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Abstract. Theoretical few-body reaction methods are discussed. Partic-
ular attention is given to approximate methods which use the adiabatic
and eikonal approximations and which then make transparent the ingre-
dients from reaction dynamics and nuclear structure to the calculations.
Their applications to single-nucleon knockout reactions and to single par-
ticle spectroscopy are then discussed and examples of recent analyses are
presented.

1. Introduction

With the advent of radioactive ion beam physics there has been a resur-
gence of interest in quantitative theories of nuclear reactions. Short lived
exotic nuclei, in the form of low intensity secondary radioactive ion beams
(RIBs) produced in nuclear fragmentation reactions, are now studied using
a variety of secondary reactions in an attempt to understand their bulk
properties and more detailed structures. The focus of these two lectures is:

How can we learn about single particle structures in such exotic nuclei
from reaction studies?

That is, how can we relate experimental observables, such as single-nucleon
removal cross sections, or their distribution as a function of the final state
fragment momenta, to properties of nuclear many-body wave functions ΦA?
More specifically, how can we deduce the removed nucleons’ single parti-
cle (sp) configurations φ`j and the associated occupancies or spectroscopic
factors for these states? My emphasis here, because of the data available,
is on the spectroscopy of exotic light neutron-rich nuclei with energies of
a few 10s of MeV per nucleon, as produced at the facilities at the NSCL,



2 J.A. TOSTEVIN

GANIL and at RIKEN. The methods discussed are also highly applicable
to RIBs at yet higher energies, such as are produced at the GSI.

In the following, the methods and approximations currently used are in-
troduced. These enable practical but approximate calculations of the wave
functions of interacting systems and of the corresponding reaction observ-
ables. The selection of the correct approach requires an awareness of the
reaction time scales and mechanisms involved which, in turn, depend on the
nature of the nuclei involved, their charge, mass, and on their interactions.

The ordering, distribution of sp strength, and occupation of nucleonic
single-particle states in nuclei is fundamental to their structure and stabil-
ity. Experimental verification of such structures is also vital to test shell
model and other many-body theoretical structure predictions away from the
stable nuclei. With current low intensity RIBs however most traditional sp
spectroscopic tools, such as the (e, e′p) [1], (p, p′), and single-nucleon trans-
fer reactions [2], are still very demanding [3, 4, 5, 6] or not yet available ex-
perimentally. The challenge for reaction theorists has been the new regimes
of weak nuclear binding near the driplines, such as the halo states, and the
availability, in the most part, of inclusive rather than exclusive reaction
data.

Unlike structure methods, there are no practical true many-body re-
action theories. Reaction methods can at most calculate approximate so-
lutions of a few-body Schrödinger equation with effective interactions be-
tween the assumed few-bodies, usually individual nucleons and/or clusters
of many nucleons.

The challenge for spectroscopy is therefore to develop methods which
permit both the structure and reaction dynamics aspects of the problem to
be treated with comparable rigour. There is little value in using detailed
many-body wave functions as input to inappropriate or over simplistic reac-
tion theory, and vice versa. This often demands that experimental choices
of energies, targets, reactions and detection geometries be made which per-
mit the use of appropriate theoretical approximations and which then make
the required structure and reaction inputs more transparent. Our emphasis
on sp spectroscopy suggests the use of (direct) reactions in which the pro-
jectile suffers minimal rearrangement in the collision – ideally exciting just
a single nucleon, if possible [7, 8]. We concentrate here on single-nucleon
removal from the projectile.

2. Few-body models: concepts

For orientation we will consider the scattering of a two-body projectile. The
projectile’s two constituents j = c, v, initially bound, will be thought of as
a heavy nuclear core c and a light valence particle v, typically a nucleon.
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These projectiles, with ground state wave function φ0, are incident with
energy E and react with or scatter from a target nucleus t. It is assumed,
to be definite, that the projectile supports only one bound state. The con-
stituents of the projectile interact with the target through complex effective
interactions Vjt, often taken as phenomenological optical potentials fitted
to experimental data or, alternatively, which are calculated from theoretical
multiple scattering or folding models. For example, at the energies of prin-
cipal interest to fragmentation beams, 50 MeV/nucleon and above, these
two-body interactions can be estimated from the constituent particle and
target densities and an approximate effective nucleon-nucleon (NN) inter-
action tNN by the double-folding integral [9, 10]

Vjt(rj) =

∫

d~r1

∫

d~r2 ρj(r1)ρt(r2)tNN (~rj + ~r2 − ~r1) . (1)

If the particles are charged then of course the Vjt must include the appro-
priate Coulomb interactions also. We assume the potentials are central. We
denote by ~r the relative coordinate of c and v in the projectile and by ~R the
target-projectile centre of mass (c.m.) separation. When needed the z–axis
will be chosen along the incident projectile beam direction.

c

Target

v
rv

R

r

rcCore

Valence

Figure 1. Coordinates used for a two-body projectile-target problem.

The Schrödinger equation satisfied by the scattering wave function Ψ
(+)
~K

,

when the projectile is incident with wave vector ~K in the c.m. frame, is

[

TR + U(~r, ~R) +Hp − E
]

Ψ
(+)
~K

(~r, ~R) = 0 , (2)

Here Hp is the projectile’s internal Hamiltonian, TR is the projectile’s c.m.

kinetic energy operator and U(~r, ~R) is the total interaction between the pro-
jectile and the target. φ0 is an eigenstate of Hp with energy −ε0. In general
Hp will also generate an excited bound and continuum states spectrum.
The few-body model approach is to solve as best one can the Schrödinger
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equation (2) for Ψ
(+)
~K

with the incident wave boundary condition

Ψ
(+)
~K

(~r, ~R) = ei
~K·~R φ0(~r) + outgoing waves . (3)

In such an approach we note that φ0 appears only as part of the incident
boundary condition. In general therefore the connection between projectile

structure, the solution Ψ
(+)
~K

, and the reaction observables is very subtle

and largely hidden. Before dealing with (approximate) solutions of this few-
body dynamical problem we recall some important results from elementary
(two-body) scattering theory, relevant to describing the scattering of each
constituent, in isolation, from the target.

3. Results from scattering theory

3.1. THE PARTIAL WAVE S–MATRIX

Consider the scattering of two point-particles with relative energy E in their
c.m. frame and which interact through a potential V (r). If their reduced
mass is µ then they have relative momentum h̄k =

√
2µE. It is well known

that the solution of the scattering wave function ψ
(+)
~k

(~r) is usually carried

out by partial wave expansion. The asymptotic form of the relative motion
radial wave function, when the pair have relative orbital angular momentum
`, is

u`(r)→
i

2

[

H−` (kr)− S`H+
` (kr)

]

, (4)

where the H±

` denote incoming (−) and outgoing (+) waves. Significantly,
the partial wave S–matrix S` is the amplitude of the outgoing wave, and so
|S`|2 is the probability that in a state with orbital motion ` the particles
survive the collision and emerge from the reaction region. If V (r) is complex,
to account for open reaction channels, then of course |S`|2 ≤ 1. If the mass
of the particles or their energy is high, such that many ` contribute, then
a semi-classical description in which the discrete ` are replaced by the
continuous impact parameters b, where ` ≈ kb (actually `+ 1/2 = kb) can
also be very accurate. |S(b)|2 has the same interpretation as |S`|2, being
unity for b larger than the interaction radius (transmission) and small for b
smaller than the interaction radius (absorption). All reaction cross sections
can be deduced from either of these orbital S–matrices, eg. the elastic and
reaction cross sections

σel =
π

k2

∞
∑

`=0

(2`+ 1)|1− S`|2 ≈
∫

d~b|1− S(b)|2 , (5)

σR =
π

k2

∞
∑

`=0

(2`+ 1)[1− |S`|2] ≈
∫

d~b[1− |S(b)|2] , (6)
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where d~b = 2πbdb denotes integration over all impact parameters.

3.2. EIKONAL THEORY FOR POINT PARTICLES

Less familiar is the (approximate) semi-classical eikonal solution of the
Schrödinger equation [11, 12]. In common with other semi-classical ap-
proaches, the method is useful when the incident particle wave number k is
large and so has a short wavelength compared with typical distances over
which the potential V (r) changes appreciably. Now the scattering wave

function is written ψ
(+)
~k

(~r) = exp(i~k · ~r)ω(~r), a product of the incident

plane-wave state with an as yet unknown modulating function ω(~r), which
carries all information of the effects of V (r). Substituting this product form
in the Schrödinger equation yields

[

2i∇ω(~r) · ~k − 2µ

h̄2 V (r)ω(~r) +∇2ω(~r)

]

exp(i~k · ~r) = 0 , (7)

and the eikonal approximation neglects the term in ∇2ω which, for large k
and slow potential variation, should be small compared to 2∇ω · ~k. With
the z–axis along ~k, ω satisfies the first order equation

∂ω

∂z
= − i

h̄v
V (r)ω(~r) (8)

with solution, at impact parameter b =
√

x2 + y2, of

ω(~r) = exp

{

− i

h̄v

∫ z

−∞

V (
√

b2 + z′2)dz′
}

. (9)

Here v = h̄k/µ is the classical incident velocity in the c.m. frame. Note that
our neglect of the curvature term ∇2ω has assumed that ω can be estimated
accurately by assuming the scattered particle traverses a straight line path
through V (r) at impact parameter b.

The result we want is that, following the collision at impact parameter
b, the wave function is (for z →∞)

ψeik~k
(~r)→ S(b)ei

~k·~r = exp

{

− i

h̄v

∫

∞

−∞

V (
√

b2 + z′2)dz′
}

ei
~k·~r , (10)

where S(b), the amplitude of the forward going scattered wave, is the
eikonal approximation to the elastic scattering S–matrix. This can be eval-
uated rather simply as a one dimensional integration through the potential.
Much more importantly, this simple product structure of the eikonal wave
function will be shown to generalise to the case of few-body projectiles and
will be used in the following.
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Figure 2. A straight line trajectory through V (r) is assumed in the eikonal approxima-
tion

4. Breakup of composite systems

We now return to discussion of the case of a few-body projectile. The
Schrödinger equation for the supposed two-body projectile was given in
equation (2) with U(~r, ~R) = Vvt + Vct the total interaction between the
projectile and target. These interactions are calculated assuming j = c, v
have energies Ej = mjE/M with M = mc +mv the projectile mass. Since
the projectile is assumed to have only one bound state φ0, all excited states
ofHp, φ~k, are positive energy scattering states in the continuum with energy
εk.

The projectile will be excited (dissociated) or coupled to these excited

states through the interaction U(~r, ~R), since the resulting tidal forces ~Fj =
−∇Vjt(~rj) are different on the two (or more) individual constituents. These

bound state to continuum state couplings are 〈φ~k|U(~r, ~R)|φ0〉 and the range
of energies of the φ~k states which are strongly excited will be dictated by
the geometries of the potentials Vjt. When the target nucleus is heavy and
of large Z, and Coulomb dissociation is dominant, then the slow spatial
rate of change of the Coulomb interaction leads to weak tidal forces and
strong excitation of the low energy continuum. An excellent example of
such a situation is the experimental study of the Coulomb dominated 19C
breakup by a Pb target at 67 MeV/nucleon by Nakamura et al. [13]. In that
case the cross section for breakup is dominated by breakup energies εk ≤ 3
MeV. In other words the Coulomb interactions with the target are able to
transfer very little of the incident energy of the projectile into excitation
energy as relative kinetic energy between the projectile constituents.

In the case of light nuclear targets where the strong interaction domi-
nates, the sharper (less diffuse) surface potential leads to larger and more
surface localised tidal forces with a greater range of εk excited. Nevertheless,
the surface diffuseness of nuclear potentials has a rather universal value, of
order 0.6 fm, and so the differential forces are themselves rather universal in
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strength. The typical maximum breakup excitation energies, for projectiles
on a light target, are found to be of order 20 MeV, and essentially inde-
pendent of the incident projectile energy [14, 15, 16]. Are these excitation
energies important?

The answer is yes. It is important for what follows that these excited
breakup configurations have typical internal energies 〈Hp〉 ¿ E, the energy
of the projectile centre of mass motion. It follows that the velocities of
relative motion of c and v are slow. In this case where one degree of freedom
(motion) is slow and another is fast, we can make a major simplification to
the description of the reaction dynamics - the adiabatic approximation.

4.1. THE ADIABATIC APPROXIMATION

The adiabatic (or sudden) approximation is used widely throughout physics
when one can identify certain degree(s) of freedom in a problem as being
highly energetic, or fast, and another as being of low energy, or slow. In such
cases it may be appropriate to fix or freeze the slow coordinate (degree of
freedom) for the duration of the fast passage or interaction in the other
degree of freedom. Examples are the scattering of fast particles from a de-
formed rotor (with orientation Ω̂) or from a diatomic vibrational molecule

(with separation ~R). In the former case, the calculation proceeds by calcu-

lating the scattering amplitude f(θ, Ω̂) at each fixed Ω̂. Of course in freezing
the orientation, formally one is assuming that that moment of inertia of the
rotor is infinite and hence that the full rotational excitation spectrum of
the rotor is degenerate with the ground state. The f(θ, Ω̂) thus represent
scattering from a degenerate superposition of all states of the rotor and
the physical amplitudes for given initial and final states |α〉 and |β〉 are
obtained by projection, i.e. fαβ(θ) = 〈β|f(θ, Ω̂)|α〉. The beauty of such an

approach is that it separates the scattering dynamics, in f(θ, Ω̂), from the
structural aspects of the problem, in states |α〉 and |β〉.

In the nuclear few-body (reaction) context the slow coordinate is the cv
relative motion, ~r, which we assume frozen for the duration of the collision
of the projectile with the light nuclear target. Thus, at each fixed ~r, we must
calculate a scattering amplitude f(θ, ~r), describing scattering of a superpo-
sition of the projectile ground and all excited states, assumed degenerate.
As previously, physical amplitudes are obtained by suitable overlaps being
taken, the breakup amplitude to final state φ~k being f~k(θ) = 〈φ~k|f(θ, ~r)|φ0〉.
The bra-ket indicates integration over all position vectors ~r. Given the lim-
ited range of εk excited in the scattering, the adiabatic approximation will
improve systematically with increasing incident energy.

For practical purposes, the degeneracy assumed in the adiabatic as-
sumption is included in the few-body Schrödinger equation by replacing
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Hp → −ε0, the projectile’s ground state energy eigenvalue, to give the
corresponding adiabatic model Schrödinger equation

[

TR + U(~r, ~R)− (E + ε0)
]

ΨAd
~K
(~r, ~R) = 0 . (11)

The adiabatic approximation has been applied extensively in few- body
physics [17, 18, 19, 20, 21, 22, 23].

4.2. FEW-BODY EIKONAL MODEL

The solution of the adiabatic few-body equation is particularly informative
in the eikonal approximation. The derivation follows closely that used for
a point particle in Section 3.2. As there, the scattering wave function is
written as the product of the incident wave with a modulating function.
This now reads

ΨAd
~K
(~r, ~R) = ei

~K·~R φ0(~r)ω(~r, ~R) , (12)

with h̄K =
√

2µ(E + ε0). Upon substituting in the adiabatic Schrödinger
equation (11), then
[

2i∇Rω(~r, ~R) · ~K −
2µ

h̄2U(~r, ~R)ω(~r, ~R) +∇2
Rω(~r, ~R)

]

exp(i ~K · ~R) = 0 ,

(13)
and neglecting the curvature term, ∇2

Rω, yields the solution for ω of

ω(~r, ~R) = exp

{

− i

h̄v

∫ Z

−∞

U(~r, ~R′)dZ ′
}

. (14)

As U(~r, ~R) is the sum of the constituent two-body interactions Vjt with the
target, it follows that asymptotically (Z → ∞), after the interaction, the
eikonal approximation to the few-body wave function is

ΨEik
~K

(~r, ~R)→ Sc(bc)Sv(bv)e
i ~K·~R φ0(~r) , (15)

where, as in equation (10), the Sj(bj) are the eikonal elastic S-matrices for
the independent scattering of particle j from the target, when incident with
velocity v.

In the spirit of the adiabatic approximation, ~r enters this approximate
wave function only as a parameter, and the expression calculates the S-
matrices for a frozen cv separation, and hence fixed bc, bv, and b, the im-
pact parameter of the centre of mass of the projectile. It follows that the
probability amplitude for the projectile surviving the collision and emerg-
ing in its ground state, the elastic S-matrix for the projectile, Sp(b), at c.m.
impact parameter b is

Sp(b) = 〈φ0|Sc(bc)Sv(bv)|φ0〉 . (16)
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Figure 3. Frozen internal coordinates and straight line trajectories are assumed in the
few-body eikonal approximation

From a reaction theory and spectroscopic point of view equation (16) is par-
ticularly transparent since it separates formally the dynamical aspects (the
Sj), determined by independent two particle scattering theory/experiment,
from the structural aspect, the wave function of the projectile which we
want to probe. This matrix element includes (within the adiabatic and
eikonal approximations) the breakup of the projectile by the tidal forces
induced by the target to all orders and is a non-perturbative theory of the
reaction.

The formulae presented generalise in an obvious way to projectiles with
n constituents, and for excitation of a final state α, with a general structure,

Sα(b) = 〈Φα|S1(b1)S2(b2) . . . Sn(bn)|Φ0〉 . (17)

For RIBs from fragmentation reactions, with energies of order 50 MeV
per nucleon and greater, this few-body eikonal picture as been shown to be
rather accurate [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] and so forms
a viable scheme from which to interpret experimental data. The clear formal
separation of the structure and dynamical inputs allows the best available
few- or many-body wave functions to be used in computing Sp. Recent
examples include the use of a 5-body (α+4 neutron) wave function for 8He
scattering [29] and of fully microscopic 6-body QMC wave functions for 6Li
and 6He to describe their scattering from a proton target [37].

The Sections above have put the different reaction theory approxima-
tions in place, including the non-perturbative treatment of breakup which
is crucial in the case of weakly bound systems.

5. Few-body reaction observables

As was discussed in the Introduction, for single particle spectroscopy we
wish, if possible, to excite the projectile minimally, ideally involving affect-
ing the degrees of freedom of a single nucleon. In the following we use this



10 J.A. TOSTEVIN

formalism for calculations of single-nucleon knockout reactions. We empha-
sise however that the expressions we will write down are only valid at high
beam energies and low excitation energies since detailed energy conserva-
tion is not respected in the adiabatic and eikonal models.

Returning to our two-body (c+ v) projectile, the total cross section for
populating a given final state α is

σα =

∫

d~b |〈φα|Sc(bc)Sv(bv)|φ0〉 − δα0|2 . (18)

When α = 0, the total elastic cross section is

σel =

∫

d~b |1− 〈φ0|Sc(bc)Sv(bv)|φ0〉|2. (19)

The total cross section is also obtained from the elastic scattering ampli-
tude, employing the optical theorem, and gives

σtot = 2

∫

d~b [1−Re 〈φ0|Sc(bc)Sv(bv)|φ0〉] . (20)

Hence, the total reaction cross section, defined as the difference between
these total and elastic cross sections, is

σR =

∫

d~b
[

1− |〈φ0|Sc(bc)Sv(bv)|φ0〉|2
]

. (21)

As we have noted, for projectiles with only one bound state, any exci-
tation will be to the continuum with wave function φ~k. This process, the
target remaining in its ground state, is elastic breakup, also referred to as
diffractive dissociation. Making use of the completeness relation for states
of Hp (when, for simplicity, there is only one bound state)

∫

d~k |φ~k〉〈φ~k| = 1− |φ0〉〈φ0| (22)

the total elastic (diffractive) breakup cross section is

σdiff =

∫

d~b
[

〈φ0| |Sc(bc)Sv(bv)|2|φ0〉 − |〈φ0|Sc(bc)Sv(bv)|φ0〉|2
]

. (23)

The difference between the reaction and elastic breakup cross section is
therefore the total absorption cross section,

σabs =

∫

d~b
[

1− 〈φ0| |Sc(bc)Sv(bv)|2|φ0〉
]

, (24)

which represents the cross section for excitation of the target.
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The physical meaning of the above is understood by a reminder that the
square modulus of each constituent’s S-matrix element, |Sj(bj)|2 represents
the probability that it survives intact with the target in its ground state
following interaction with the target at impact parameter ~bj . That is, at
most, it is elastically scattered. At large impact parameters |Sj |2 → 1 since
the constituent passes too far from the target. The quantity 1 − |Sj |2 is
the probability that particle j interacts with and excites the target and is
absorbed from the elastic channel. With this picture in mind and noting
that the integrand in equation (24) can be written

1−|ScSv|2 = |Sv|2(1−|Sc|2)+ |Sc|2(1−|Sv|2)+(1−|Sv|2)(1−|Sc|2), (25)

that part of the absorption cross section for stripping v from the projectile,
exciting the target, but with c surviving (having been at most elastically
scattered) is

σstr =

∫

d~b 〈φ0||Sc(bc)|2[1− |Sv(bv)|2]|φ0〉. (26)

This cross section is seen to vanish if the interaction Vvt with the target
is real and non-absorptive, and hence |Sv(bv)| = 1. Related expressions for
the differential stripping cross sections as a function of the final momentum
of the core fragment can also be found in the bibliography, eg. [27].

6. Single-nucleon knockout reactions

In nucleon knockout reactions, events in which a single nucleon (the valence
particle v) is removed from the mass A projectile nucleus p by a light
absorptive nuclear target (typically 9Be or 12C) are identified by detection
of the core nuclei c, of mass A− 1.

target

A

A-1v

projectile γ

v
A-1 fragment velocity

Figure 4. Schematic of a single nucleon knockout reaction, where the momentum dis-
tribution of the mass A− 1 fragment and in-flight decay photons are obtained.

The detected residues travel with a velocity very close to that of the
incident beam. Since only the heavy residue c is detected and not the re-
moved nucleon or state of the target, the measurement is a highly inclusive
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one and the cross sections are thus expected to be large. This is extremely
advantageous from an experimental point of view.

The use of a light nuclear target introduces spatial localisation of the
reaction at the nuclear surface. 9Be in particular, having no bound excited
states, essentially presents a black absorptive disk to the incident core of
nucleons c. The fact that in the events observed c survives at near to beam
velocity, dictates that the ct interactions are extremely peripheral. It follows
that the removed nucleon’s wave function will be probed at and beyond
the surface of the projectile, but not in the interior. This is a very similar
situation to that in low-energy light-ion induced transfer reactions where
the short mean-free-paths of the light-ions with the target also leads to
strong surface localisation [2].

c

R +Rc  t

target

v

projectile

bc

Figure 5. The requirement that the core fragment survives the collision dictates that
the reaction is peripheral (that bc ≥ Rc+Rt) and hence that only that part of the valence
particle wave function outside of the core is sampled (and bv ≤ Rc +Rt).

The cross sections are the sum of (a) those for all processes in which the
removed nucleon excites the target and is absorbed, called stripping above,
and given by equation (26), and (b) the cross section for elastic breakup
of the projectile, the target remaining in its ground state, called diffractive
dissociation above and given by equation (23). These cross sections can
simply be added since the two processes lead to quite distinct final states
and are thus incoherent, so

σ(c) =
∑

C2S(c, `j)σsp(Sn, `j). (27)

Here C2S is the spectroscopic factor (occupancy) of the nucleon’s single-
particle state with quantum numbers (`j), and expresses the parentage of
this single-particle configuration in the initial many-body wave function
ΦA with respect to a specific core state c of the remaining nucleons. The
sum must be taken over all non-vanishing configurations. The σsp are the
cross sections for the removal of a single particle, from the stripping and
diffraction mechanisms, ie. σsp = σstr+σdiff , for a nucleon with separation
energy Sn.
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The important development, for spectroscopy, are measurements, not
only of the momentum of c, but also its final state φc, by detection in
coincidence with in-flight decay photons. Even in the most naive extreme
single-particle shell model picture, see Figure 6, it is clear that removal of
other than the least bound nucleon will leave c in an excited configuration.
The decay photon is able to tag this information and to identify the final
state of c which is populated.

6.1. AN EXAMPLE: FOR ORIENTATION

We consider for orientation the example in Figure 6, neutron removal from
23O in an extreme single-particle model. A recent experiment at RIKEN, on
a 12C target at 72 MeV per nucleon [38], and without γ-detection, measures
a cross section of 233(37) mb for the production of 22O.

We assume that the neutron configuration of 23O(gs) is [1s1/2][0d5/2]
6.

The ground state to ground state neutron separation energy is 2.7 MeV and
the shell model predicts a 5/2+ state in 22O at 2.75 MeV. Thus we assume
a 0d5/2 neutron separation energy of 5.5 MeV. The remaining 8 neutrons
are very strongly bound and so contribute very small cross sections for
knockout. In this simple model, equations (26) and (23), with S-matrices
calculated according to [39], calculate sp cross sections σsp(1/2

+) = 64 mb
and σsp(5/2

+) = 23 mb. Upon multiplying by the spectroscopic factors of
1 and 6, respectively, this gives a predicted theoretical cross section of 202
mb in good agreement with the measurement. Moreover, the prediction is
that less than one third of the cross section (64 mb) is attributable to the
22O being formed in its ground state and the expectation is that two-thirds
of the cross section (138 mb) would leave 22O in the 5/2+ excited state and
which will be accompanied by a decay photon.

0s

0p
0p

1s
0d

1/2

1/2

1/2

5/2

3/2

O23
p n

Figure 6. A simple extreme single-particle shell model representation for the 23O(gs).
Removal of different nucleons will leave the residue in the ground or an excited state
configuration for 22O.

This simple example shows that the cross sections for producing core
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fragments in excited states are expected to be very significant, even for
halo nuclei with a very weakly bound valence nucleon moving relative to
the ground state of c as a dominant configuration. The non-halo nucle-
ons are more bound but are also more numerous, i.e. have larger C2S.
So, extracting quantitative spectroscopic information of even the dominant
configurations in the many-body projectile wave function from measure-
ments that do not identify the final state of c, e.g. [40], is very difficult,
given these large cross sections from the removal of more-bound nucle-
ons. With c state exclusive measurements, the reaction theory introduced
above, together with structure theory, can be used to interpret the different
c state momentum distributions and cross sections in terms of the removed
nucleon’s state φ0 – specifically, the orbital angular momentum ` and spec-
troscopic factor C2S of this configuration. The orbital angular momentum
` of the knocked-out nucleon is identified uniquely by the widths of the
measured momentum distributions of the residues, as is shown in the mod-
els in Refs. [25, 26]. Since the C2S multiply the sp cross sections they are
determined ‘experimentally’ by comparing the magnitudes of the measured
partial cross sections to each final state of c with the σsp calculated using
the eikonal reaction theory.

6.2. STRUCTURE OVERLAP FUNCTIONS

Inherent in analyses of both knockout reaction and transfer reaction data
is the need to learn the extent to which the intensities of the core states
φc, measured following the reaction, reflect a pre-existing component in
the incident projectile wave function ΦA. Alternatively, how important are
those (higher-order) dynamical processes which could result in the outgoing
flux being redistributed between core states by the reaction dynamics.

Here it was already assumed in the orienting example above that there
are pre-formed components in the ground state wave function of the in-
cident A-body projectile in which A − 1 of the nucleons are in state φc,
and which can therefore be accessed by a single-nucleon knockout. Explicit
inelastic excitation of the state of these A − 1 nucleons is absent in the
reaction mechanism and is neglected in any final state interactions of the
core with the target or with the removed nucleon. It follows that the reac-
tion mechanism then reduces to an effective three-body (nucleon+c+target)
problem in which the core is simply a spectator particle which can there-
fore interact at most elastically with the target. This is the basis of the
formalism presented and is expected to be a good starting point for low
lying states of the projectile with strong core state parentage. In common
with other spectroscopic methods, for weakly populated φc configurations,
and core states with only small parentage in the projectile ground state,
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higher order dynamical effects may be significant.
In the spectator core picture [41], quite generally, the structure inputs

to the three-body reaction formalism are the single nucleon formfactors or
overlaps

F c
`j(~r) = 〈φc, ~r |ΦA〉 . (28)

Formally the spectroscopic factor, normalised to the occupancy of the given
state, is

C2S(c, `j) =

∫

d~r |F c
`j(~r)|2 . (29)

It is usual however to rewrite the overlap formfactor as

F c
`j(~r) = [C2S(c, `j)]1/2φ`j(~r) , (30)

where the single particle state φ`j , normalised to unity, is used for φ0 in
equations (26) and (23). The spectroscopic factor can be taken from struc-
ture calculations, such as configuration mixed psd-shell model calculations.
Similarly, if they were generally available, theoretical many-body overlap
functions could be taken for φ`j . In practice these are not routinely available
and the practice, as in transfer reactions, is to calculate the φ`j as single
particle wave functions in a Woods-Saxon potential well of conventional
geometry (radius r0 = 1.25 fm and diffuseness a0 = 0.65 fm) and with the
physical separation energy for each pair of states φc and ΦA. This provides
the input needed to systematically investigate available experimental data
for a wide variety of systems.

The techniques outlined here have recently been applied in a number of
important spectroscopic cases including the phosphorus isotopes 26,27,28P
[42], 11,12Be [43, 44, 45], 13,14B [46], 34,35Si and 37S [47], 8B [48, 49] and
the neutron-rich carbon isotopes 15,16,17,19C [39]. The reader is referred
to these publications for further details of the experimental arrangements
and theoretical inputs. These analyses have also recently been reviewed by
Hansen and Sherrill [50]. Here we illustrate the method and data with a
few selected examples which bring out several interesting and important
results.

6.3. PROTON HALOS IN THE PHOSPHORUS ISOTOPES?

The first application of the nucleon knockout reaction with photon coin-
cidences was an exploratory experiment, at the NSCL, for the 26,27,28P
isotopes. Here the expectation from shell model calculations is that the
28P ground state has a weakly bound 1s1/2 proton (separation energy 2.07

MeV) outside of a 27Si(5/2+) ground state core – and that 26P is a proton
halo nucleus candidate. Figure 7 is taken from Ref. [42] and shows, in the
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lower part (b), the momentum distributions of the 27Si residues measured
without (solid points) and with (open points) a γ ray in coincidence. The
data are for the proton removal from a 28P beam on a 9Be target at 65
MeV per nucleon.
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Figure 7. Parallel momentum distributions of 27Si residues, following proton knockout
from a 28P beam at 65 MeV/nucleon, from [42], measured with (open points) and without
(solid points) a photon in coincidence.

The curves show the theoretical distributions expected on the basis of
removal of an s-state (solid curve) and d-state (dashed curve) proton of the
appropriate separation energy. In this experiment the different excited state
contributions were not well resolved and are summed in the excited state
distribution. The data show the expected ` assignments unambiguously and
the measured integrated cross sections for the three isotopes are consistent
with the reaction theory and shell model spectroscopic factors.

6.4. NEUTRON REMOVAL FROM 17C

The level of information which can be gained from nucleon knockout, in
coincidence with gamma ray detection, is illustrated by the analysis of
neutron removal from 17C, and shown in Fig. 8.

Here the momentum distribution of the 16C residues are shown which
correspond to the ground state, the first 2+ state and the (unresolved) set
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Figure 8. Parallel momentum distributions of 16C residues, following neutron knockout
from a 17C beam on a 9Be target at 60 MeV/nucleon, from [39].

of states at 4 MeV of excitation of 16C. The data for these three final states
are shown in parts (a), (b) and (c) of the figure, respectively.

The curves are the result of the theoretical, eikonal model calculations
[39]. They reveal the expected ` = 2 nature of the ground state to ground
state transition while the momentum distribution of residues for the 2+

transition indicates an admixture of ` = 0 and 2 configurations with mag-
nitudes in good agreement with shell model expectations. Similarly the
distribution of residues populated in the three 4 MeV excited states shows
a dominant ` = 2 removal process, consistent with structure calculations.

6.5. THE N = 8 NEUTRON SHELL CLOSURE IN 12BE

A very interesting and important example is the neutron removal reaction
from 12Be. Experimental information on the 11Be(gs) from different sources
is now broadly in agreement. An inverse kinematics 11Be(p,d) experiment
at GANIL [3] gives results consistent with an s-wave–10Be(0+) component
in excess of 70% and a 10–20% d-wave–10Be(2+) neutron component in
the 11Be(gs). Theoretical predictions from shell model calculations [44],
are in agreement with this, and with the findings of the 9Be(11Be,10Beγ)
one-neutron knockout experiment performed at the NSCL [46]. Since the
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Figure 9. Parallel momentum distributions of 11Be residues, following neutron knockout
from a 12Be beam on a 9Be target at 78 MeV/nucleon, from [44], measured with (lower
graph) and without (upper graph) the 11Be(1/2−) state decay photon in coincidence.

valence neutron in the 11Be(gs) occupies the sd-shell, an important question
is whether one recovers the [0p1/2]

2 closed shell configuration in 12Be upon

addition of a neutron. This is of interest not only for the structure of 12Be
but also for that of the heavier beryllium isotopes.

If the [0p1/2]
2 closed shell configuration is indeed restored in 12Be then

neutron removal will populate preferentially the 11Be(1/2−) excited state,
and a decay photon will be observed. If on the other hand the last two
neutrons occupy the sd-shell, neutron knockout will preferentially feed the
11Be(gs).

This experiment was carried out at the NSCL [44]. Figure 9 shows
the cross section momentum distributions to the 11Be(gs) (upper) and
11Be(1/2−) excited state (lower), which are found to be populated with
almost equal strength. The measured and calculated momentum distribu-
tions confirm the ` = 0 and ` = 1 nature of these two transitions. In
addition the deduced spectroscopic factors for these transitions indicate
there is missing experimental cross section which is expected to reside in
the [0d5/2]

2 configuration. The latter was not seen in this experiment as the

neutron removal from this component will populate the 11Be(5/2+) state
in the continuum leading to a mass 10 residue. This analysis reveals very
clearly the melting of the N = 8 magic number in 12Be and the complexity
of the 12Be(gs) wave function.
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6.6. SUMMARY: EIKONAL KNOCKOUT THEORY

In this Section we have provided an introduction, together with exam-
ples selected from recent analyses, of the ideas behind the application
of the approximate adiabatic plus eikonal few-body reaction approach to
single-nucleon knockout reactions. References to a wider range of recent
studies were given earlier. The extent to which the spectroscopic factors
C2S(Experiment), deduced from the measured σ(c) and the theoretical
σsp(c, `j) using equation (27), agree with those of multi-configuration shell
model calculations, C2S(Theory), are presented in Fig. 10 for all cases
currently available. The agreement is very promising, with good overall
agreement over the range of nuclei studied to date. This work is ongoing.

Figure 10. Experimentally deduced C2S values (fitted to data for individual transitions),
on the vertical axis, versus theoretical C2S values calculated from the shell model, on the
horizontal axis. The figure is from [47]. Calculations and measurements cover a number
of transitions and projectile nuclei. The agreement is within the experimental error bars
in essentially all cases.

Effort is now being given to a far more rigorous assessment of the accuracy
of the approximate scheme described. This involves comparisons with the
results from data taken at higher energies, where the adiabatic and eikonal
approximations are very accurate, and studies of improved fully quantum
mechanical dynamical reaction models at energies such as are considered
here. See for example [16]. The conclusion of the work of Ref. [16] is that
the errors in the approximate treatment are actually rather small and af-
fect details of the shapes of the calculated momentum distributions, but
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not the overall magnitudes of the cross sections, which are most important
for spectroscopy. The long term objective is to ascertain how reliably and
quantitatively the knockout reaction approach can extract absolute values
of the C2S, or occupancies, of single particle states in exotic nuclei. The
possibility to investigate the additional effects of short range correlations
in nuclei is also being considered [48].

7. Concluding remarks

Due to the severe time constraints of these lectures I have been deliber-
ately very selective in my choice of material. I wanted to show how, by
suitable choices of approximation schemes, one is able to make progress
from the effective few-body Hamiltonian for the original interacting sys-
tem to rather simple expressions for the elastic and inelastic S-matrices of
the projectile-target system and thence to relatively simple expressions for
reaction observables. These expressions were then compared with experi-
mental data and, I hope, this approach has made the motivation for the
approximation schemes more tangible. Moreover, they appear to offer an
effective and simple approach to single-nucleon spectroscopy of rare exotic
nuclei.

Of course these approximate calculations, or elements thereof, must be
tested using more accurate theories, where these are available, but there
was insufficient time for these alternative approaches to be discussed here.
The best non-adiabatic and non-eikonal few-body reaction models available
are based on coupled channels [14, 15, 51, 52, 53, 54, 55, 16, 56] and time-
dependent [57, 58, 59] formulations and methods. Systematic improvements
of the adiabatic and eikonal approximations are also being studied, e.g.
[34, 23] and references therein. All of these methods permit comparisons
and testing of different aspects of the approximations used here. The reader
is referred to these papers, and the numerous references therein, for details
of these methods and their ranges of applicability.
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