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What is involved in realistic reaction calculations?
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Example: What is involved – take neutron from 23O

protons neutrons

-17

-12.5

-6.0

-2.73

neutrons
Hartree-Fock mean field calculation

Experimental separation
energy known



Independent particle – (p,d) reaction

Single neutron removal from 23O  [1d5/2]6 [2s1/2]

2s1/2  Sn=2.73 MeV

1d5/2 Sn=6.0 MeV

n
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transfer reaction code(s) available at:
http://www.nucleartheory.net/NPG/code.htm

SF are?



Bound states – spectroscopic factors
In a potential model it is natural to define normalised
bound state wave functions. 

The potential model wave function approximates the 
overlap function of the A and A1 body wave functions (A 
and An in the case of an n-body cluster) i.e. the overlap

S(…) is a spectroscopic factor, that scales the normalised 
single-particle wave function/overlap/form-factor



Connection to many-body structure calculations (1)

If we describe many body states by single Slater determinants, 
since these must be antisymmetric

then, for A identical particles (isospin) [ or if (n,p), then N or Z ]

The A factor is not usually carried: it cancels in cross sections 
that have an A multiplier to account for each identical particle.



Connection to many-body structure calculations (2)

Here the radial wave function (form factor) is normalised. In a 
reaction that removes a nucleon from a given orbital then, if a 
sub-shell is filled in the initial nucleus there are (2j+1) nucleons
available with a given (j,ℓ) to contribute.
So, more generally (non-single Slater determinant) many-body 
structure models calculate and provided overlaps as:

So, S multiplies the cross section calculated with a normalised 
form-factor. The S are defined so that (for given n j,ℓ quantum 
numbers) their sum over final states is the mean number of 
nucleons occupying the given sub-shell (sum-rule).



Independent particle – (p,d) reaction

Single neutron removal from 23O  [1d5/2]6 [2s1/2]

2s1/2  Sn=2.73 MeV

1d5/2 Sn=6.0 MeV

n
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transfer reaction code(s) available at:
http://www.nucleartheory.net/NPG/code.htm

SF are?



Neutron bound state wave functions

23O23O



Transfer reactions e.g. (p,d) – coordinate systems
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Transfer reaction transition amplitudes - DWBA

entrance channelexit channel

A
A+1

- vertex function – of short but finite range



Transfer reaction – involve structure via overlaps
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Transfer reaction – plane waves for insight (1)

when using plane waves for p and d – i.e. ‘weak’ distortions
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Transfer reaction – plane waves for insight (2)

and expanding             for small q



Transfer reactions – “matching” considerations

e.g. (p,d) on A=40 at Ep=10 MeV, say Sn=4 MeV, R40~4 fm

R~4

with Ep=20 MeV

A=40



Phenomenological optical potentials – where? 
C.M. Perey and F.G. Perey, At. Data Nucl. Data Tables 17, 1 (1976) 
Compilation for many systems

J.J.H. Menet, E.E. Gross, J.J. Malanify, and A. Zucker, Phys. Rev. C 
4, 1114 (1971) – for nucleons

R.L. Varner, W.J. Thompson, T.L. McAbee, E.J. Ludwig, and T.B. 
Clegg, Phys. Rep. 201, 57 (1991) – Chapel Hill 89 potential – for 
nucleons

F.D. Becchetti, Jr. and G.W. Greenlees, Phys. Rev. 182, 1190 (1969) 
– ‘old faithful’ parameterisation – for nucleons

W.W. Daehnick, J.D. Childs, and Z. Vrcelj, Phys. Rev. C 21, 2253 
(1980) – good parameter set – for deuterons

J.M. Lohr and W. Haeberli, Nucl. Phys. A232, 381 (1974) – for low 
energy deuterons

..... and many many more ... but many many gaps

http://www-nds.iaea.org/RIPL-2/optical.html



Global optical potentials – e.g. CH91 for nucleons



Theoretical nucleon potential – based on density
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JLM interaction – local density approximation
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nuclear
matter

k

For finite nuclei, what value of 
density should be used in 
calculation of nucleon-nucleus 
potential? Usually the local 
density at the mid-point of the 
two nucleon positions

complex and density 
dependent interaction
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JLM interaction – fine tuning
Strengths of the real and imaginary parts of the potential 
can be adjusted based on experience of fitting data.

p + 16Op + 16O

J.S. Petler et al. Phys. Rev. C 32 (1985), 673



JLM folded nucleon-nucleus optical potentials

J.S. Petler et al. Phys. Rev. C 32 (1985), 673



Neutron: proton: nucleon radial densities (HF)



Transfer reaction transition amplitudes - DWBA

entrance channelexit channel

- short range

A
A+1



Global optical potentials – e.g. for deuterons



Calculated (p,d) transfer (pick-up) cross sections

23O23O



Single-particle spectroscopy – angular distributions
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4Data: M.S. Chowdhury and 
H.M. Sen Gupta Nucl. 
Phys. A205, 454 (2005)

Figure: Isotope Science 
Facility (ISF) White Paper, 
NSCL (2007)



Transfer reaction – beyond DWBA - breakup

entrance channelexit channel
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Transfer reaction – three-body models - breakup

neutron is also transferred to unbound 
states (d*) of the n-p system –
represented by continuum bins – that 
are coupled to the deuteron g.s. for as 
long as the two nucleons remain 
within the range of 

These higher-order effects can be 
important in slower (lower-energy) 
reactions



Treating breakup effects with continuum bins
Scattering states

orthonormal 
set

weight 
function



Adiabatic three-body model – breakup made simpler

Since to calculate the transfer amplitude we need the three 
body wave function only in regions where Vnp ≠ 0, r ≈ 0

So, with

“ADWA”



The adiabatic deuteron distorting potential

this is NOT an optical potential and is not meant to and 
DOES NOT describe deuteron elastic scattering



Key features for transfer reactions - spectroscopy

J.D. Harvey and R.C. Johnson, Phys. Rev.C 3 (1971) 636

Increased reflection at 
nuclear surface - less
diffuse deuteron channel
potential
Greater surface
localisation - L-space
localisation
Less nuclear volume
contribution and less
sensitivity to optical 
model  parameters

More consistent sets of
deduced spectroscopic 
factors

DWBA

DWBA: W=60 MeV

Adiabatic

40Ca(p,d)39Ca, 30.5 MeV





Coulomb interaction – electromagnetic probe
Coulomb trajectory



Coulomb excitation - transition strengths

Coulomb trajectory

Weisskopf units – single proton expectation



Halo configurations – use of Coulomb dissociation
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Coulomb breakup – n-halo systems: weak binding

T. Nakamura et al., Phys. Rev. 
Lett. 83, 1112–1115 (1999)




