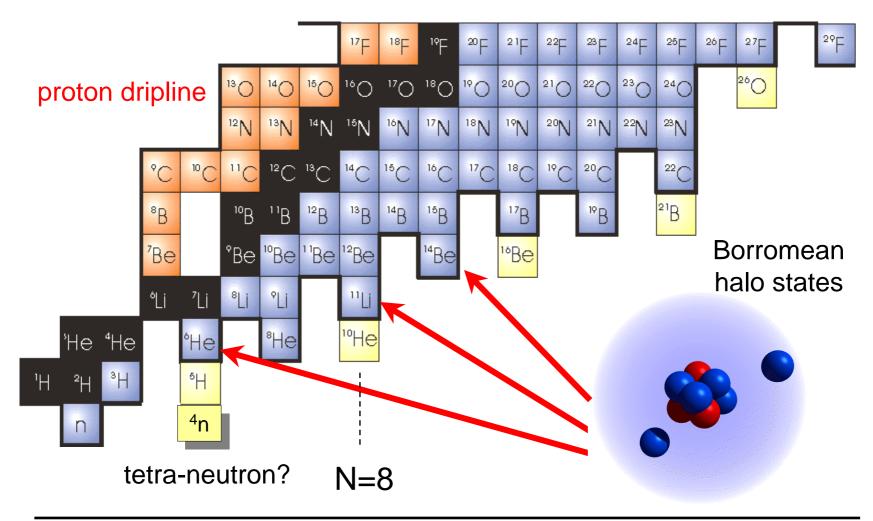


Three lectures – will plan to discuss

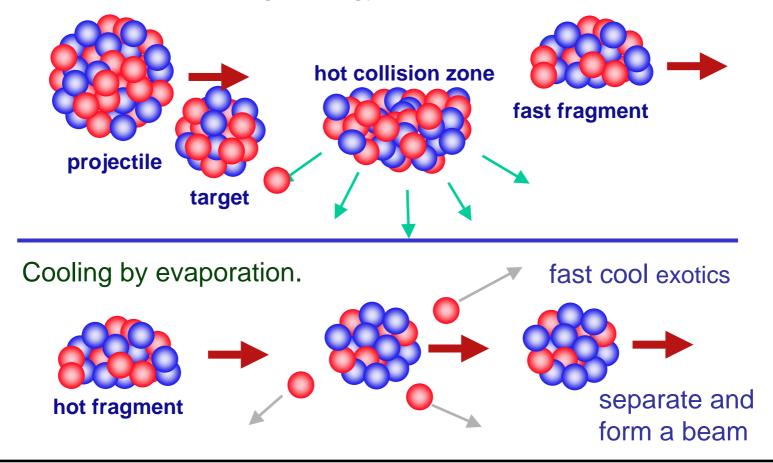
- Lect I: Fusion of ions: motivation and introductory remarks, concepts, terminology, models and indicators of fusion, reaction dynamics, barriers, coupled channels assisted tunnelling, barrier distributions and optical potentials. Experience.
- Lect II: Weakly-bound systems, methods for break-up calculations, fusion in few-body models of break-up reactions. Many open questions.
- Lect III: Partial/incomplete fusion at higher incident energies, applications to knockout of one- and two nucleons and applications for spectroscopy of exotic nuclei

The neutron dripline in light nuclei



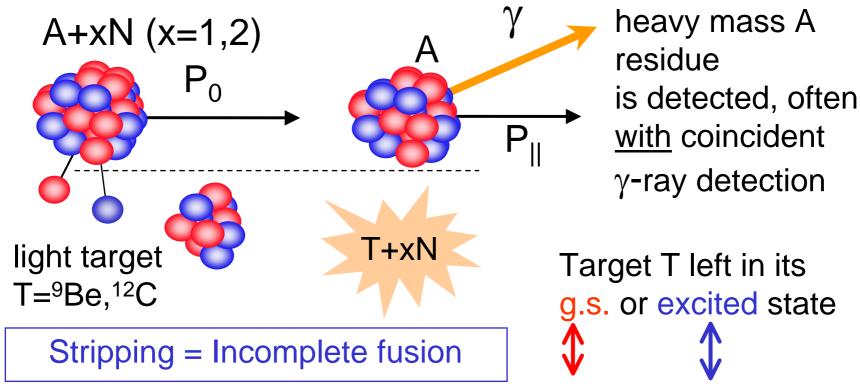
High energy - projectile fragmentation RIBs

Random removal of protons and/or neutrons from heavy projectile in peripheral collisions at high energy - 100 MeV per nucleon or more



One- and two-nucleon knockout reactions

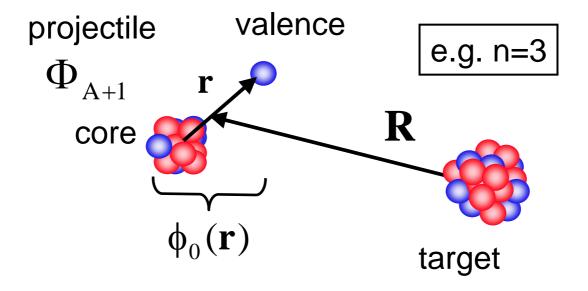
Peripheral collisions (E ≥ 50A MeV; MSU, RIKEN, GSI)



Events contributing will be both <u>break-up</u> and <u>stripping</u> both of which leave a mass A residue in the final state

Few-body models of nuclear reactions

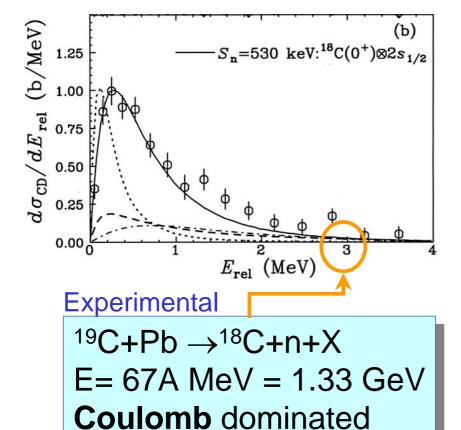
There are no practical many-body reaction theories - we construct model 'effective' few-body models (n=2,3,4 ...)



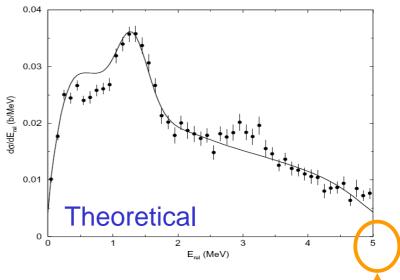
Construct an <u>effective</u> Hamiltonian H and solve as best we can the Schrödinger equation: $H\Psi = E\Psi$

Break-up continua from nuclear and Coulomb

T. Nakamura et al, PRL 83 (1998) 1112



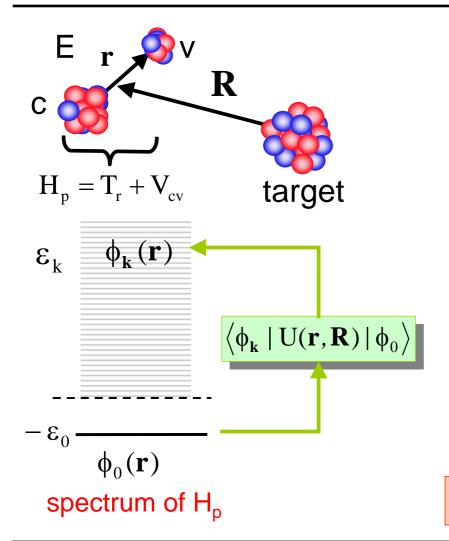
J.A. Tostevin et al, PRC **66** (2002) 02460 N. Fukuda et al., PRC **70** (2004) 054606



Experimental

11
Be + 12 C \rightarrow 10 Be+n+X
E= 67A MeV = 737 MeV
Nuclear dominated

Energetics of few-body composite systems



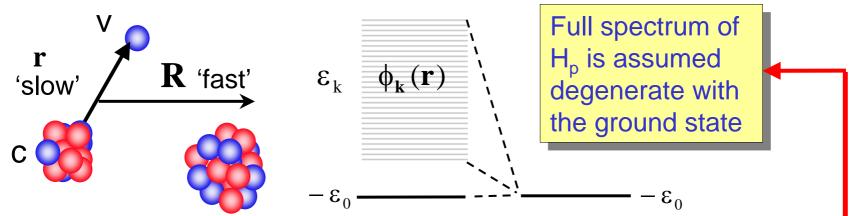
$$H = H_p + T_R + U(r, R)$$

The tidal forces $U(\mathbf{r}, \mathbf{R}) = V_{cT} + V_{vT}$ between c and v and the target cause excitation of the projectile to excited states of c+v and to the continuum states

$$\mathbf{H}_{p}\phi_{\mathbf{k}}(\mathbf{r}) = \varepsilon_{\mathbf{k}}\phi_{\mathbf{k}}(\mathbf{r})$$

Which $\phi_{\mathbf{k}}(\mathbf{r})$ are excited?

Adiabatic reaction model for few-body projectiles



Freeze internal co-ordinate ${\bf r}$ then scatter c+v from target and compute ${\bf f}(\theta,{\bf r})$ for all required <u>fixed</u> values of ${\bf r}$

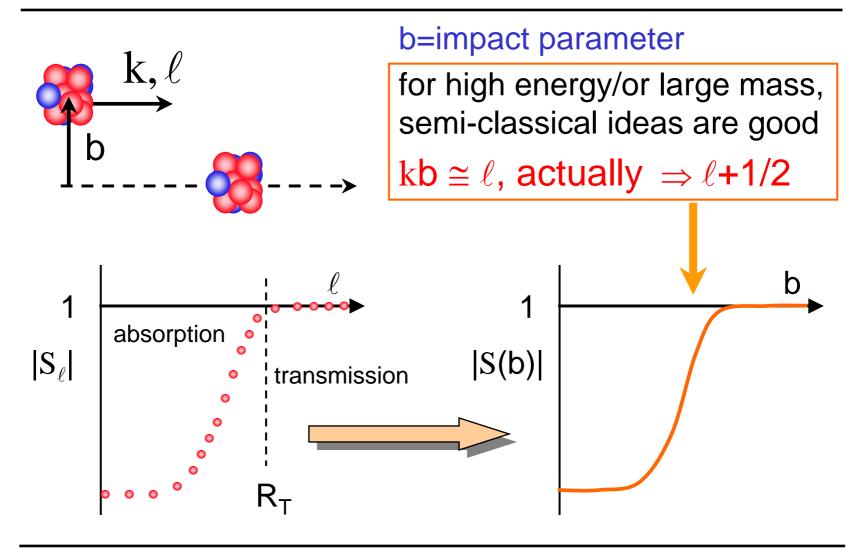
Physical amplitude for break-up to state $\phi_{\mathbf{k}}(\mathbf{r})$ is then,

$$f_k(\theta) = \langle \phi_k | f(\theta, \mathbf{r}) | \phi_0 \rangle_{\mathbf{r}}$$

$$H = T_{\mathbf{R}} + U(\mathbf{r}, \mathbf{R}) + H_{\mathbf{p}}$$

$$H^{AD} = T_{\mathbf{R}} + U(\mathbf{r}, \mathbf{R}) - \varepsilon_{0}$$

The semi-classical S-matrix - S(b)



Point particle scattering - observables

All experimental observables can be computed from the S-matrix, in either representation, for example,

$$\begin{split} \sigma_{el} &= \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1)/1 - S_{\ell}/^2 \to \int d\mathbf{b} \, |1 - S(\mathbf{b})|^2 \\ \sigma_{R} &= \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1)[1 - /S_{\ell}/^2] \to \int d\mathbf{b} \, [1 - /S(\mathbf{b})|^2] \\ \sigma_{tot} &= \sigma_{R} + \sigma_{el} = 2 \int d\mathbf{b} \, [1 - \text{Re.S(b)}], \quad \text{etc} \end{split}$$

and where
$$\int d\mathbf{b} \equiv 2\pi \int b \, db$$

Eikonal solution of the few-body model

Practical application of adiabatic approximation: $H_p \rightarrow -\epsilon_0$

$$H = T_{\mathbf{R}} + U(\mathbf{r}, \mathbf{R}) + H_{\mathbf{p}}$$

$$\phi_{0}(\mathbf{r}) \vee \mathbf{K}$$
substituting the eikonal form solution
$$\Psi_{\mathbf{K}}^{\mathrm{AD}}(\mathbf{r}, \mathbf{R}) = e^{i\mathbf{K}\cdot\mathbf{R}}\phi_{0}(\mathbf{r})\,\omega(\mathbf{r}, \mathbf{R})$$

$$\mathrm{incident}_{\mathbf{W}} \qquad \mathrm{incident}_{\mathbf{W}} \qquad \mathrm{modulating}_{\mathbf{function}}$$

$$[T_{\mathbf{R}} + U(\mathbf{r}, \mathbf{R}) - (E + \epsilon_{0})]\,\Psi_{\mathbf{K}}^{\mathrm{AD}}(\mathbf{r}, \mathbf{R}) = 0$$

and neglecting the curvature term

$$\nabla_{\mathbf{R}}^2 \omega(\mathbf{r}, \mathbf{R}) \ll 2\nabla_{\mathbf{R}} \omega \cdot \mathbf{K}$$

$$\omega(\mathbf{r}, \mathbf{R}) = \exp \left\{ -\frac{i}{\hbar v} \int_{-\infty}^{Z} dZ' \left(\mathbf{U}(\mathbf{r}, \mathbf{R}') \right) \right\} \qquad \qquad V_{cT} + V_{vT}$$

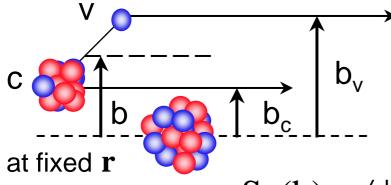
Few-body eikonal model amplitudes

So, after the collision, as $Z \rightarrow \infty$ $\omega(\mathbf{r}, \mathbf{R}) = S_c(b_c) S_v(b_v)$

$$\omega(\mathbf{r}, \mathbf{R}) = S_c(b_c) S_v(b_v)$$

$$\Psi_{\mathbf{K}}^{\text{Eik}}(\mathbf{r},\mathbf{R}) \rightarrow e^{i\mathbf{K}\cdot\mathbf{R}} S_{c}(b_{c}) S_{v}(b_{v}) \phi_{0}(\mathbf{r})$$

with $S_{\rm c}$ and $S_{\rm v}$ the eikonal approximations to the S-matrices for the independent scattering of c and v from the target - the dynamics



So, elastic amplitude (S-matrix) for the scattering of the projectile at an impact parameter b - i.e. The amplitude that it emerges in state $\phi_0(\mathbf{r})$ is

$$S_{p}(b) = \langle \phi_{0} | \underbrace{S_{c}(b_{c}) S_{v}(b_{v})}_{c} | \phi_{0} \rangle_{r}$$

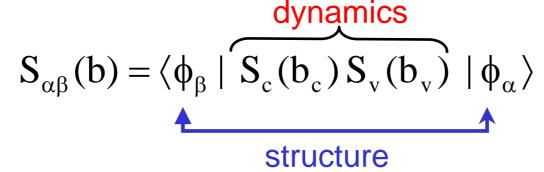
averaged over position probabilities of c and v

adiabatic

amplitude that c,v survive interaction with b_c and b_v

Dynamics and structure - formal transparency

Independent scattering information of c and v from target



Use the <u>best available</u> few- or many-body wave functions

More generally,

$$S_{\alpha\beta}(b) = \langle \phi_{\beta} | S_1(b_1) S_2(b_2) S_n(b_n) | \phi_{\alpha} \rangle$$

for any choice of 1,2,3, n clusters for which a realistic wave function φ is available

Break-up of composite systems

The total cross section for removal of the valence particle from the projectile due to the break-up (or diffractive dissociation) mechanism is the break-up amplitude, summed over all final continuum states

$$\sigma_{\text{diff}} = \int d\mathbf{k} \int d\mathbf{b} |\langle \phi_{\mathbf{k}} | S_{c}(b_{c}) S_{v}(b_{v}) | \phi_{0} \rangle|^{2}$$

but, using completeness of the break-up states

$$\int d\mathbf{k}/\phi_{\mathbf{k}} \rangle \langle \phi_{\mathbf{k}} | = 1 - |\phi_0\rangle \langle \phi_0| - |\phi_1\rangle \langle \phi_1| \dots \qquad \text{bound state}$$

can (for a weakly bound system with a single bound state) be expressed in terms of only the projectile ground state wave function as:

$$\sigma_{\text{diff}} = \int d\mathbf{b} \left\{ \langle \phi_0 || S_c S_v |^2 |\phi_0\rangle - /\langle \phi_0 |S_c S_v |\phi_0\rangle |^2 \right\}$$

Absorptive cross sections - target excitation

Since our effective interactions are complex all our S(b) include the effects of absorption due to inelastic channels

$$|S(b)|^2 \le 1$$

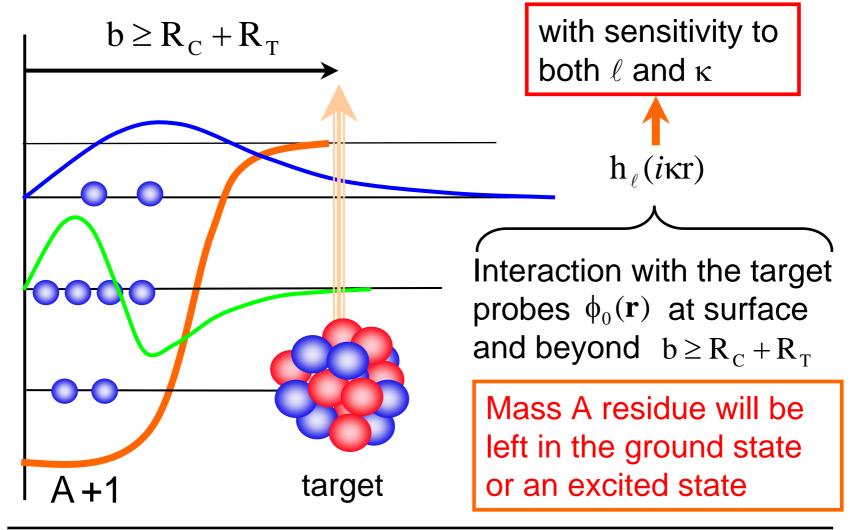
$$\sigma_{abs} = \sigma_R - \sigma_{diff} = \int d\mathbf{b} \ \langle \phi_0 \ | \ 1 - |S_c S_v \ |^2 \ | \ \phi_0 \rangle$$
 stripping of v from projectile exciting the target.
$$|S_c \ |^2 \ (1 - |S_v \ |^2) + \longrightarrow \text{v absorbed, c survives}$$

$$(1 - |S_v \ |^2)(1 - |S_v \ |^2) \times \text{v absorbed, c absorbed}$$

$$\sigma_{strip} = \int d\mathbf{b} \ \langle \phi_0 \ | \ |S_c \ |^2 \ (1 - |S_v \ |^2) \ | \ \phi_0 \rangle$$

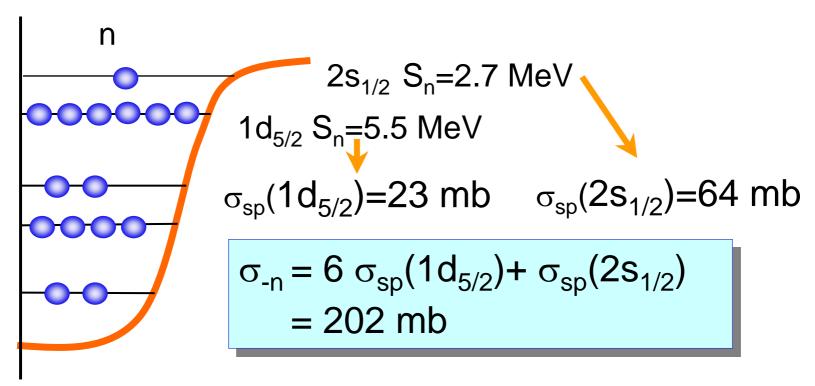
Related equations exist for the differential cross sections, etc.

Probing the surface and tails of wave functions



Example for orientation - extreme sp model

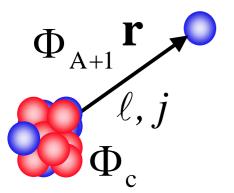
Single neutron removal from $^{23}O \equiv [1d_{5/2}]^6 [2s_{1/2}]$



Measurement at RIKEN [Kanungo et al PRL 88 ('02) 142502] at 72 MeV/nucleon on a 12 C target; $\sigma_{-n} = 233(37)$ mb

Structure information - nucleon wave function

Nucleon removal from Φ_{A+1} will leave mass A residue in the ground or an excited state - even in extreme sp model



More generally: amplitude for finding nucleon with sp quantum numbers ℓ ,j, about core state Φ_c in Φ_{A+1} is

$$\ell, j$$
 $F_{\ell j}^{c}(\mathbf{r}_{c}) = \langle \mathbf{r}, \Phi_{c} / \Phi_{A+1} \rangle, S_{N} = E_{A+1} - E_{c}$

$$\int d\mathbf{r} |F_{\ell j}^{c}(\mathbf{r})|^{2} = C^{2}S(\ell j) \left\{ \begin{array}{l} \text{Spectroscopic} \\ \text{factor} \sim \text{occupancy} \\ \text{of the state} \end{array} \right.$$

Usual to write

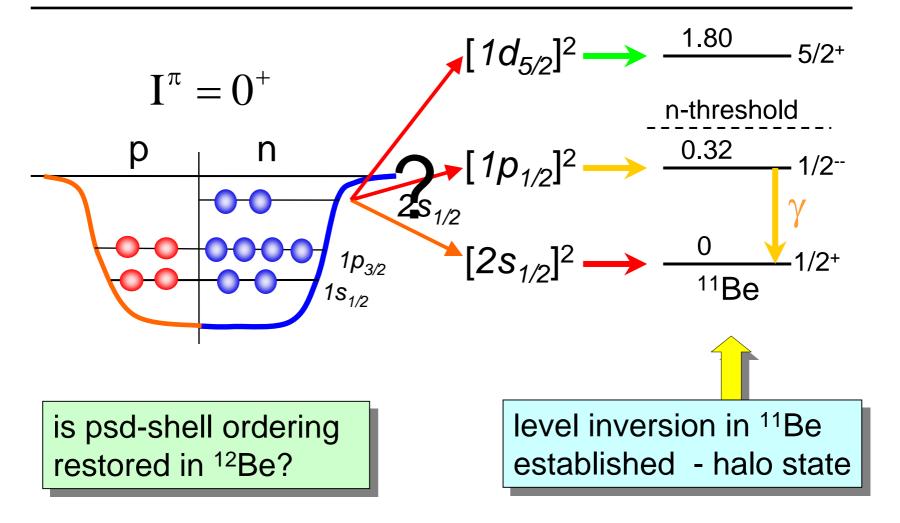
$$\mathbf{F}_{\ell j}^{\mathrm{c}}(\mathbf{r}) = \sqrt{\mathbf{C}^{2}\mathbf{S}(\ell j)} \, \phi_{\ell j}^{\mathrm{c}}(\mathbf{r}); \quad \int d\mathbf{r} \, |\phi_{\ell j}^{\mathrm{c}}(\mathbf{r})|^{2} = 1$$

with $\phi(\mathbf{r})$ calculated in a potential model (Woods-Saxon)

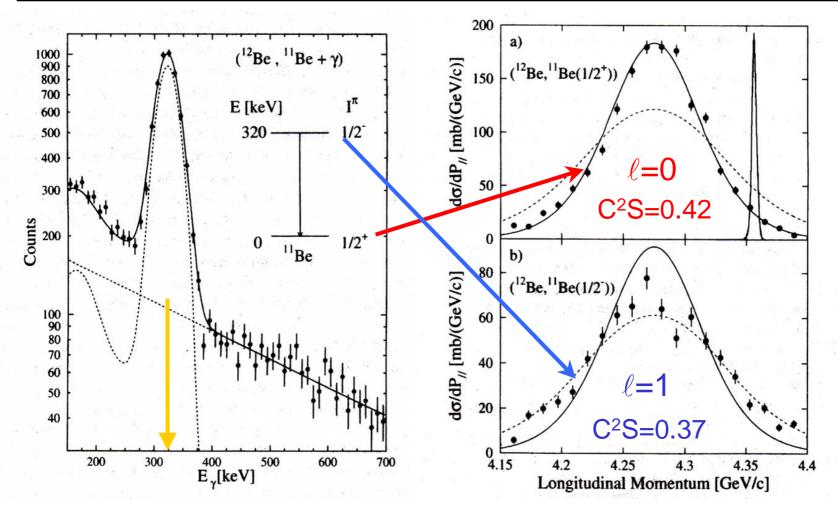
Of course we need to do this carefully

Energy	y (MeV)	I^{π}	ℓ	C^2S	σ_{sp} (mb)	$\sigma_{1n} \text{ (mb)}$
	0 0		0	0.797	64.2	51.2
◆ 3.38		2^+	2	2.130	22.8	48.6
4.62		0+	0	0.115	32.0	3.7
•	4.83	3 ⁺	2	3.079	20.4	62.9
	5.32	1-	1	0.851	17.8	15.2
	5.93		1	0.332	16.9	5.6
6.50		2+	2	0.242	18.0	4.4
				Sum:	191	
Shell	²² O fir	nal			datum 2	233(37)mb
model (Brown)	states below n-threshold				X S	$C^2S(2^+)=2.5$ $C^2S(3^+)=3.5$

N=8 neutron shell closure (magic no.) in ¹²Be?

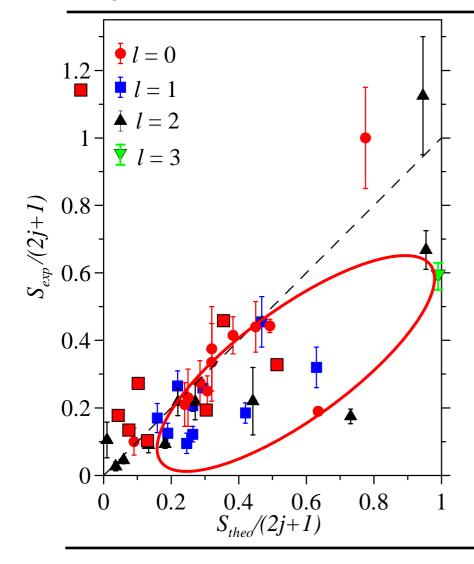


N=8 neutron shell closure in ¹²Be?



A. Navin et al., PRL **85** (2000) 266

Experimental v shell model spectroscopic factors



Can define reduction factor

$$R_s = \frac{\sigma_{\mathrm{exp}}}{\sigma_{\mathrm{th}}} \leq 1$$

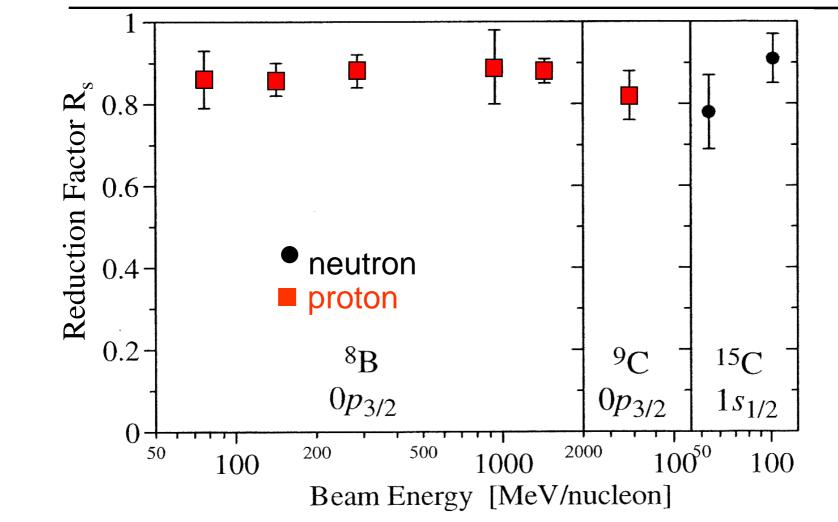
th = Shell model structure plus eikonal reaction

More bound systems

P.G. Hansen and J.A.Tostevin, ARNPS 53 (2003), 219

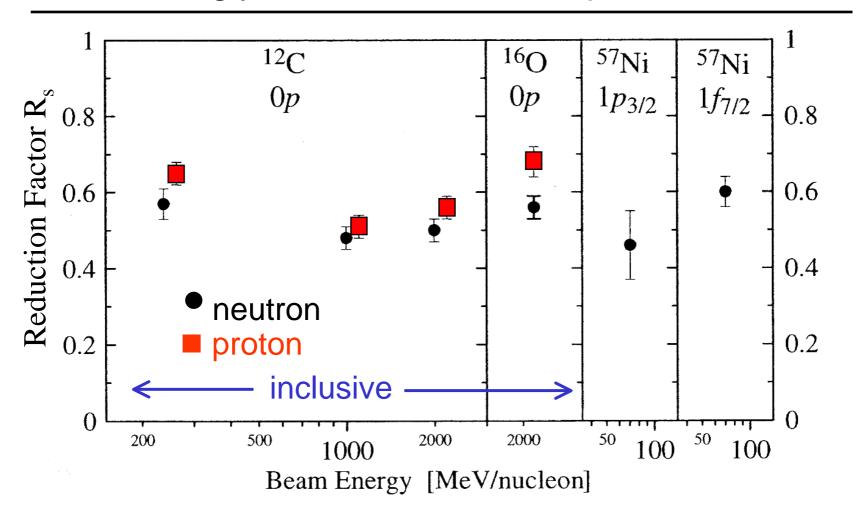
UniS

Weakly bound states – with good statistics



P.G. Hansen and J.A.Tostevin, ARNPS 53 (2003), 219

More strongly bound states – deep hole states



P.G. Hansen and J.A.Tostevin, ARNPS **53** (2003), 219

Results from electron scattering – stable nuclei

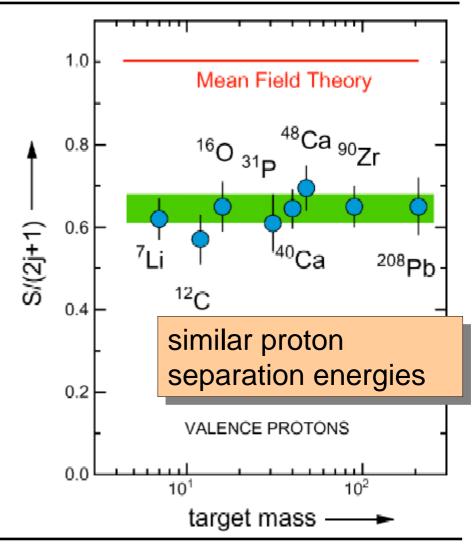
Departures of measured spectroscopic factors from the independent single-particle model predictions

Electron induced proton knockout reactions:

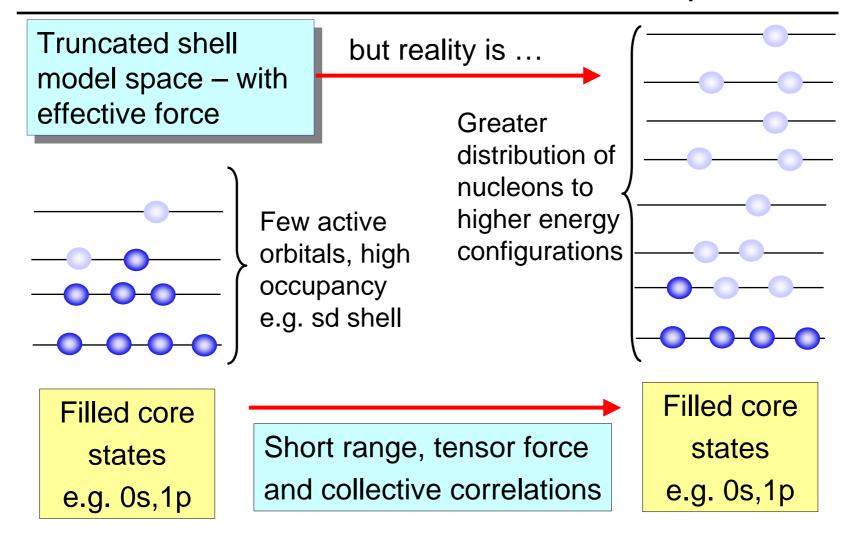
[A,Z] (e,e'p) [A-1,Z-1]

See only 60-70% of nucleons expected!

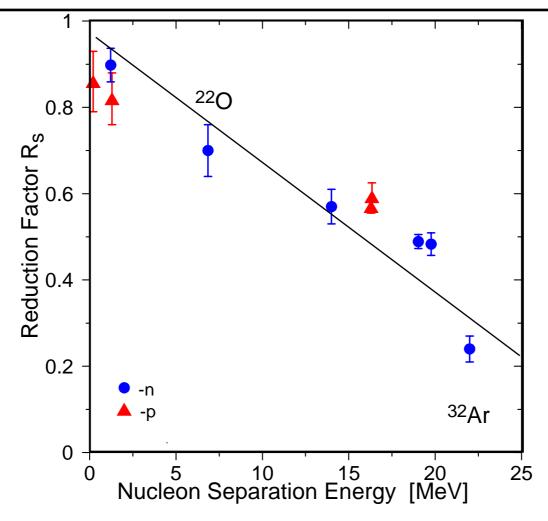
W. Dickhoff and C. Barbieri, Prog. Nucl. Part. Sci., in press



Correlations and truncated shell model spaces

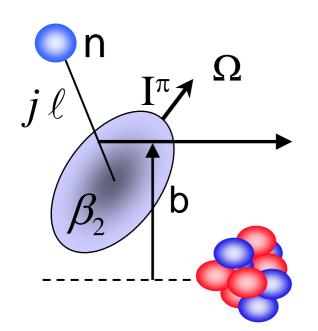


R_s factors – deviations from the shell model



A. Gade et al., PRL 93 (2004) 042501

Deformation - core degrees of freedom



$$\Psi_{JM}(\mathbf{r},\hat{\Omega}) = \sum_{\ell j I} \left[\phi_{j\ell}(\mathbf{r}) \otimes \phi_{I}(\hat{\Omega}) \right]_{JM}$$

$$I = 0, 2, 4, \dots$$

weak-coupling n-deformed core model: this includes

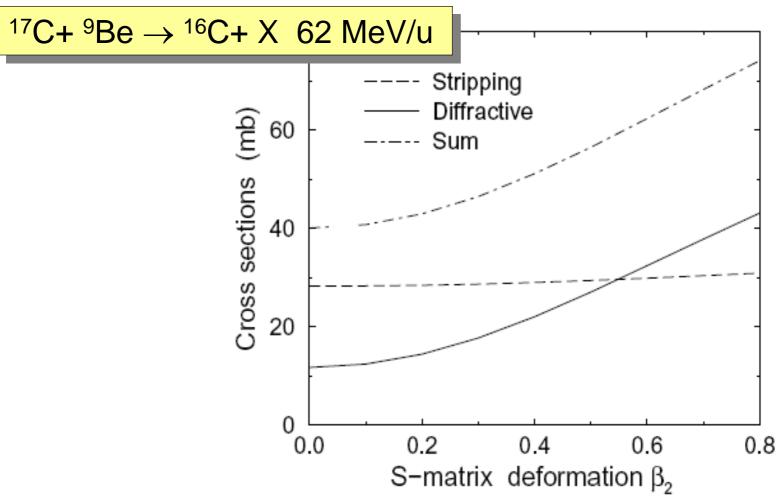
- core excitation / de-excitation
- core reorientation effects

The inclusive stripping contribution now reads, e.g.

$$\sigma_{\text{strip}} = \sum_{M} \int d\mathbf{b} \int d\hat{\Omega} \langle \Psi_{JM} || S_{c}(\hat{\Omega})|^{2} (1 - |S_{n}|^{2}) |\Psi_{JM}\rangle$$

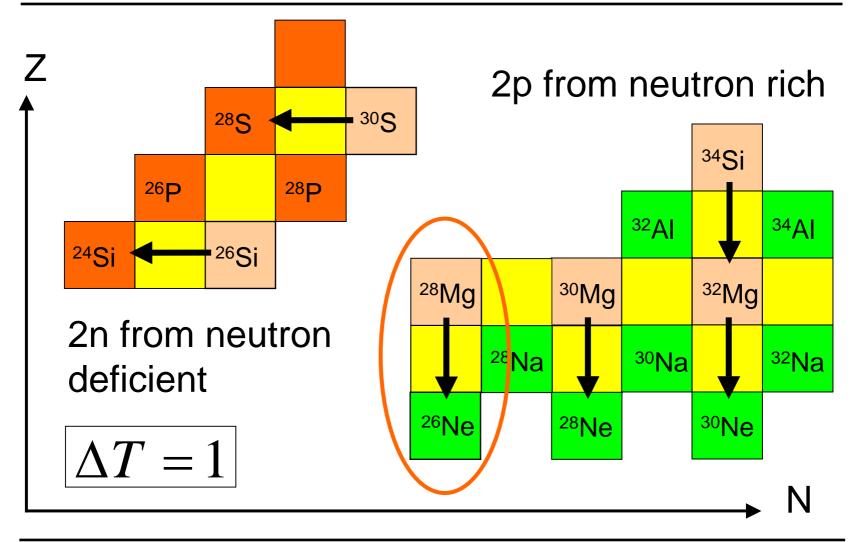
P.Batham, J.A. Tostevin and I.J. Thompson, submitted

Deformation-assisted break-up

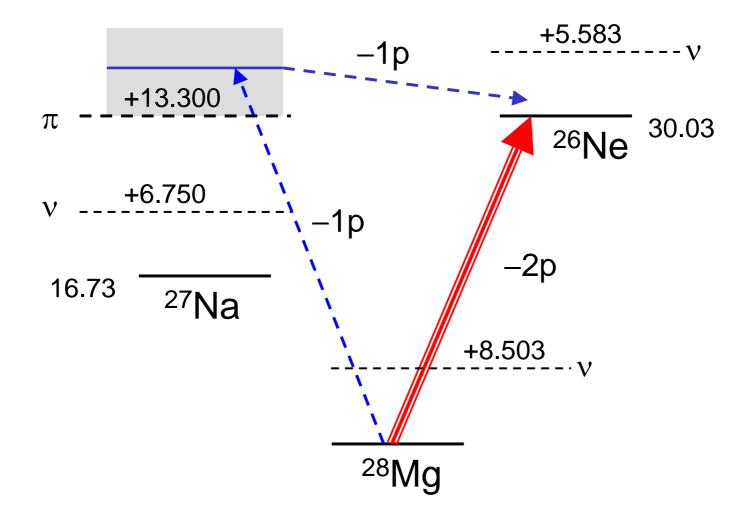


P.Batham, J.A. Tostevin and I.J. Thompson, submitted

Two nucleon knockout – go south, or west

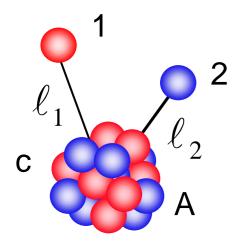


Two-proton knockout energies – magnesium 28



Direct two nucleon knockout – 2N correlations?

$$\sigma_{\text{strip}} = \sigma_{-2N} = \int d\mathbf{b} \langle \phi_0 || S_c |^2 (1 - |S_1|^2) (1 - |S_2|^2) |\phi_0\rangle$$



Estimate assuming removal of a pair of <u>uncorrelated</u> nucleons -

$$\phi_0(\mathbf{A}, \mathbf{r}_1, \mathbf{r}_2) = \Phi_c(\mathbf{A})\phi_{\ell_1}(\mathbf{r}_1)\phi_{\ell_2}(\mathbf{r}_2)$$

$$\sigma_{
m strip} \Rightarrow \sigma_{
m strip}(\ell_1 \ell_2)$$

contribution from direct 2N removal σ_{-2}

$$\begin{array}{c|c} \textbf{p particles} & \ell_{\alpha} \\ \hline \textbf{q particles} & \ell_{\beta} \end{array}$$

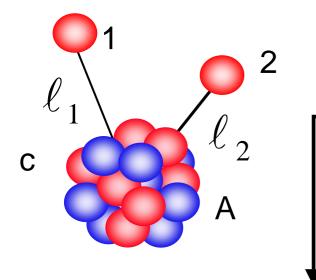
$$\sigma_{-2N} = \frac{p(p-1)}{2} \sigma_{\text{strip}}(\ell_{\alpha}\ell_{\alpha}) + \frac{q(q-1)}{2} \sigma_{\text{strip}}(\ell_{\beta}\ell_{\beta}) + pq \sigma_{\text{strip}}(\ell_{\alpha}\ell_{\beta})$$

D. Bazin et al., PRL 91 (2003) 012501

Uncorrelated two proton removal

28 Mg → 26 Ne(inclusive)

D. Bazin et al., PRL **91** (2003) 012501



Assuming $(1d_{5/2})^4$ then

$$\sigma_{-2N} = \frac{4(4-1)}{2} \sigma_{\text{strip}}(22) \approx 1.8 \text{mb}$$

Expt:1.50(1)mb

with weights 0+: 1.33

to the ²⁶Ne 2+: 1.67

final states 4+: 3.00

$$\sigma_{\text{strip}}(22) = 0.29 \text{ mb}$$

$$\sigma_{\text{strip}}(02) = 0.32 \text{ mb}$$

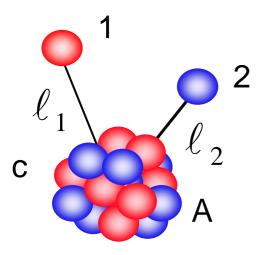
$$\sigma_{\rm strip}(00) = 0.35 \, {\rm mb}$$

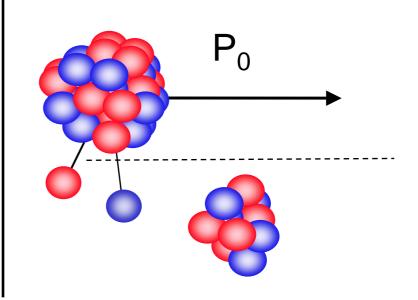
Two nucleon knockout – obvious generalisation

$$\sigma_{\text{strip}} = \sigma_{-2N} = \int d\mathbf{b} \langle \phi_0 || S_c |^2 (1 - |S_1|^2) (1 - |S_2|^2) |\phi_0\rangle$$

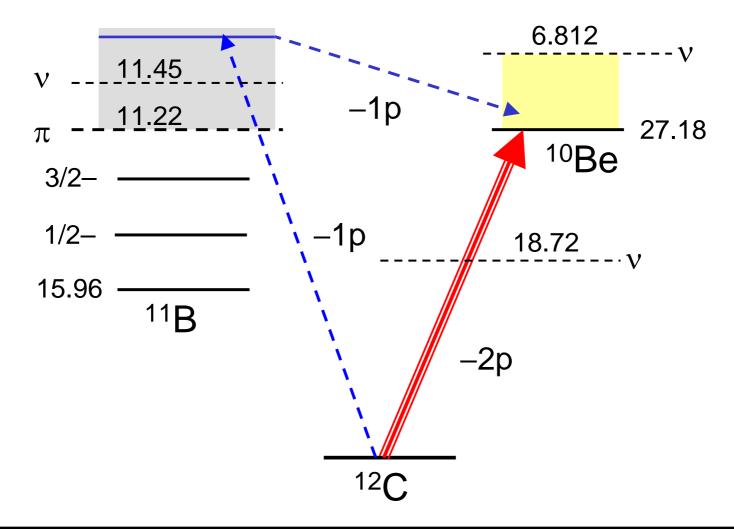
$$\phi_0 \equiv \Psi_{JM}^{(c)} = \sum_{\alpha I} C_{\alpha}^{JIc} [[\overline{\phi_{j_1 \ell_1}}(1) \otimes \phi_{j_2 \ell_2}(2)]_I \otimes \phi_c]_{JM},$$

$$\alpha \equiv (j_1 \ell_1, j_2 \ell_2)$$





Two-proton knockout energies – carbon 12



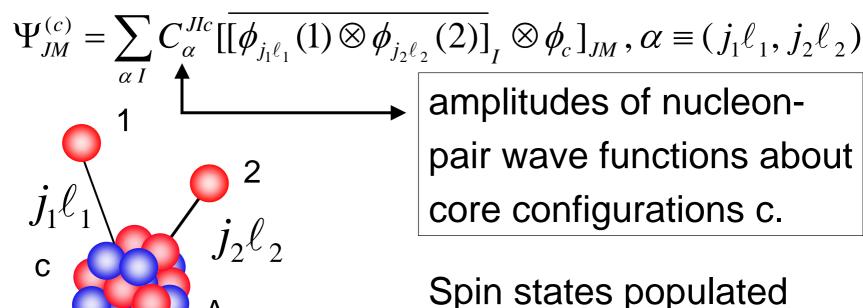
Test case - earlier data from Berkeley (~10%)

2N removal from ¹²C B.A. Brown, 2N amplitudes Kidd et al., Phys Rev C **37** (1988) 2613

	Energy/nucleon	250 MeV	1.05 GeV	2.10 GeV
	¹² C→ ¹⁰ Be (2p)	5.82 mb	5.33 mb	5.15 mb
00	¹² C→ ¹⁰ Be (2p) S(2p)=27.18 MeV	5.88	5.30(30)	5.81(29)
	¹² C→ ¹⁰ C (2n)	4.26 mb	3.91 mb	3.84 mb
00	¹² C→ ¹⁰ C (2n) S(2n)=31.84 MeV	5.33(81)	4.44(24)	4.11(22)

J.A. Tostevin et al., Nucl. Phys. A746 (2004) 166c.

Correlated two proton removal



core configurations c.

There is now no SF factorisation

$$|J - I| \le I_c \le J + I$$
 $|j_1 - j_2| \le I \le j_1 + j_2$

Shell model (sd-shell) 2N amplitudes

$^{28}\text{Mg} \rightarrow ^{26}\text{Ne}(0^{+})$

$$C(2s_{1/2})^2 = -0.305$$

$$C(1d_{3/2})^2 = -0.301$$

$$C(1d_{5/2})^2 = -1.05$$

 $C(1d_{5/2})^2 = -1.05$ ²⁸Mg \rightarrow ²⁶Ne(2+)

$$C(1d_{3/2})^2 = -0.050$$

$$C(d_{5/2}, d_{3/2}) = + 0.374$$

$$C(1d_{5/2})^2 = -0.637$$

$$C(s_{1/2}, d_{5/2}) = -0.061$$

$$C(s_{1/2}, d_{3/2}) = -0.139$$

 $^{28}\text{Mg} \rightarrow ^{26}\text{Ne}(4^{+})$

$$C(d_{5/2}, d_{3/2}) = 0.331$$

$$C(1d_{5/2})^2 = 1.596$$

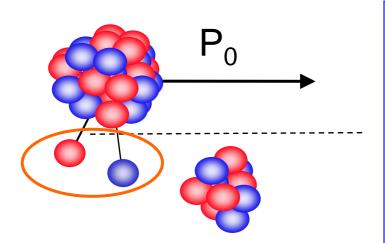
Cross sections – correlated and uncorrelated

28
Mg \rightarrow 26 Ne(0+, 2+, 4+) S = σ (in mb) / 0.29

	S _{th}	S _{exp}	S _{th}	$\sigma_{\sf exp}$	σ_{th}
	unc.		corr.	(mb)	(mb)
0+	1.33	2.4(5)	1.83	0.70(15)	0.532
2+	1.67	0.3(5)	0.54	0.09(15)	0.157
4+	3.00	2.0(3)	1.79	0.58(9)	0.518
2+	-	0.5(3)	0.78	0.15(9)	0.225

Inclusive cross section (in mb) 1.50(10) 1.43

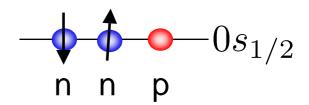
Nature of the two-nucleon correlations probed?



Removed nucleon pair are spatially correlated but no restriction on pair spin (S=0,1) or relative orbital angular momentum in formalism. All contributing pair wave functions are included.

Unlike, e.g. (p,t) reaction - < p|t> structure selects nn pair with S=0 in a relative s-state ($\ell = 0$)

Can assess by projecting S=0 component of knockout



Spin-correlations – measure more than in transfer

$$^{28}\text{Mg} \rightarrow ^{26}\text{Ne}(0^+, 2^+, 4^+, 2^+)$$

J_f^{π}	S_{unc}	S_{rel}	S_{rel}'	$S_{S=0}$	S_{exp}	S_{th}	$\sigma_{th} \; (\mathrm{mb})$	$\sigma_{S=0} \text{ (mb)}$
0+	1.33	1.6	1.88	3.70	2.4(5)	1.83	0.532	0.484
2^+	1.67	0.14	0.15	0.26	0.3(5)	0.54	0.157	0.034
4+	3.00	(2.0)	(2.0)	(2.0)	2.0(3)	1.79	0.518	0.259
2_{2}^{+}	-	0.46	0.43	0.95	0.5(3)	0.78	0.225	0.123

Seniority isomers in heavy nuclei

