Three lectures — will plan to discuss

Lect | : Fusion of ions: motivation and introductory
remarks, concepts, terminology, models and
Indicators of fusion, reaction dynamics, barriers,
coupled channels - assisted tunnelling, barrier
distributions and optical potentials. Experience.

Lect Il: Weakly-bound systems, methods for break-up

calculations, fusion in few-body models of
break-up reactions. Many open questions.

Lect Ill: Partial/incomplete fusion at higher incident
energies, applications to knockout of one- and
two nucleons and applications for spectroscopy of
exotic nuclel
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Handful of useful papers and topical conferences

» Fusion03: From a Tunnelling Nuclear Microscope to Nuclear Processes in Matter,
Progress of Theoretical Physics Supplement 154, 2004.

» A.B. Balantekin and N. Takigawa, Quantum Tunnelling in Nuclear Fusion, Rev. Mod.
Phys. 70 (1998) 77-100.

« M. Dasqgupta et al., Measuring Barriers to Fusion, Ann. Rev. Nucl. Part. Phys. 48
(1998) 401-461

» Workshop: Heavy-ion Collisions at Energies Near the Coulomb Barrier 1990, |oP
Conference Series, Vol 110 (1990).

» S.G. Steadman et al., ed._Fusion Reactions Below the Coulomb Barrier, Springer
Verlag (1984)

* M.E. Brandan and G.R. Satchler, The Interaction between Light Heavy-ions and what
it tells us, Phys. Rep. 285 (1997) 143-243.

* M. Beckerman, Sub-barrier Fusion of Two Nuclei, Rep. Prog. Phys. 51 (1988) 1047-
1103.

* M.S. Hussein and K.W. McVoy, Inclusive Projectile Fragmentation in the Spectator
Model, Nucl. Phys. A445 (1985) 124-139.

» M. Ichimura, Theory of Inclusive Break-up Reactions, Int. Conf on Nucl. React.
Mechanism. World Scientific (Singapore), 1989, 374-381.

* plus enormous volume of relevant literature — much of which is cited in the above
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Fusion reaction processes — ion-ion systems

Complete fusion (CF) I :;i'&jﬁg'f;tem

* %

8 @ -8
Incomplete fusion (ICF) 8/7
- @

%@

Total fusion (TF) orFp = 0cFr + 0ICF
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Complete fusion process — static picture

Nuclear astrophysics

(A,Z,) (A,,Z,) (Super)Heavy element synthesis
E @ R — * %
V(R)
V(R)
>4 o
Vg T(E) transmission
E TN j probability:
/ | Dominated by
(ioulomb i i T interaction V(R)
R Ry Ry R;\ 0 near ‘surface’, R,
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Barrier radil and nuclear densities - surfaces

Pa(r) 4 ps(n)

Fusion will be probe and
IY\L be sensitive to:
nuclear binding (tails of

the nuclear densities),

A g Duclear structure (tails of
the single particle wave
functions)

but also expect sensitivity
and complications due to
the reaction dynamics —

Rt intrinsically surface
R, Ry Ry 0 dominated

XII SSTNPJAS School, Sdo Paulo, Brasil 13-20th February 2005 U nis



Effective interactions — Folding models

Dou-ble Vs (R) = jdrljdrz Pa(1) pe() Vin([R+1, -1 )
folding |

VAB

Single
folding | Vi (R) = [dr, pg () Vi (IR +1, )

VNB

Only ground state densities appear
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Effective interactions — Folding models

Dou_ble V. (R)= Idrljer Pa(r) pg () Vin(R+1,—17)
folding

V g A R B

f /
r
Aal) R+r,—r,

Single
folding | Vas(R) = [dr, pg (1) Vi (R+1,)

VNB

E

Pg (1)
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Skyrme Hartree-Fock charge radii and densities

I ] I I ] | i | I I I l l l [ T I T ] T l T ] T T I T I T
0.19
52 , -
0.18 Rms charge radii (fm)
0.17 48 ]
0.16 £ 44 - SKX -
g L
0.15 'a;)- 40 |
0.14 X | . i
36 - u
0.13 i ]
012 32 , -
= B ’ T
g o1 28 = 4 n
el - . 4
o 0.1
g 2.4
£ 0.09
52 |- ) ]
0.08 Rms charge radii (fm) 4
0.07 48 [~ n
0.06 £ 44 [ SKM* —
0.05 £ i
40 [~ u
0.04 3 . _
LLJ .
0.03 3.6 7 { B
0.02 32 ¢ 4
0.01 I | 1
28 — A -
0.0 L q
0 2 4 6 8 10 12 14 o4 S U NNV NN RVEY SO VN MR N
r (fm) 24 28 32 36 40 44 48 52
W.A. Richter and B.A. Brown, Phys. Rev. C67 (2003) 034317 Theory
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Effective NN Interactions — not free interactions

Vys (R) = [ dr, pg () Vi (R+1,)

R+T, Phs (r)
G > K Fermi
AN momentum
\\
- K,
nuclear @
<
matter ,0

Include the effect
of NN interaction
In the “nuclear
medium” — Pauli
blocking of pair
scattering into
occupied states
—> Vi (0.1)
(e.g. M3Y, JLM)
But as E - high

free

VNN — VNN
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Information from the elastic scattering channel

Folding model (including account of
non-localities™) often used to provide
the radial shape and approximate
strength of the real part of the potential,
call it F,(R), Then, at each £

Ugp(R) = [Nr(E) +iN/(E)| Fp(R)

the V, and N, are fitted to data with /V,
of order unity. (e.g. S. Paulo potential)

Quite generally, for most systems***
Ngr(E) =1.0£0.15
N;(E)=0.8=+0.15

** |..C. Chamon et al., PRC 66 (2002) 014610

*** G.R. Satchler and W.G. Love, Phys. Rep. 55 (1979) 183

7Li + 28Sj

L L I I L B
% 180.0 E=8 MeV |
—-——-WH“W

mzw
2400 oy sopmve-esya, =9 MV’

10

E=10 MeV
¢ ;

| 1 1
{0

0 20 40 80 80 120 140

Elc m{deg)
A. Pakou et al., PRC 69 (2004) 054602
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Static effects — barriers for n-rich Carbon isotopes
AC n 208Pb 60. ‘__,_,_T,T.T_,r,,,r, R VLI
- stable i
HF predictions > -
~ | ]
> S6. | '
\Y, 4
é L i
s. | ]
> ©@5h Y sh.
oZ: L ;:
o0. I .li
2 15.
A. Vitturi, NUSTAR’05,
Surrey January 2005
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Competing ‘direct reaction’ dynamical processes

Inelastlc scatterlng

o

A @—» @ — @*
Transfer reactions | @/’
“o- 8- @

Surface dominated and will ‘renormalize’ bare ion-ion interaction
Channel-assisted/suppressed tunnelling — general phenomenon
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Challenges — potentials, thresholds and dynamics

 Expect a complex interplay of static, density driven, and
surface, dynamical effects

 [Far below the barrier, for normally bound nuclei, direct
reaction channels switch off — have opportunity to study
threshold effects as reaction channels open and evolve
as a function of energy

 [Fusion expected to be a severe test of our models of
nuclear structures and of treatments of direct reaction
dynamics

* Facllities avallable for sophisticated and very precise
experiments - ANU (Canberra), USP, INFN Legnaro, etc.

 Weakly bound systems are different — do break-up
channels turn off below the barrier? What can we learn?
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Channel coupling — classic examples

M.Dasgupta et al, ARNPS 48 (1998) 401

| ' | E | ' | J | 3
P i & P
"k’.# T AN:L + A_Hl i#f- y a
T ¥ (b) st E
T f'! .
. 154gn 4 F '_{: . 6l 64y
. 148¢, " : ! . 58Hi+5rlﬂ1_:
. 11_1451'[1 - ot . 581qi+551..]'i_§
deformation * = -
10—2 | . | . | 1 | L | . | ]
0.9 1.0 1.1 0.3 1.0 1.1
E/By E/EBp
R.G. Stokstad et al, PRL 41 (1978) 465, M. Beckerman et al, PRL 45 (1980) 1472,
PRC 21 (1980) 2427. PRC 23 (1981) 1581, PRC 25 (1982) 837.
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Complete fusion - expectations — static model

VR T,(E)

: R R, =
S\(26 + 1TY(E)
[E _V(R) - g(e];; 1)] we(R) = 0
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Angular momentum dependence of the barrier

QM

Ema:z: ~ ka

ema:n

T T
or(E) ~ 3 d @+~ ﬁfim
£=0

0l (F)~or~nR:

V. ir) Mev)

—
i
o

130

120

10

L | 1]

K | >8Ni + %8N I
/7

&

roifmk
M. Beckerman, Rep. Prog. Phys.
51 (1988) 1047
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Quantum mechanical barrier penetration

d*us(R)  2u ((f+1)
TRt E—V(R) — 73 ] ug(R) =0
Numerical solutions of thisQM  V(R) T (E) E

A

barrier penetration problem, the
solution of the radial equation for
u(R) and the transmission prob. -
and later, more complex (coupled
channels) examples, account for 0
fusion by one of two methods:

Y
Ri Rb Ro R

(1) the u,(R) have ingoing wave boundary conditions for R<R;
No flux transmitted through the barrier is reflected

(i) the absorptive (imaginary) part in V(R) at short distances
absorbs all flux transmitted through the barrier

19
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Theoretical expression for the cross section

o) distorted wave

function is X'+
where W,(R) is total absorptive
part of the optical potential

2
or(B) = - (XF|Wr(r)| X )
where W(R) is that part of the

absorption responsible for fusion

9 the projectile-target
oRr(E) = —(XT|Wg(r)|X™T) {

XII SSTNPJAS School, Sdo Paulo, Brasil
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Formula of Wong — quadratic form barrler

1 QO+ DRZ e~ TR
VelR) =V, — = R—R ‘ i '
(R)= Vi = g (R~ R+ =5 o ;} .
T(E) = {1+exp[2n/hwe)(Ve - E)} " 2T (| _
Assuming hw, = Awg o ﬂ
Vo =Vy +£(£ 4+ 1)h*/2uR? B \,\{ -
N T i T
2 aﬂu—x \\|f M- ’
2E 300 *\# \.\\ ? L
— (QW/hWO)(E — ‘/b) _ CF ‘\1\2" " \,
w- 0" (mb) ] N
and for E >V, L %\}
T4 74
o/ (B) = 7R2(1 — V},/ E) o Get 5_61 N )

C.Y. Wong, PRL 31 (1973) 766

o |
65 7.0 7.5
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Making connection with empirical cross sections

1/27 1

Tg(E) ~

8u [fo® { 00+ 1)R? }
1+exp@/—/ dR{V(R) + —FE
h2 R;(£) ( ) 2MR2

Localised barrier of height (for ¢=0) of Vi =V (R)

((0+1) _ (L+1) N e+ )R’ N
S e~ MBAT (E ST ) R(E) ~ R,
VIR T, (E) E
- () = Zg:ag(E) R / il o (0, E)
< , .

\ Fo(E) = nR(E)? / dE' Ty(F)
0 A A . —> 0

Ri Rb R0 R

A.B. Balantekin, Rev. Mod. Phys. 70 (1998) 77
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Distribution of barriers — directly from the data

E
Eo(E) = nR(E)? / dE" To(E") T, (E) Classical
Classically ° I o
R(E) = Rb
Eo(E) = 7wR;(E—-Vg), E>Vp v =
= 0, E<Vg (00 5
d? s o,
E[EO’(E)] = 1R;0(F — Vp) 1000 - @ Cat'Ca
500
Classical NM . | L
v, FT v, 'F = =g,
A.B., Rev. Mod. Phys. 70 (1998) 77 M.Dasgupta et al, ARNPS 48 (1998) 401
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Coupled channels effects on barrier distribution

Model problem

1 2
> 1

Coupling of two channels
1,2 assumed degenerate
for simplicity - coupling
F(R) — incident waves in
channel 1.

— h2 d2 -
—@d—RQ‘FV(R)_E ¢1<R):
— h2 d2 -
~5amE TV (R) ~ B 6a(R) =

Figure from to A.Vitturi

12 |

10

(4]

e
| T

Ma

- Channel 1

&, FF (MeV)
o
I

I Channel

2 ]
e Coulpling | 1

Barrier

-10

n 10
% (fr)

F(R)¢2(R)

Decoupled by addition
and subtraction
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Decoupled, two barriers problem

1235

100 —

=2

o

HIV(R) + F(R);

_E|X(R) =0

V. =\/-F

1 1
10 15

R (fm)

=0

[(Xy|p1)[* =1/2

T)(E) = 5 [T (E) + T_(E)

To (E) Classical
1_

0.5] L ‘

A ou

V.V, V. E
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Barrier distributions will reflect channel couplings

In this simple model, channel

coupling (no matter what the 11 To (E) Ry
sign of the coupling potential) K
enhances fusion below and 0.9] )
hinders fusion above the f
barrier — quite general result
qUle J V. V, V. E
Non-degeneracy of
the channels divides | d? TR
the flux incident on @[EUUE)] ~ 9 O(E = Vo) +o(E —Vy)]

the barriers in a more
complex way in the

' M
different channels Classical Q
(e.g. Beckerman,
Rep. Prog. Phys. 51 ! » E f E

(1988) 1047) Vg £
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Channel coupling — classic examples

M.Dasgupta et al, ARNPS 48 (1998) 401

| ' | E | ' | J | 3
P i & P
"k’.# T AN:L + A_Hl i#f- y a
T ¥ (b) st E
T f'! .
. 154gn 4 F '_{: . 6l 64y
. 148¢, " : ! . 58Hi+5rlﬂ1_:
. 11_1451'[1 - ot . 581qi+551..]'i_§
deformation * = -
10—2 | . | . | 1 | L | . | ]
0.9 1.0 1.1 0.3 1.0 1.1
E/By E/EBp
R.G. Stokstad et al, PRL 41 (1978) 465, M. Beckerman et al, PRL 45 (1980) 1472,
PRC 21 (1980) 2427. PRC 23 (1981) 1581, PRC 25 (1982) 837.
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Empirical and calculated barrier distributions

For data of sufficiently

high accuracy and

precision, one can

compare the values of
d2

5 [Bo(E)

deduced from the data
and from detailed coupled -Z
channels calculations,

)

(Ec)/dE™ (mb/MeV)

including rotational, 500 |
vibrational single particle 0| ‘ '
or transfer couplings L |
55 65 95 105
M.Dasgupta et al, ARNPS 48 (1998) 401 c.m. Energy (MeV)
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Fusion reaction processes

40 Ca 1'E|-1. A0y 183
Ht Ca A (=
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-:| 1:.__r'1_,_l_ 1 I LI I LILI L | I L L] a I T I_*_L#E
3 E|
— 5 / 3
FE — * f —
P i & .
E — f Solkd — CCREF Calo, [ Solkd — CCDEF Cale —
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B |II ] + Experumeenial Data X ¥ I + Experimentsal Dets ;]
“a i | = f[r 3
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_I B I LI L I T LI rrri I | I I T '__I 1 LI LEL I T LI I LI I LI I I_
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% | ] | ) ;
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A.B. Balantekin and N.Takigawa, Rev. Mod. Phys. 70 (1998), 77-100
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Coupling-assisted tunnelling - vibrational excitations

58Ni+60Ni I e
| L ]]I\Phﬂn{":ln “driphmmn

500 | I_|'

0000 ———————————————

) mn.u{ | f.-llﬂ : |l |
g 10.0 __* :d::::n . iﬁ}} +'+ | J\ l f{tll' Bl l l,/\ \
=] 1.0 _iﬂii;lmﬁ i % i | A \/_? _*"'I:
" E 0 -{F * # H .-ll | :Lﬁﬂ
- q — % 3 phonon 4 phonon
.Y SRR ﬁL, b ,g!b j
Emtfﬁ% fy“\ ., ﬁiﬂ*&f\' A A ]
” i k‘ = '

BI.J'_ 1 (D 3] S TR
E _ (MeV) 80 100 10 %0 100 110
(=) -

A.M. Stefanini et al., Phys. Rev. Lett. 74 (1995), 864

XII SSTNPJAS School, Sdo Paulo, Brasil 13-20th February 2005 U nis




Dispersion relations — threshold phenomena

Onset of inelastic processes with increasing energy develops
absorption and perturbs the diffractive (real) part of the optical
potential (assumed local for simplicity) - causality and unitarity

Us(R) = Vio(E,R)+ AUg(R)
AUp(R) = AVg(R)+iWg(R)

These terms are intimately connected through a dispersion-
type relation (e.g. Feshbach, Ann Phys 5 (1958) 357)

P [ Wg (R
AVg(R) = +— E,E_( E)dE’

P [ AVg(R)
We(R) = —= E/E_(E) IE

Other energy dependence,
e.g. from non-locality, is not
dispersive and is removed
from relationship into V,(E,R)

XII SSTNPJAS School, Sdo Paulo, Brasil

13-20t February 2005 U ﬂls

31



Information from the elastic scattering channel

Folding model (including account
of non-localities™) often used to
provide the radial shape and
approximate strength of the real
part of the potential, call it #,(R),
Then, ateach £

Ugp(R) = [Nr(E) +iN;(F)| Fe(R)

the /V, and WV, are fitted to data
with NV, of order unity. (e.g. SP)

Else, entire potential
IS fitted to elastic scattering data
** |..C. Chamon et al.,, PRC 66 (2002) 014610

Li + 28Sj
r L L L B B L B B B
% 180.0 E=8 MeV |

—-——-WH“W
mzw
2400 oy sopmve-esya, =9 MV’

E=10 MeV
¢ ;

10

0 20 40 80 80
0, ,(deg)
A. Pakou et al., PRC 69 (2004) 054602
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Dispersion relations in comparison with data

“Ulr=12-4 fm) {MeV)

30 1 I |
2.5 —
Eﬂﬂph
20 "\ i
10 = Sub-barrier e« ]
- "
s L enhancement _
12 — -
- ** *mu T
08 |- i- —
- ' o
04 — -
a i /I I | i | | ] I |
&0 80 100 120 40 w0 180 200 220 240
ELag IMeV)

M.A. Nagarajan, C.C. Mahaux, and G.R. Satchler,
PRL 54 (1985) 1136

3 EA L L B L L B B

——N_(E) = 1.2 + AN_(E)

36 40 44 48 52 56 60 64
ELab (MeV)
L. Chamon, et al, NUSTARO5
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Dispersion relation and sub-barrier enhancement

i ! I

! ‘”ft | I | |

T I I
—_—]
A 160 + 208pp T
N X'\:\:N. _ 5’{/ ]
s . : WiE! . B . __
% * l AUE (R)
12 — :,l' . i g " -
sl -' * Wl | .
E,u;;// -
’ 60 I :II-D * 'Ih I ‘Iél} I 2.I2C| I 240 I 3
£, MeV)
Barrier penetration calculations . L
with and without AUg(R) T

® 00 1B
£, MeV]
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