Three lectures – will plan to discuss

- Lect I: Fusion of ions: motivation and introductory remarks, concepts, terminology, models and indicators of fusion, reaction dynamics, barriers, coupled channels assisted tunnelling, barrier distributions and optical potentials. Experience.
- Lect II: Weakly-bound systems, methods for break-up calculations, fusion in few-body models of break-up reactions. Many open questions.
- Lect III: Partial/incomplete fusion at higher incident energies, applications to knockout of one- and two nucleons and applications for spectroscopy of exotic nuclei

Handful of useful papers and topical conferences

- <u>Fusion03</u>: From a Tunnelling Nuclear Microscope to Nuclear Processes in Matter, Progress of Theoretical Physics Supplement **154**, 2004.
- A.B. Balantekin and N. Takigawa, Quantum Tunnelling in Nuclear Fusion, Rev. Mod. Phys. 70 (1998) 77-100.
- M. Dasgupta et al., Measuring Barriers to Fusion, Ann. Rev. Nucl. Part. Phys. 48 (1998) 401-461
- Workshop: Heavy-ion Collisions at Energies Near the Coulomb Barrier 1990, IoP Conference Series, Vol 110 (1990).
- <u>S.G. Steadman</u> et al., ed. *Fusion Reactions Below the Coulomb Barrier*, Springer Verlag (1984)
- M.E. Brandan and G.R. Satchler, The Interaction between Light Heavy-ions and what it tells us, Phys. Rep. **285** (1997) 143-243.
- M. Beckerman, Sub-barrier Fusion of Two Nuclei, Rep. Prog. Phys. **51** (1988) 1047-1103.
- M.S. Hussein and K.W. McVoy, Inclusive Projectile Fragmentation in the Spectator Model, Nucl. Phys. **A445** (1985) 124-139.
- <u>M. Ichimura</u>, *Theory of Inclusive Break-up Reactions*, Int. Conf on Nucl. React. Mechanism. World Scientific (Singapore), 1989, 374-381.
- plus enormous volume of relevant literature much of which is cited in the above

Fusion reaction processes – ion-ion systems

Complete fusion process – static picture

Barrier radii and nuclear densities - surfaces

Fusion will be probe and be sensitive to:

nuclear binding (tails of the nuclear densities), nuclear structure (tails of the single particle wave functions)

but also expect sensitivity and complications due to the reaction dynamics – intrinsically surface dominated

Effective interactions – Folding models

Double folding

$$V_{AB}(R) = \int d\mathbf{r}_1 \int d\mathbf{r}_2 \, \rho_A(\mathbf{r}_1) \, \rho_B(\mathbf{r}_2) \, V_{NN}(|\mathbf{R} + \mathbf{r}_2 - \mathbf{r}_1|)$$

 \mathbf{V}_{AB}

Single folding

$$V_{NB}(R) = \int d\mathbf{r}_2 \, \rho_B(\mathbf{r}_2) \, v_{NN}(|\mathbf{R} + \mathbf{r}_2|)$$

 \mathbf{V}_{NB}

Only ground state densities appear

Effective interactions – Folding models

Double folding

$$V_{AB}(R) = \int d\mathbf{r}_1 \int d\mathbf{r}_2 \, \rho_A(\mathbf{r}_1) \, \rho_B(\mathbf{r}_2) \, V_{NN}(\mathbf{R} + \mathbf{r}_2 - \mathbf{r}_1)$$

 ${
m V}_{AB}$

Single folding

$$V_{NB}(R) = \int d\mathbf{r}_2 \, \rho_B(\mathbf{r}_2) \, v_{NN}(\mathbf{R} + \mathbf{r}_2)$$

 \mathbf{V}_{NB}

Skyrme Hartree-Fock charge radii and densities

Effective NN interactions – not free interactions

Information from the elastic scattering channel

Folding model (including account of non-localities**) often used to provide the radial shape and approximate strength of the real part of the potential, call it $F_E(R)$, Then, at each E

$$U_E(R) = [N_R(E) + iN_I(E)] F_E(R)$$

the N_R and N_I are fitted to data with N_R of order unity. (e.g. S. Paulo potential)

Quite generally, for most systems***

$$N_R(E) = 1.0 \pm 0.15$$

 $N_I(E) = 0.8 \pm 0.15$

A. Pakou et al., PRC 69 (2004) 054602

^{**} L.C. Chamon et al., PRC 66 (2002) 014610

^{***} G.R. Satchler and W.G. Love, Phys. Rep. **55** (1979) 183

Static effects – barriers for n-rich Carbon isotopes

 $^{A}C + ^{208}Pb$

HF predictions

A. Vitturi, NUSTAR'05, Surrey January 2005

Competing 'direct reaction' dynamical processes

<u>Surface dominated</u> and will 'renormalize' bare ion-ion interaction Channel-assisted/suppressed tunnelling – general phenomenon

Challenges – potentials, thresholds and dynamics

- Expect a complex interplay of static, density driven, and surface, dynamical effects
- Far below the barrier, for normally bound nuclei, direct reaction channels switch off – have opportunity to study threshold effects as reaction channels open and evolve as a function of energy
- Fusion expected to be a severe test of our models of nuclear structures and of treatments of direct reaction dynamics
- Facilities available for sophisticated and very precise experiments - ANU (Canberra), USP, INFN Legnaro, etc.
- Weakly bound systems are different do break-up channels turn off below the barrier? What can we learn?

Channel coupling – classic examples

R.G. Stokstad et al, PRL **41** (1978) 465, PRC **21** (1980) 2427.

M. Beckerman et al, PRL **45** (1980) 1472, PRC **23** (1981) 1581, PRC **25** (1982) 837.

Complete fusion - expectations - static model

$$\sigma(E) = \sum_{\ell=0}^{\infty} \sigma_{\ell}(E) = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell+1) T_{\ell}(E)$$
$$\frac{d^2 u_{\ell}(R)}{dR^2} + \frac{2\mu}{\hbar^2} \left[E - V(R) - \frac{\ell(\ell+1)}{R^2} \right] u_{\ell}(R) = 0$$

Angular momentum dependence of the barrier

Quantum mechanical barrier penetration

$$\frac{d^2 u_{\ell}(R)}{dR^2} + \frac{2\mu}{\hbar^2} \left[E - V(R) - \frac{\ell(\ell+1)}{R^2} \right] u_{\ell}(R) = 0$$

Numerical solutions of this QM barrier penetration problem, the solution of the radial equation for u(R) and the transmission prob. - and later, more complex (coupled channels) examples, account for fusion by one of two methods:

- (i) the $u_{\ell}(R)$ have ingoing wave boundary conditions for $R < R_i$ No flux transmitted through the barrier is reflected
- (ii) the absorptive (imaginary) part in V(R) at short distances absorbs all flux transmitted through the barrier

Theoretical expression for the cross section

$$\sigma_R(E) = \frac{2}{\hbar v} \langle \mathcal{X}^+ | W_E(r) | \mathcal{X}^+ \rangle \begin{cases} \text{the projectile-target distorted wave function is } \mathcal{X}^+ \end{cases}$$

where $W_E(R)$ is total absorptive part of the optical potential

$$\sigma_F(E) = \frac{2}{\hbar v} \langle \mathcal{X}^+ | W_F(r) | \mathcal{X}^+ \rangle$$

where $\mathrm{W}_{\mathrm{F}}(\mathrm{R})$ is that part of the absorption responsible for fusion

Formula of Wong – quadratic form barrier

$$V_{\ell}(R) = V_b - \frac{1}{2}\mu\omega_0^2(R - R_b)^2 + \frac{\ell(\ell+1)\hbar^2}{2\mu R^2}$$

$$T_{\ell}(E) = \left\{1 + \exp\left[(2\pi/\hbar\omega_{\ell})(V_{\ell} - E)\right]\right\}^{-1}$$

$$R_b$$

Assuming $\hbar\omega_{\ell} = \hbar\omega_{0}$ $V_{\ell} = V_{b} + \ell(\ell+1)\hbar^{2}/2\mu R_{b}^{2}$

$$\sigma^{cf}(E) = rac{R_b^2\hbar\omega_0}{2E}\ln(1+e^x)$$
 $x = (2\pi/\hbar\omega_0)(E-V_b)$ and for $E\gg V_b$ $\sigma^{cf}(E) = \pi R_b^2(1-V_b/E)$

C.Y. Wong, PRL **31** (1973) 766

 $V_n(r) + V_C(r)$ Parabolic Approximation

Making connection with empirical cross sections

$$T_{\ell}(E) \approx \left[1 + \exp\sqrt{\frac{8\mu}{\hbar^2}} \int_{R_i(\ell)}^{R_o(\ell)} dR \left\{ V(R) + \frac{\ell(\ell+1)\hbar^2}{2\mu R^2} - E \right\}^{1/2} \right]^{-1}$$

Localised barrier of height (for ℓ =0) of $V_B = V(R_b)$

$$\frac{\ell(\ell+1)}{R^2} \approx \frac{\ell(\ell+1)}{R(E)^2} \rightarrow T_{\ell}(E) \approx T_0 \left(E - \frac{\ell(\ell+1)\hbar^2}{2\mu R(E)^2} \right), \ R(E) \approx R_b$$

$$\sigma(E) = \sum_{\ell} \sigma_{\ell}(E) \to \int d\ell \ \sigma(\ell, E)$$

$$E\sigma(E) = \pi R(E)^2 \int_0^E dE' \ T_0(E')$$

A.B. Balantekin, Rev. Mod. Phys. **70** (1998) 77

UniS

Distribution of barriers – directly from the data

$$E\sigma(E) = \pi R(E)^2 \int_0^E dE' \ T_0(E')$$
 Classically
$$R(E) \equiv R_b$$

$$E\sigma(E) = \pi R_b^2 (E - V_B), \ E > V_B$$

$$= 0, \ E < V_B$$
 1500
$$\frac{d^2}{dE^2} [E\sigma(E)] = \pi R_b^2 \delta(E - V_B)$$
 1000
$$(a) \qquad (a) \qquad (a) \qquad (b) \qquad (a) \qquad (b) \qquad (b) \qquad (c) \qquad (c) \qquad (c) \qquad (c) \qquad (c) \qquad (c) \qquad (d) \qquad (d)$$

UniS

M.Dasgupta et al, ARNPS 48 (1998) 401

A.B., Rev. Mod. Phys. **70** (1998) 77

Coupled channels effects on barrier distribution

Model problem

Coupling of two channels 1,2 assumed degenerate for simplicity - coupling F(R) – incident waves in channel 1.

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} + V(R) - E \right] \phi_1(R) = F(R)\phi_2(R)$$

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} + V(R) - E \right] \phi_2(R) = F(R)\phi_1(R)$$

Decoupled by addition and subtraction

Decoupled, two barriers problem

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} + [V(R) \pm F(R)] - E \end{bmatrix} \mathcal{X}_{\pm}(R) = 0$$

$$\mathcal{X}_{\pm}(R) = [\phi_1(R) \pm \phi_2(R)] / \sqrt{2} \qquad |\langle \mathcal{X}_{\pm} | \phi_1 \rangle|^2 = 1/2$$

$$T_0(E) = \frac{1}{2} [T_{+}(E) + T_{-}(E)]$$

$$V_{+} = V + F$$

$$V_{+} = V + F$$

$$0.5$$

$$R \text{ (fm)}$$

$$V_{-} V_{B} V_{+} E$$

Barrier distributions will reflect channel couplings

In this simple model, channel coupling (no matter what the sign of the coupling potential) enhances fusion below and hinders fusion above the barrier – quite general result

Non-degeneracy of the channels divides the flux incident on the barriers in a more complex way in the different channels (e.g. Beckerman, Rep. Prog. Phys. **51** (1988) 1047)

$$\frac{d^2}{dE^2}[E\sigma(E)] = \frac{\pi R_b^2}{2} \left[\delta(E - V_-) + \delta(E - V_+) \right]$$

Channel coupling – classic examples

R.G. Stokstad et al, PRL **41** (1978) 465, PRC **21** (1980) 2427.

M. Beckerman et al, PRL **45** (1980) 1472, PRC **23** (1981) 1581, PRC **25** (1982) 837.

Empirical and calculated barrier distributions

For data of sufficiently high accuracy and precision, one can compare the values of

$$\frac{d^2}{dE^2}[E\sigma(E)]$$

deduced from the data and from detailed coupled channels calculations, including rotational, vibrational single particle or transfer couplings

M.Dasgupta et al, ARNPS 48 (1998) 401

Fusion reaction processes

A.B. Balantekin and N.Takigawa, Rev. Mod. Phys. 70 (1998), 77-100

Coupling-assisted tunnelling - vibrational excitations

Dispersion relations – threshold phenomena

Onset of inelastic processes with increasing energy develops absorption and perturbs the diffractive (real) part of the optical potential (assumed local for simplicity) - causality and unitarity

$$U_E(R) = V_0(E,R) + \Delta U_E(R)$$

$$\Delta U_E(R) = \Delta V_E(R) + iW_E(R)$$

These terms are intimately connected through a dispersion-type relation (e.g. Feshbach, Ann Phys **5** (1958) 357**)**

$$\Delta V_E(R) = +\frac{\mathcal{P}}{\pi} \int \frac{W_{E'}(R)}{E' - E} dE'$$

$$W_E(R) = -\frac{\mathcal{P}}{\pi} \int \frac{\Delta V_{E'}(R)}{E' - E} dE'$$

Other energy dependence, e.g. from non-locality, is not dispersive and is removed from relationship into $V_0(E,R)$

Information from the elastic scattering channel

Folding model (including account of non-localities**) often used to provide the radial shape and approximate strength of the real part of the potential, call it $F_E(R)$, Then, at each E

$$U_E(R) = [N_R(E) + iN_I(E)] F_E(R)$$

the N_R and N_I are fitted to data with N_R of order unity. (e.g. SP)

Else, entire potential

$$U_E(R) = V_E(R) + iW_E(R)$$

is fitted to elastic scattering data

** L.C. Chamon et al., PRC 66 (2002) 014610

A. Pakou et al., PRC 69 (2004) 054602

Uni**S**

Dispersion relations in comparison with data

M.A. Nagarajan, C.C. Mahaux, and G.R. Satchler, PRL **54** (1985) 1136

L. Chamon, et al, NUSTAR05

Dispersion relation and sub-barrier enhancement

