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Abstract. The cross sections for the knockout of two correlated nucleons
from light nuclei are considered. These reactions may offer a means for pop-
ulating and identifying low-lying states of very exotic nuclear species and
also a probe of two-nucleon spectroscopy and correlations in rare nuclei. A
calculation scheme that combines the full shell model two-nucleon spectro-
scopic amplitudes with eikonal reaction theory is discussed. The predictions
of the method are compared with existing data on inclusive two-neutron
and two-proton removal from 12C and new, more exclusive data on two-
proton removal from 28Mg. The combined shell model structure amplitudes
and reaction dynamics predictions in these exploratory studies are in good
agreement with the available measurements.

1. Introduction

Single-nucleon knockout reactions, both with [1, 2, 3, 4] and without [5, 6, 7]
coincident gamma-ray detection, have been the subject of numerous studies.
Since their first application to the phosphorus isotopes [1] single-nucleon
knockout experiments (with gamma-ray detection) have been tested exten-
sively and used to study the single-nucleon spectroscopy of light [8, 9, 10,
11, 12, 4, 13] and medium-mass nuclei [14, 15, 16], in particular the relative
and absolute single-nucleon spectroscopy of neutron- and proton-rich nuclei
[17, 14, 13, 15, 16]. Recent reviews can be found in [3, 2, 11].

Single-nucleon knockout reactions using fast intermediate energy ex-
otic beams in inverse kinematics are highly peripheral reactions. The resid-
ual nuclei, having had one nucleon removed via the diffractive dissociation
(elastic breakup) or stripping (target absorption) mechanisms on a thick,
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absorptive light nuclear target, are detected in the extreme forward di-
rection with velocities close to those of the incident beam particles. The
method has been demonstrated to be highly sensitive [3]. Analyses of such
data using eikonal few-body reaction theory have also been shown to yield
results of high accuracy [18, 19, 20, 7] and with practical advantages over
alternative direct reaction approaches [11]. This is allowing a systematic
study of effective interaction theory predictions, such as from the shell-
model, and of correlation effects on weakly and strongly-bound neutron-
and proton-orbitals in nuclei.
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Figure 1. Schematic of the inelastic breakup mechanism in the peripheral, sudden
two-nucleon knockout reaction. The A-body residue is left in one of a number of final
states and the target nucleus is excited by the two removed nucleons, denoted by T + 2.

Generalization of these methods to two-nucleon knockout, Fig. 1, and
the magnitudes of the associated cross sections are of interest for two rea-
sons. First, to populate and identify the ground- and low-lying excited-
states of exotic asymmetric nuclei. Second, as a potential spectroscopic
probe of two-nucleon correlations in exotic systems and hence a means to
assess modern nuclear structure calculations of these effects. It was recently
proposed that two-proton removal reactions from nuclei on the slightly-
neutron-rich side of the valley of beta stability, at high energy, do proceed
as direct processes. The separation energies and nucleon evaporation thresh-
olds in such systems suggest very strongly that direct two-proton removal
will be the only significant path to bound residue final states. Compelling
experimental evidence was also offered by both the inclusive cross section
and the parallel momentum distribution of the reaction residues measured
in the two-proton knockout from 28Mg [21].

Unlike single-nucleon knockout spectroscopy, two-nucleon removal reac-
tion theories do not factorize simply into a structural (spectroscopic) factor



TWO-NUCLEON KNOCKOUT ..... 3

and a dynamical (single-particle) cross section. The reaction dynamics and
structure are now strongly linked, the reaction amplitudes being a coherent
linear superposition of the contributing two-nucleon configuration terms,
e.g. [22]. In this paper we present an eikonal model scheme for the cal-
culation of the stripping (inelastic breakup) contribution to two-nucleon
removal. Our approach combines the two-nucleon spectroscopic amplitudes
from the shell-model with a generalization of the few-body eikonal-based
reaction theory. The latter has been discussed extensively in the case of
one-nucleon knockout reactions [3, 11].

These formal developments are presented in the next section and the
quantitative theoretical predictions of the model are then compared with
existing inclusive measurements for 12C [23] and the new more exclusive
data for two-proton knockout from 28Mg [21].

2. Formalism

We discuss two-nucleon knockout from a primary or secondary projec-
tile beam at intermediate energy. The projectile is an antisymmetrized
A+2 nucleon system with many-body wave function Ψ(A, 1, 2). Specifically,
Ψ(A, 1, 2) represents the shell model ground state of the nuclei of the beam
with total angular momentum and isospin Ji and Ti and projections Mi

and τi. Following the sudden removal of two-nucleons in a peripheral high
speed collision with the target, the A-body residual (or core) nucleus will
be found in one of a set of final states Φ(A) with spin and isospin Jf and
Tf with projections Mf , τf . The isospin and angular momentum couplings
involved are summarized in Fig. 2 where the two active removed nucleons
are assumed to couple to an total angular momentum eigenstate I, µ with
total isospin T, τ .

2.1. TWO-NUCLEON AMPLITUDES

The two removed nucleons (1 and 2) are assumed to be stripped from a
set of active and partially occupied single-particle orbitals φj . These have
spherical (shell model) single-particle quantum numbers n(`s)j, m.

The shell model two-nucleon overlap functions of these two nucleons in
the projectile ground state, relative to a specified residue or core nucleus
final state f , is a coherent sum over the contributing two-particle configu-
rations, as

Ψ(f)
JiMi

(1, 2) ≡ 〈ΦJf Mf
(A)|ΨJiMi(A, 1, 2)〉

=
∑

Iµα

C
JiJf I
α (IµJfMf |JiMi)[φj1(1)⊗ φj2(2)]Iµ , (1)
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Figure 2. Schematic of the angular momentum couplings used in the description of the
two-nucleon knockout reaction.

where α ≡ {n1`1j1, n2`2j2} labels the available nucleon-orbital pairs which
contribute. In this equation

[φj1(1)⊗ φj2(2)]Iµ = −N12〈1, 2|
[
a†j1 ⊗ a†j2

]
Iµ
|0〉

= Dα

∑
m1m2

(j1m1j2m2|Iµ)
[
φm1

j1
(1)φm2

j2
(2)− φm1

j1
(2)φm2

j2
(1)

]
(2)

is a normalized, antisymmetrized nucleon-pair wave function and Dα =
N12/

√
2 = 1/

√
2(1 + δ12). So as not to complicate the notation we do not

show the isospin labels and coupling explicitly but comment later on how
to include these into the formalism, for completeness. The C

JiJf I
α in Eq. (1)

are the signed two-nucleon amplitudes which carry the structure calculation
details; in particular, the information on the parentage and phase of each of
the participating two-nucleon configurations in the projectile ground state
with respect to the final states f of the residue.

2.2. EIKONAL MODEL OF TWO-NUCLEON STRIPPING

We will calculate the dominant stripping contribution to the two-nucleon
removal cross section. This is the following projectile ground state average
of the nucleon absorption and residue transmission factors,

σstr =
1

2Ji + 1

∑

Mi

∫
d~b 〈ΨJiMi | |Sf |2(1− |S1|2)(1− |S2|2)|ΨJiMi〉 , (3)
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integrated over all projectile center-of-mass (cm) impact parameters b. Here
the Si are the eikonal S-matrices [18] for the scattering of the two nucleons
(1,2) and of the A-body residue f from the target. Each is a function of the
impact parameter of that constituent. These Si will be assumed to be spin-
independent. This cross section expression reflects the stripping (inelastic
breakup) mechanism in which the residue interacts at most elastically with
the target, survives the collision, and escapes to infinity: reflected by |Sf |2.
The two removed nucleons interact inelastically with the target and are
absorbed from the elastic channel: as described by their absorption proba-
bilities (1− |S1|2) and (1− |S2|2).

We make two reasonable but simplifying approximations. We first as-
sume that the residue-target S-matrix is diagonal with respect to different
final states f of the residue and that this diagonal interaction is the same as
that for the residue ground state (denoted Sc) for all final states f . This has
been termed the spectator-core approximation when used in single-nucleon
knockout [24]. It assumes that the amplitudes for dynamical excitation of
the core during the collision are small.

We also neglect explicit recoil effects associated with the heavy mass A
residue. It follows that

〈ΦJ ′
f
M ′

f
(A)||Sf |2|ΦJf Mf

(A)〉 = |Sc(b)|2δff ′δJf J ′
f
δMf M ′

f
, (4)

with b the projectile cm impact parameter. As we consider here only nu-
cleon knockout from deeply-bound single-particle states, we do not calcu-
late other possible contributions to the two-nucleon removal cross section,
which we assume are small. These involve diffraction dissociation processes
in which one or both nucleons are dissociated from the projectile by their
elastic collisions with the target.

Having made the spectator-core and the no-recoil approximation, the
inclusive stripping cross section is the incoherent sum σstr =

∑
f σ

(f)
str of the

exclusive residue final state cross sections. Defining Ĵ2 = (2J + 1), these
are

σ
(f)
str =

∫
d~b |Sc|2 1

Ĵi
2

∑

Mi

〈Ψ(f)
JiMi

|(1− |S1|2)(1− |S2|2)|Ψ(f)
JiMi

〉 , (5)

where the bra-ket denotes integration over the spatial coordinates of the
two removed nucleons, ~r1 and ~r2, and the integration over all spin variables,
denoted by

〈Ψ(f)
JiMi

| . . . |Ψ(f)
JiMi

〉 =
∫

d~r1

∫
d~r2 〈Ψ(f)

JiMi
| . . . |Ψ(f)

JiMi
〉s . (6)
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Since all the particle-target S-matrices are assumed spin-independent
we require only the spin-average of the two-nucleon wave functions, that is

1

Ĵi
2

∑

Mi

〈Ψ(f)
JiMi

|Ψ(f)
JiMi

〉s =
1

Ĵi
2

∑

Mf MiIµαI′µ′α′
C

JiJf I′
α′ C

JiJf I
α

× (I ′µ′JfMf |JiMi)(IµJfMf |JiMi) (7)

× 〈[φj′1(1)⊗ φj′2(2)]I′µ′ |[φj1(1)⊗ φj2(2)]Iµ〉s .

Upon using Eqs. (1) and (2) this reduces to

1

Ĵi
2

∑

Mi

〈Ψ(f)
JiMi

|Ψ(f)
JiMi

〉sp =
∑

Iαα′
2DαDα′

C
JiJf I
α′ C

JiJf I
α

Î2

×
∑

m1m2m′
1m′

2µ

(j1m1j2m2|Iµ)(j′1m
′
1j
′
2m

′
2|Iµ)

×
[
〈φm′

1

j′1
|φm1

j1
〉s〈φm′

2

j′2
|φm2

j2
〉s − 〈φm′

1

j′1
|φm2

j2
〉s〈φm′

2

j′2
|φm1

j1
〉s

]
. (8)

We will refer to terms from the first product in the last bracket as being
direct and terms from the second product as exchange. The general form
of this spin-average for each single-particle state (with the nucleon spin
s = 1/2 understood) has the following multipole expansion [11]

〈φm′
j′ |φm

j 〉s =
∑

kq

(j′m′kq|jm)
[ ˆ̀̀̂ ′ĵ′√

4π
(−1)2s+j+j′−`(`0`′0|k0)

× W (jsk`′; `j′)uj′`′(r)uj`(r)Ykq(~̂r)
]

,

≡
∑

kq

(j′m′kq|jm) 〈〈j′`′|Okq(~r)|j`〉〉 , (9)

where the uj`(r) are the single-particle radial wave functions and 〈〈. . .〉〉 is
used as shorthand for the square-bracketed expression. These single-particle
spin averages actually enter the stripping calculation as a product with their
corresponding nucleonic absorption factors Ai = (1 − |Si|2) and are inte-
grated over the appropriate single particle position coordinate. Explicitly,

∫
d~rA〈φm′

j′ |φm
j 〉sp =

∑

kq

(j′m′kq|jm)
∫

d~rA〈〈j′`′|Okq(~r)|j`〉〉

≡
∑

kq

(j′m′kq|jm) {j′`′|Fkq(b)|j`} , (10)

which defines the brackets {j′`′|Fkq(b)|j`} that are now functions only of the
angular momenta indicated and the projectile cm impact parameter b. Upon
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simplifying the remainder of the angular momentum coupling coefficients
we can write

1

Ĵi
2

∑

Mi

〈Ψ(f)
JiMi

|A1A2|Ψ(f)
JiMi

〉 =
∑

αα′I
2DαDα′C

JiJf I
α′ C

JiJf I
α ĵ1ĵ2

×
∑

KQ

(−)Q

K̂2
[direct− exchange] , (11)

where

direct ≡ (−)I−j1−j′2W (j1j
′
1j2j

′
2;KI){j′1`′1|FK−Q(b)|j1`1}

× {j′2`′2|FKQ(b)|j2`2}, (12)

exchange ≡ (−)j′2−j1W (j1j
′
2j2j

′
1; KI){j′2`′2|FK−Q(b)|j1`1}

× {j′1`′1|FKQ(b)|j2`2}. (13)

Referring back to Eq. (5), we note that the stripping cross section σ
(f)
str to a

given residue final state f , with angular momentum Jf , is now calculated
using Eq. (11), since

σ
(f)
str =

2π

2Ji + 1

∑

Mi

∫
db b |Sc|2〈Ψ(f)

JiMi
|A1A2|Ψ(f)

JiMi
〉. (14)

2.3. ISOSPIN DEPENDENCE

The inclusion of isospin labels in Eq. (1) and the subsequent equations
leads to simple modifications. An additional phase factor of (−)1+T must
be inserted in front of the exchange term in Eq. (11) and the two-nucleon
amplitudes C also depend on T . The final expression for the stripping cross
section, Eq. (14), must also be multiplied by the square of the overall isospin
coupling Clebshe-Gordan coefficient (TτTfτf |Tiτi).

3. Two-Nucleon Knockout from 12C

As a first orientation of our approach we consider two-neutron and two-
proton knockout from 12C. In the next Section we argue, on the grounds
of threshold energies, that the direct two-nucleon knockout reaction mech-
anism is expected to be applicable to studies of large regions of unstable
nuclei. In the case of two-nucleon knockout from 12C the argument for the
reaction being direct is somewhat different. We note that the shell model
predicts that the total spectroscopic strength for p-state single-nucleon re-
moval from 12C is exhausted in knockout to the bound states in the mass
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A = 11 systems [17]. Non-direct routes of populating the A = 10 residues,
by knockout into the A = 11 continuum followed by nucleon evaporation,
are thus expected to be highly suppressed.

The reasons for considering 12C are twofold. First, 12C, 10C and 10Be
have wave functions that are rather well known - the p-shell model having
high predictive power. Second, the existing experimental cross sections for
two-nucleon knockout from 12C [23] are accurate to ≈ 10% and were taken
at high energies where the eikonal model will be at its most reliable. The
data were obtained in high-energy 12C+12C fragmentation at 250, 1050 and
2100 MeV per nucleon incident energy (see Table 1). Knockout of an np-
pair is not considered here because (i) of the complexity of the 10B level
scheme below the nucleon thresholds, and (ii) as many of the known 10B
excited states are absent from the truncated-space shell model calculation
used. The np-knockout cross sections are enhanced significantly over those
for 2n and 2p and deserve further study.

The simplest of the reactions is 2n removal to 10C, with only two bound
states below the nucleon threshold: the 0+(gs) and 2+(3.354 MeV) excited
state [25]. In the 2p knockout reaction to 10Be we must include population
of the 0+(gs), the 2+ states at 3.368 MeV and 5.958 MeV, and a second 0+

state at 6.179 MeV, all of which lie below the nucleon threshold of 6.812
MeV [25]. The two nucleons are stripped from the p3/2 and p1/2 single-
particle orbitals. Their radial wave functions are calculated in a Woods-
Saxon potential with radius and diffuseness parameters r0 = 1.310 fm and
a = 0.55 fm, as were used in the one-nucleon knockout calculations of [17].
Since the 2n and 2p separation energies are 31.841 MeV and 27.184 MeV
an average two-nucleon separation energy of 29 MeV was assumed and the
binding potential depth was adjusted to give a single-nucleon separation
energy of 14.5 MeV. The shell-model two-nucleon spectroscopic amplitudes,
C

JiJf I
α were calculated for each 10Be and 10C final state.

The S-matrices in Eq. (14) have been calculated using the optical limit
of Glauber theory [26]. The essential input parameters are the free nucleon-
nucleon (NN) cross sections for the energies of interest, e.g. [27]. A zero-
range interaction was assumed. The 12C, 10Be and 10C density distributions
were assumed to have a Gaussian shape with root mean squared (rms)
matter radii of 2.32 fm, 2.30 and 2.30 fm.

The results are given in Table 1. The experimental cross sections are
taken from [23]. There is good agreement with these inclusive experimental
data in these stable p-shell test cases. In the next Section we show that more
exclusive experiments, with data to specific residue final states, provide an
opportunity to investigate the role of two-removed-nucleon correlations.
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TABLE 1. Calculated and measured inclusive two-proton and two-neutron
knockout cross sections from 12C (in mb) (on a 12C target) at 250, 1050 and
2100 MeV/nucleon. Calculations use the shell model two-nucleon amplitudes
of reference [28]. The experimental values are taken from [23, 29].

Energy/nucleon 250 MeV 1.05 GeV 2.1 GeV

10Be Theoretical 5.82 5.33 5.15
10Be Experimental 5.88 5.30(30) 5.81(29)

10C Theoretical 4.26 3.91 3.84
10C Experimental 5.33(81) 4.44(24) 4.11(22)

4. Two-Nucleon Knockout from 28Mg

It is proposed, following [21], that two-proton removal from exotic nuclei
having even a modest neutron excess will proceed as a direct reaction. We
discuss two-proton removal from 28Mg, with only two neutrons more than
stable 26Mg. The energetics of these N = 16 isotones, shown schematically
in Fig. 3, suggest strongly that direct two-proton (−2p) removal is the only
probable route to bound states of 26Ne. Supporting experimental evidence
was offered by both the measured 9Be(28Mg,26Ne)X inclusive cross section
and the observed parallel momentum distribution of the reaction residues
[21]. Here we discuss and elaborate upon the calculations presented there
with emphasis on the inclusive and partial knockout cross sections.

We consider the knockout of two protons from 28Mg at 82 MeV per
nucleon. The 26Ne final states populated are the 0+ ground state and the
2+ (2.02 MeV), 4+ (3.50 MeV) and second 2+ (3.70 MeV) excited states
[30, 31, 32, 21]. The measured cross sections are collected in Table 2. The
calculations of the S-matrices at this lower energy assume a Gaussian NN
effective interaction [8], the strength being determined by the free NN cross
sections [27]. The densities of the target and the core were also assumed to
have Gaussian shapes with rms matter radii of 2.36 for 9Be and 2.90 fm for
26Ne [33]. In our full calculations the removed protons are stripped from
the 0d5/2, 0d3/2 and 1s1/2 orbitals. The spectroscopic coefficients C

JiJf I
α

were calculated with the code oxbash [34] in the sd-shell model space
with the USD Hamiltonian [35]. The single-particle wave functions uj`(r)
are calculated in a Woods-Saxon potential well with radius and diffuseness
parameters 1.25 fm and 0.70 fm. The strength of the binding potential is
adjusted to reproduce the physical two-proton separation energy, S2p =
30.03 MeV.
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Figure 3. Energy diagram of the neutron-rich N = 16 isotones 28Mg, 27Na and 26Ne,
showing the single-neutron (ν) and proton (π) separation energies for each nucleus. The
diagram shows that non-direct population of the bound states of 26Ne, by one-proton
removal to excited 27Na followed by proton evaporation, would involve states high above
the (much lower) neutron evaporation threshold and so is expected to be negligible.

4.1. UNCORRELATED STRIPPING

Assuming that the 28Mg valence proton structure is the extreme single-
particle limit, [0d5/2]4, several results follow. Given our model parameters,
the calculated (unit) cross section for removal of a [0d5/2]2 pair is σ22 = 0.29
mb. This sets the scale for the anticipated cross section. Based on an as-
sumed [0d5/2]n ground state (with n=4 for 28Mg) this predicts an inclu-
sive cross section of n(n − 1)σ22/2 or 1.8 mb, in broad agreement with
the measured value of 1.50(10) mb in Table 2. In this uncorrelated limit
the cross sections (and associated spectroscopic strengths Sunc(Jπ

f )), for
removal of a pair from a 0+, [j]n occupied sub-shell, will also be spread
between different Jπ

f final states according to their coefficients of fractional
parentage ((jn−2)vJf , (j2)Jf |(jn)0), where v is the seniority of the state
[22]. This yields Sunc(0+) = 4/3, Sunc(2+) = 5/3 and Sunc(4+) = 3, with∑

Jf
Sunc(Jπ

f ) = 6, as shown in Table 2. This distribution fails to reproduce
the pattern of the measured 26Ne partial cross sections. When multiplied
by the unit cross section they overestimate both the expected σ(2+) and
σ(4+) cross sections in comparison with the measured σ(0+). The low mea-
sured yield to the two 2+ states presents a particular problem for this very
simple model and suggests that the experimental data reflect the presence
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of correlation effects.

TABLE 2. Two-proton knockout cross sections from a 28Mg projectile beam at
82 MeV/nucleon, to different final states of the 26Ne residue. The spectroscopic
weights Sexp and Sth are the corresponding cross sections divided by the cross
unit section σ22 = 0.29 mb, see text.

Sunc Sexp Sth σexp σth

corr (mb) (mb)

0+ 1.33 2.4(5) 1.83 0.70(15) 0.532

2+ 1.67 0.3(5) 0.54 0.09(15) 0.157

4+ 3.00 2.0(3) 1.79 0.58(9) 0.518

2+
2 – 0.5(3) 0.78 0.15(9) 0.225

Inclusive 6 5.2(4) 4.94 1.50(10) 1.43

4.2. CORRELATED STRIPPING

Calculations with the fully-correlated proton wave functions are shown (in
mb) in Table 2. There is good agreement of the partial cross sections σth,
and hence trivially of the theoretical spectroscopic factors Sth, with the
corresponding experimental values. The calculated inclusive cross section
to the four bound states is now 1.43 mb, also in good agreement with the
measured value of 1.50(10) mb [21]. There is no scaling or renormalization
of these cross sections, which are calculated in an absolute sense. A signifi-
cant fraction of the integrated cross section expected, based on the [0d5/2]4

uncorrelated estimate, of 1.8 mb, is accounted for in the measurements to
the four 26Ne bound states, with

∑
Jf

Sth = 4.94.

5. Conclusions

Single-nucleon knockout reactions are now an established technique for
single-particle spectroscopy of both weakly-bound and deep-hole states,
revealing the role of correlations in and beyond the shell model. We have
presented a comprehensive calculation scheme to extend such studies to
the direct two-nucleon stripping reaction. The inclusive cross sections for
2p and 2n removal from 12C are consistent with measurements. For slightly
neutron rich 28Mg we obtain absolute predictions of the partial cross sec-
tions to different 26Ne final states. These are in good agreement with avail-
able experimental data and show considerable improvement when compared
to simple uncorrelated structure approximations. Our calculations provide
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further evidence of the direct nature of two-proton knockout from neutron-
rich nuclei and of its potential for the study of two-nucleon correlations and
spectroscopy.

This work was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC), Grant No. GR/M82141. The authors gratefully
acknowledge the very successful collaboration with the NSCL at MSU which
provided stimulus for the theoretical work presented here.
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