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V(vs9e?) = 0

or

T (pIwlE) = O o

which, on interpreting

\ —
m P
as the velocity field and

\wi®

as the density of particles, is seen to be just the hydrodynamical equation
of continuity. Now suppose a beam of particles is projected toward a
scattering center. The density of particles, according to the equation,
is at ali points the density present if the particles simiply move along
their classical trajectories. Hence cross sections, for example, com-
puted by the W. K. B. method will be precisely the same as those com-
puted classically. {An exception arises only if the potential is suffici-
ently complicated that more than one classical trajectory can lead to the
point of observation. In that case, Eq. (43) must be replaced by a sum
of similarly constructed terms, one for each path, and non-classical
interference effects arise, }

A number of authors have applied the name of the W. K. B.
approximation to a rather different procedure based on the partial wave
expansion, Theyintegrate the radial equations to find the individual phase
shifts by a one -dimensional W, K. B. method. The region of applica-
bility of this procedure is altogether different from that of the one de-
scribed above, although, of course, the two overlap at the classical ex-
treme. It is questionable whether such an alternative procedure should
be referred to simply as the W, K., B. approximation since its use of
exact angular eigenfunctions leads to such different mathematical pro-
perties. This approximation is, in fact, related to one which we shall
describe presently.

-

The High-Energy Approximation in One Dimension

We shall now begin the development of an approximation which is
better suited to many of the purposes of high-energy studies than any of
the methods mentioned eavlier, While the method to be discussed is not
without limitations of its own, these, as we shall see, allow one to esti-
mate correctly the intensity of a predominant part of the scattering,

~
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To begin the development at the simplest possible point, and one
that will later prove quite useful, we shall consider a one -dimensional
scattering problem. Of course it is necessary to bear in mind a very
special property of scattering problems in one dimension. The scatter-
ing process can take place in only two directions, either preserving the
sense of motion of the particle or sending it directly backward, There
are no compromises, While this makes the problem a trifle unrealistic,
it has the advantage of making it mathematically more transparent,

The Schroedinger equation in one dimension is

(ﬁ‘;z k)4 - %lmz\/(x\ Y(x) . (49)

Now we shall assume that the energy of the incident particle greatly ex-
ceeds the magnitude of the potential (¢}, and is also large enough that
the particle wavelength is much smaller than the potential width a

-% <<\ , ka >> 1. (50)

(In order of magnitude relations such as thigythe symbol V is to be inter-
preted as a measure of the absolute magnitude of the potential,) Under
these conditions we are justified in assuming that back-scattering will

be very weak, that the wave function of the particle may to a good approx-
imation be written in the form -

Yoo - eF 0y

where ¥(x} is a function which varies slowly over a particle wavelength,
Substituting into the Schroedinger equation, we secure '

(2ik %&.'*‘ %;)‘060 = a,%z\/(x)‘?(xﬁ , (52)

Now our approximation consists in dropping the °*

dl
dx?

term since we assume ¥ varies slowly in a wavelength. In that case the °

equation reduces to

%L; = - ,F%v\/(x)f’(x) . | (53)
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Now if Eq. (51) is to reduce to the incident plane wave at xXw=—-o00o (i. e.,
back-scattering is neglected} we require as a boundary condition ¥(-e) =1,
Thus we secure

. v
CPix) = e T‘-—v[_.\of(x')dx’ (54}
and

Note that if the exponential, ¢({x), were expanded in a power
series, the successive terms would represent those of the Born approx-
imation series, In this way, we may verify directly that the expansion
parameter of the series is

Va /[ty .

The approximation we have just described may be derived in an-
other way which is also fairly instructive. Here we begin with the one-
dimensional version of the integral equation for scattering

4

g = et + G U= xVEO WV Gy de (56)

The one -dimensional Green's function we require may be expressed as

" oo ,ezx(x—x‘) B _
M=ylY = — 114 —_—_— 57
Glx-x) = = S, [ <Spme O (57)

where the outgoing wave boundary condition for G requires that we take
the limit of this expression as €-+0 through positive values. The result
is simply

éiLIX-X’l i (58)

Ne - L
G(X X) i
We again express ¢/(x} in the form

i) = eikx

?

E(x)
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so that the integral equation for ¥ becomes

Yo =} - %_U jtiklx—x’\—Ek(X—X’)v(x,)p(X;)dxf (59)

1

= [Voarenady - [ E2OMNG. (o)

When the two regions of integration xX’'< X and X’>X are separated, their
integrands are seen to vary in altogether different ways. Now if the func-
tions V{x) and ¥ both vary slowly in a particle wavelength, the rapidly
oscillating exponential in the second integrand may be expected to reduce
its contribution considerably in magnitude, As a first approximation,
therefore, we shall neglect the integral over the region x‘>x . It is
clear from the form of this integral that we are thereby neglecting back-
scattering. The integral equation which remains is simply

260 = | ~ &, [ VG0 eadx, (61)

which may be solved trivially by differentiating, so that we are again led
to the differential equation

dexy _ _ :
ax = T R V(XL\?(X)
with the boundary condition
\p(_ CC)) = ] 1

and the solution

Y
L{"CK) - eik)(— %}L.}/(K‘)d)(’ (55)

The restrictions underl¥ing this result may be clearly seen from
the above. We require that both V(%) and ¥{x) vary slowly within a wave-
length, The first of these conditions is ka | where a is the width of
the potential., The second condition, is indicated by the form derived for
(%), We evidently require

V.
k> 2% g

or
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| > \V/E .

These are the conditions, Eq. {50), stated earlier.
It should be noted particularly that even though the assumpticna

ka >» |

and

\//E' << |

are required above, no restriction has been placed on the product of these
two quantities. Now their product is

ka-Y = 2 Va

62
v ’ (62)

80 we see that the present approximation, in contrast with those discussed
earlier, remains valid for arbitrary values of the important parameter

Vo./'F'L'U'. -

Before discussing higher approximations we might point out that
the form Eq. (55) for the wave function may also be reached by means
of the W. K. B. method. One has only to expand the familiar W. K, B, 1
approximation to a one -dimensional wave function in power of V, But,
unfortunately this is a shortcut confined to one dimensional problems.
The one -dimensional W, K. B. approximation, as we have noted earlier,
is unusual in that it need not require

\/a/‘FL‘U‘ >> |

and may in this case overlap the present approximation. In two or more
dimensions, however, this overlap disappears, The direct generaliza-
tion of the method we are discussing yields results which only coincide
with those of the W, K. B, approximation in the limit

Va [t — 00

In order to improve the accuracy of the approximation, explicit
account must be taken of the back-scattered wave. For this purpose,
we write the wave function as,

L]

Y(x) = eikxﬁ(x) r kX P (%) . (63)





