained from the solution of
f °dr rzl¢0d(r 2=1 (20) Eq. (7), as in Egs. (18) and (20), by projection:
° ’ . Ad,el Ad I( o,
d
Defining the breakup component ¢’a “r,R)= 2 '/’ y R)¢ (r), 24)
oy
¥ (r,R)=19, (r,R)—9¢% (r,R), 21
%4 ¢ a4 where

and substituting the projected expression

YAAR)= [ “dr 2 (r)pi4r,R) . (25)
¢gd(r,R)=¢f,‘d(r,R)+¢‘;‘;(r,R) (22) 7404 fo d oy
Our goal is to replace the n-p Hamiltonian H,, by a
number, or function independent of r, as in the adiabatic
T bu approximation, so as to remove the dynamical depen-
[E-H, T (r,R)J¢g,(r,R) dence on r and preserve the simplicity of the calculation.
For th f il hi k
=[T(r,R)+(Ty —E e (r,R) . 23 or the momenF we will denote t is average breakup en-
[U(r,R)+(Tg em ) 195, (r,R) 23) ergy by € and will discuss our prescription for € in the fol-
The breakup component of the wave function thus ap-  1OWing. L
pears as the solution of an equation in which the corre- ~ Lhese steps define what we refer to as the quasiadiabat-
sponding elastic component appears in a source term. It ¢ approximation to “éf tl])ureakgp component of the ! hree-
is well known that the adiabatic approximation provides ~ 00dy wave function y°->", which satisfies the equation
a very good description of the elastic channel. CDCC
calculations? also produce elastic wave functions in excel-
lent agreement with those of the adiabatic approxima- — Ad, el
tion. For the purposes of evaluating the source term in [V R+ (T —Ecm, M (r.R). (26)
Eq. (23) we can thus take, with some confidence, the elas- Making a partial-wave expansion of the functions in-
tic part of the exact wave function zllf,‘d to be that of an  volved, namely,

into Eq. (12) yields an inhomogeneous equation for

[E—E—Tg— U(r,R)]zﬁgZ’h“(r,R)

¢; o (PR)= S (LAlog|lIM)LAo,IM)iLYME)* YAR )X (r,R) , (27)

kR JLMA

where i represents (Qa,bu) or ( Ad,el), the quasiadiabatic equation at the partial-wave level is

d? s LL+1)

Y =3 —‘i[U,L (r,R)+%]

X5(r,R) P 210, (r,R)H(Tg —Eo ) WA(R) (28)

where k is the asymptotic wave number corresponding to E_ , , p the n-p target reduced mass, U;; the J,L matrix ele-
ment of U,

T, (r,R)=T (r,R)+ T *(r,R){JLIL-S|JL) , 29)
and
2 2
(Tx —E o ) X195, R )= ﬁ d‘;2+ 2—5% Xi4er R) . (30)

When calculating the transfer reaction in zero-range approximation, only the coincidence wave functions
X$2-°%(r=0,R) are required.

C. The mean energy prescription

We see from Eq. (28) that € should be interpreted as the mean change in the n-p center-of-mass energy due to the im-
portant breakup components in the wave function. We can, in general, allow € to be J, L, and R dependent. At a
lower energy, Amakawa, Austern, and Vincent used a particularly simple exponential prescription’ for E, suggested by
the asymptotic (R — <« ) mean breakup energy obtained from CDCC calculations near 20 MeV. We take the view that
we are examining the corrections to the lowest-order Johnson-Soper adiabatic treatment and estimate € consistently
within this model. Consequently, we take the breakup part of the adiabatic wave function 1/}"’“' % a5 providing our

lowest-order approximation to the spectrum of n-p relative motion states excited, as a function of R, in a given state
J,L. We replace €, in each J, L partial wave, by

X, R4 (r) H XA (r R )4 (7))

g (R)=
JL (XAd bu r,R ¢d IXAd bu r,R )¢d(r))

(31
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where the bra-ket denotes the radial integration over r. Equation (31) assigns to € the real expectation value of H,, in
the breakup continuum excited in the adiabatic approximation. This equation can also be written, with u,, the reduced

mass of the n-p pair, as

7 (b (r)R/Br)XAL Y (r,R) by (r)(3/3r )X A0 (r,R))

(32)

E(R)=—¢4 2
np

in which form the second term, representing the correc-
tions to the adiabatic approximation, is seen to arise
directly from a consideration of the r dependence of
Ad,bu

XJiL
The mean energy €, (R) is a complicated function of

R at short distances in every J and L state. At values of
R well outside the nucleus, €;; (R ) becomes constant. Its
dependence on J and L are shown in Fig. 2. In fact, the
transfer calculations shown later in this paper show little
sensitivity to whether the full €, (R) or its asymptotic
(R — o0) value is used.

IV. THE FINAL-STATE
PROTON OPTICAL MODEL POTENTIAL

The final-state proton optical model calculations used a
potential of the form of Eq. (14), where

Upr,)==Verfer(r,) —iVafalr,), (33)
SO, j— 1 d
Up (rp)—2 VSORr_Er—fSOR(rP)
p %'p
1 d
TiVsorT 7 — , 34
i¥Vsor r, drpfsoﬂ’p)) (34)
and f; is the conventional Woods-Saxon form factor
i ~1
r,—rb41”3
(r)= |1+ =
Sfilry) exp .

The inclusion of an imaginary spin-orbit term provides
a much superior fit to the data near 100 MeV. The po-
tential parameters were adjusted to minimize y? for the

Asymptotic mean energy

—— J=L+1
20 .. J=L
aea J= =1
>
[
2
>
oy
210.0
')
0.0

0.0 10.0 20.0 30.0

Partial wave L

FIG. 2. Large R behavior of the mean energy €,, (R) of Eq.
(31) as a function of the n-p center-of-mass partial wave L.

(X200 (r, Ry ()X 4%(r, R ) y(r))

f

comparison of the optical model calculation with the
measured cross section and vector analyzing power angu-
lar distributions. The calculations were made with the
program SNOOPY$Q. '® The final values of the parameters
are given in Table I and the resulting angular distribu-
tions are shown, together with the data, in Fig. 3.

V. CALCULATIONS WITH THE ADWA MODEL

The ADWA calculations were finite range, including
transfer from both the S and D states of the deuteron,
and contained corrections for nonlocality in the deuteron
and proton channels.!® The nonlocality parameters were
taken from Ref. 3. Calculations were performed using
the program TWOFNR.!® The bound neutron wave func-
tion was calculated in a Woods-Saxon well with shape pa-
rameters ro=1.25 fm and @ =0.65 fm, and a spin-orbit
potential depth Vgogr =6.0 MeV. The real well depth
was adjusted to reproduce the neutron separation energy.
The adiabatic three-body wave function ¥ ;‘:, Eq. 9),

was calculated from the underlying nucleon-nucleus opti-
cal potentials of Becchetti and Greenlees.”® The folding
integral, Eq. (11), was carried out for the Reid soft-core
interaction and deuteron wave function,?! and the result-
ing adiabatic distorting potentials U 4 fitted to conven-

5Zn(p,p) ¥'zn 918 Mev
T T T

T

10000

do/d) (mb/sr)
3
I
|

|
o° 40° 80°
Bc.m.
FIG. 3. Angular distributions of the cross section and

analyzing power for 91.8-MeV protons scattering from 'Zn.
The curves are best-fit optical model calculations.
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TABLE I. Proton and adiabatic distorting potential parameters (units are in MeV and in fm).

Optical Adiabatic
potential potential
p+Zn? d +%Zn®
Energy 91.8 88.2
Real central vV 27.78 83.857
r 1.251 1.161
a 0.694 0.798
Imaginary central (volume) 4 7.04 15.952
r 1.473 1.378
a 0.604 0.6177
Real spin-orbit 4 4.941 6.2
r 1.065 1.01
a 0.692 0.75
Imaginary spin orbit 14 —1.099
r 1.002
a 0.546
Coulomb radius 1.25 1.25

#Proton optical potentials follow Eqgs. (33) and (34).

"Deuteron adiabatic potential form factor follows Ref. 17.

tional Woods-Saxon potential form factors. These poten-
tial parameters are listed in Table I.

Angular distributions of the cross section, deuteron
vector (A4,) and tensor ( 4,,) analyzing powers and pro-
ton polarization (p) are shown in Fig. 4 along with the
ADWA calculations. The spectroscopic factor for these
calculations was chosen to be 0.20, which provides a
good overall description of the size and exponential de-
cline of the differential cross section. Problems with
near-side interference are not so apparent here since the
cross section represents a sum of oscillating terms, each
of different phase and period. The most significant devia-
tions are forward of 25°.

The lack of a well-developed near-side amplitude is
most evident in the spin observables, where the oscilla-
tions clearly present in the measurements are essentially
absent from the calculations. General trends, such as the
sign, magnitude, and average slopes of the angular distri-
butions, depend on the dynamics of the dominant far-side
contribution and are qualitatively reproduced.

Figure 5 shows the deviations from the simple relation-
ships of Egs. (1) and (2). If we define

A,=—(2+4,,)/3 and p=—(1424,,)/3,  (35)

then the deviations may be expressed as Ay~2fy and
p—p. The 4,— A, calculations for *Zn differ in two
ways from those for !'Sn (see Ref. 5). First, a greater
fraction of the difference function is described by the
ADWA calculations. The large values backward of 40°
are attributable almost entirely to the deuteron D state.
Second, the difference function shows an interference pat-

tern (which may be increasing with smaller target mass
and / transfer). There is still a factor-of-2 discrepancy in
the middle of the angular range which could be due to ei-
ther insufficient spin flip in the deuteron channel or the
effects of missing strength in the near-side amplitude.

*zn@,p)*'zn  E4=88.2 MeV

T T T T T

(do/dQ) (pb/s) ||

FIG. 4. Angular distributions of the cross section, vector
(A,) and tensor ( 4,,) analyzing powers, and the outgoing po-
larization (p) for the %Zn(d,p)*’Zn ground-state transition.
The dashed curves represent adiabatic calculations; the solid
curves represent quasiadiabatic calculations.
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*Zn (d, p)GTZn
T T

1 1

o.sa"-,_: 7y #m —

FIG. 5. Angular distributions of the difference functions
A,— A, and p—p for the *Zn(d,p)*’Zn ground-state transi-
tion. The long-dashed (short-dashed) curve represents adiabatic
calculations without (with) the deuteron D state. The solid
curve représents quasiadiabatic calculations (without the D
state).

Also shown in Fig. 5 are new measurements involving
the proton polarization. Here the effects on p —p of the
deuteron D state are significant only at very forward an-
gles where the assumption of far-side dominance that
gives rise to Eq. (1) cannot be supported. Again, an in-
terference pattern is present in the difference function,
and the calculation falls short of the data by about a fac-
tor of 2. Since in this case the difference is not sensitive
to deuteron channel spin-flip effects, the combined evi-
dence points toward a missing near-side strength as the
major difficulty with these calculations.

VI. EMPIRICAL EXTRACTION
OF THE NEAR-SIDE AMPLITUDE

Following the discussion in Johnson, Stephenson, and
Tostevin,® we can associate the two partial cross sections,
(do/dQ)y and (do /dQ)_,, with the dominant far-side
projection of amplitudes with quantum numbers
(m,oplod )=(3,10) and (3,—1]—1), respectively.
In the ''%Sn study, these two amplitudes were successfully
modeled by an expression based on simple poles in the
upper and lower halves of the I plane. This generated
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nearly exponential angular distributions for the far-side
and near-side amplitudes, except for a rolloff at small an-
gles governed by the order of the singularity.

The measurements of (do/d), and (do/dQ)_, for
Zn(d,p)*"Zn are shown in Fig. 6. For (do /dQ), the
superimposed interference pattern is strongest at the mid-
dle of the angular range and becomes weaker at the ends,
while for (do /dQ)_, the opposite is true. Thus it is al-
ready clear that an exponentially falling near-side ampli-
tude will be unable to satisfactorily model these measure-
ments. We must abandon our simple pole model if we are
to make a useful quantitative estimate of the required
near-side strength. As a result, we will not be able to esti-
mate the partial wave which makes the largest contribu-
tion to the required near-side amplitude, as was done in
Ref. 6.

To obtain an empirical representaticn of the polarized
cross sections, we extended the fitting function of Ref. 6
to be

. (—T6+76?
Prar ‘/m exp 6°) ’
v—1
= —Tr rn2 T
Pnear === [exp(—['0+T'6")+ R exp( —T"0)] ,
(36)
do

Ez Az(p%zar—'—(‘12—+-‘7 2)‘pr2'near

+2A4[a cos(AB)+a sin(A0)1pg, Prear -

The parameters required to model (do/dQ), and
(do/dQ)_, are listed in Table II, and the model curves

*®zn(d,p) *'zn

1000 ——T———————
00 - (do/dR), |
10 - -
(N -
Ol .

| 1 ] 1 ! | 1 1

1000

0.l

00l

ec.m.

FIG. 6. Angular distributions of the partial cross sections
(do/dQ)y and (do /dQ)_; in units of ub/sr. The curves were
generated by Eq. (36) using the parameters of Table II.
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TABLE II. Model amplitude parameters.

(do /dQ), (do/dQ)_,
A 57.7+1.7 119.0+2.2
a —0.09+0.18 —2.5+1.4
a —0.06:+0. 14 —4.6+2.7
r 3.6240.10 5.120+0.042
Y —0.463+0.075
r —6.5+5.0 —6.143.3
Y —6.743.2 —16.9+5.1
A 22.87+0.82 17.20+0.30
R 0.19+0.34
r 2.28+0.25
/v 3.2 5.9

are shown in Fig. 6. Each far- and near-side amplitude
contains an additional 6? dependence. For (do/dQ),
this additional term is needed in the far-side amplitude to
reproduce a gentle change in the slope of the cross sec-
tion with angle. When this 6? term becomes large, as it
does in the corresponding near-side amplitude, that am-
plitude takes a Gaussian shape, and the slope parameter
I'' becomes negative and controls the angle at which the
Gaussian is at a maximum. For (do /d)_, an exponen-
tial far-side amplitude is adequate, and the small-angle in-
terference pattern is well reproduced by a Gaussian
near-side term. To restore the interference pattern at
large scattering angles, a second exponential piece with a
small slope is added to the near-side amplitude.

Figure 7 shows two bands for (do/d), and
(do /dQ)_, corresponding to the limits of one standard
deviation in the model of the far- and near-side ampli-
tudes. The size of these bands has been increased by
V'x*/v to compensate for imperfections in the model.
The full error matrix was used; correlations among pa-
rameters often produce a small error band even when the
near-side coefficients (a and @) have individual errors
that include zero. The Gaussian shapes of the near-side
amplitude are clearly evident in the shape of the error
band. (The use of purely exponential amplitudes results
in a significantly poorer reproduction of the polarized
cross sections, and error bands consistent with those
shown in Fig. 7.)

VII. CALCULATIONS WITH THE
QUASIADIABATIC MODEL

The quasiadiabatic transfer reaction calculations were
performed in zero-range approximation, but included
corrections for nonlocality in the deuteron and proton
channels. The nonlocality parameters and neutron
bound-state wave function were the same as for the
ADWA calculations. Calculations were performed using
a version of the program TWOFNR, modified to read
externally calculated wave functions. The inhomogene-
ous quasiadiabatic radial equation, Eq. (28), was solved,
at coincidence, with U(r=0,R) derived from the
nucleon-nucleus optical potentials of Becchetti and
Greenlees. The mean energy prescription of Egs. (31)
and (32) was used, evaluated numerically from the solu-
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tion of the adiabatic equation.

The calculated quasiadiabatic angular distributions of
the cross section, vector (4,) and tensor ( 4,,) analyzing
powers, and proton polarization (p) are shown in Fig. 4
(solid curves) together with those of the ADWA calcula-
tions (dashed curves). The spectroscopic factor for these
calculations was taken to be 0.30. While the cross section
angular distribution agrees less well with the general
slope of the measurements, there is a dramatic improve-
ment in the ability of the new calculation to match the in-
terference pattern present in the middle of the angular

Ifl = Vsin6/8
I 1 I I

@ mlog=(32[0> |

(@), |

L \"”
o1} / AN i
i /\/ \ T i
near \ /7
» - / \ N N
g ool /// \,’I /////////,,\ -
g ‘. i 1' i
:g 100]-") @ mlagdy= 531-1) ]
L\ ™ doy |
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% \\69 ]
g N ]
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FIG. 7. Angular distributions of the amplitudes {ma,|o,)
separated into far-side and near-side components. The solid
(dashed) curves show this separation for the quasiadiabatic (adi-
abatic) calculation. These amplitudes have been multiplied by
V'sinf/6 to emphasize the linearity of the far-side component.
The far-side and near-side amplitudes extracted from the partial
cross-section angular distributions of Fig. 6 are indicated by
hatched regions that span one standard deviation above and
below each amplitude. The far-side uses vertical hatching and
the near-side diagonal hatching. For (do/dQ)_, a dash-
double-dotted line has been added for clarity to represent the
experimental near-side amplitude.
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range for the spin observables. The greatest improve-
ment comes for the polarization; the best reproduction of
the size of the interference pattern is for the vector
analyzing power. In comparing these calculations to the
full range of the measurements, effects of the deuteron D
state, which are known to be present at forward angles in
the tensor analyzing power, are missing. So a failure at
this point to reproduce the general trend of the spin ob-
servables in this angle range should not be regarded as a
problem with the quasiadiabatic prescription.

Figure 5 shows the calculated deviations from the sim-
ple relationships of Egs. (1) and (2). Here the most strik-
ing improvements are the significantly larger values in
the middle angle range, and the ability to reproduce
much of the interference pattern in that angular range.
Again, the D-state effects, responsible in the adiabatic
calculations for the small- and large-angle rise, are ab-
sent, and the new calculation follows the trend of the S-
wave part of the adiabatic calculation at small and large
angles. It remains to be seen whether the addition of the
deuteron D-state component can reproduce the observed
interference oscillations at the larger angles.

Since the deuteron D state is omitted from the
quasiadiabatic calculation, agreement in detail with the
angular distributions is not possible. Perhaps a better in-
dication of the ability of the quasiadiabatic scheme to
model the reaction mechanism correctly lies in the com-
parison with the size of the far-side and near-side ampli-
tudes described in the preceding section. The far- and
near-side components of a given element of the scattering
matrix may be calculated by changing the partial-wave
expansion according to Eq. (2) of Ref. 6. Far each of the
partial cross sections, (do/d{l), and (do/dQ)_,, the
largest contribution to the scattering matrix element was
chosen for this separation. This was (map log?
=(3,1|0) and (3,—1|—1) for the two partial cross
sections, respectively. The dashed lines in Fig. 7 show
the far- and near-side amplitudes for the adiabatic calcu-
lation, renormalized to best reproduce the far-side term.
The solid lines show a similar result for the quasiadiabat-
ic case. For both partial cross sections, the near-side
term is larger in the quasiadiabatic calculation. For
(do /d ), the larger near-side term agrees well with the
empirical amplitude. Near 0°, the irregular Legendre
function used in the separation makes both far- and
near-side calculations tend to infinity, and there we ex-
pect disagreement with the empirical formula. For
(do/dQ)_,, the agreement is less quantitative, in part
because of the tendency of the small-angle calculations to
rise, and because of the poor knowledge of the large-angle
near-side amplitudes (despite a clear interference pattern
in the large-angle partial cross section). In general, the
scattering energies associated with the quasiadiabatic cal-
culation result in larger near-side amplitudes, in agree-
ment with what is required experimentally.

VIII. CONCLUSIONS

Large [ transfer j=[—1 (d,p) transitions at energies
near 100 MeV provide a particularly stringent test of
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three-body reaction models. The spin coupling involved
and small spin-flip terms present in this energy regime en-
sure that certain amplitudes that might be expected to
contribute in the process are not significant. The result is
that the surviving amplitudes, and their interference with
other smaller components, can be probed at a level hith-
erto not thought possible.

In this paper we report new measurements of the spin
observables for the j=I/—1 transition to the 3~ ground
state in the %Zn(d, p )®7Zn reaction. These data were tak-
en for the purpose of exploring further the inadequacies
in the three-body treatment of transfer reactions provided
by the adiabatic distorted-wave approximation model.
Problems noted previously for the ''®Sn(d,p)'!"Sn reac-
tion were also evident in the present data. These includ-
ed disagreements with theoretical relationships, exact in
the limit of far-side dominance, that ADWA calculations
indicate should be nearly satisfied, and the presence of a
near-side/far-side interference pattern absent in the
theoretical calculations. The nearly overlapping features
of the two available sets of data indicate that these
difficulties are likely to be common characteristics of
(d,p) reactions at these bombarding energies, and to de-
pend little on target nucleus or / transfer, provided the /
transfer satisfies closely the requirements of angular
momentum matching.

Unlike the ''%Sn study, the %*Zn measurements showed
interference patterns in the difference functions, such as
A,— Zy. Interference patterns in the polarized cross sec-
tions, (do /dQ), and (do /dQ)_,, had more complicated
angular dependences. It was no longer possible to model
the missing near-side amplitudes using a formula of the
single-pole form. Nevertheless, a phenomenological
model could be used from which the size, or at least an
upper limit, for the missing amplitude could be obtained
as a function of scattering angle.

The earlier exhaustive analysis of the amplitude struc-
ture for !'®Sn suggested that the inadequacy with the
ADWA might lie with the fixed value of the n-p center-
of-mass energy assumed in the adiabatic model. Using
the quasiadiabatic approximation, extended to include
spin-orbit interactions and a plausible (partial-wave and
radially dependent) mean breakup energy prescription,
we have taken these modified center-of-mass energy sys-
tematics into account. This leads to a calculational
scheme in which the breakup portion of the adiabatic
wave function is replaced by a breakup component calcu-
lated using a more realistic center-of-mass energy. Zero-
range calculations made with this new scheme indicate
that the two major aspects of the discrepancy noted pre-
viously, namely the failure to obey the far-side dominant
relationships [Egs. (1) and (2)] and the presence of a large
near-side amplitude, are essentially explained. Clearly
the calculations need to be extended to include finite-
range and D-state effects, and should cover a number of
(d,p) transitions, in order to assess the nature of any sys-
tematic improvements over the simpler ADWA model.
The work reported here suggests, however, that a more
complete calculation with the three-body framework,
such as the CDCC method, may be able to reproduce in
detail the reaction data.
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