LECTURE |

Classification of Reactions

When two nuclei collide, two types of reactions can occur:

1. Nuclei can coalesce to form highly excited Compound

nucleus (CN) that lives for velatively long time.

[Long lifetime sufficient for excitation energy to
be shared by all nucleons. If sufficient energy lo-
calised on one or more nucleons they can escape

and CN decays]
A+a —C"— B*+ b
B may further decay or de-excite.

Independence hypothesis: C* lives long enough
that it loses its memory of how it was formed
(A + a channel). Probability of various decay

modes (B +b) independent of entrance channel

2

2. Nuclei make ‘glancing’ contact and separate immedi-

ately, said to undergo Direct reactions(DI).

A+ a— B+b

Projectile ‘a’ may lose some energy, or have one or more

nucleons transferred to or from it.

Both types of reaction are important. In general:

CN reactions at low energy, DI reactions at high energy.

[because formation of CN requires soft collision]

Sometimes both DI and CN may contribute to the same re-
action. Some intermediate processes do not fall into either

category, often referred to as pre- equilibrium reactions.

To see how DI and CN reactions compete at various ener-

gies, look at (p,p') and (n,n’) reaction cross sections.
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Duration of reactions:
Good way of distinguishing between DI and CN.

A typical nucleon orbits within a nucleus with a period of

~ 10722 sec. [corresponding to K.E. of ~ 20 MeV].
If reaction complete within this time scale or less then no
time for distribution of projectile energy around target =

DI reaction occurred.

CN reactions require > 10722 sec.



Angular distributions: Classification of direct reactions:

In DI reactions differential cross section strongly forward Can identify various types of DI processes that can occur,
peaked as projectile continues to move in general forward of which the following list by no means complete:
direction.

1. Elastic scattering: A(a,a)A — zero Q-value — inter-

Differential cross sections for CN reactions do not vary nal states unchanged.
much with angle (not complete isotropy as still slight de-

pendence on direction of incident beam). ' i
2. Inelastic scattering: A(a,a’)A* or A(a,a*)A*. Pro-

jectile a gives up some of its energy to excite target

nucleus A. If nucleus a also complex nucleus, it can

DIRECT also be excited.

- [If energy resolution in detection of a not small enough
“COMPOUND

to resolve g.s. of target from low-lying excited states

then cross section will be sum of elastic and inelastic

DIFFERENTIAL CROSS SECTION

! components. This is called quasi-elastic scattering].
o] 80 180

SCATTERING ANGLE {deg)

Figure 2.33 Typical angular distributions for direct and compound nucleus reactions . i
induced by light ions with moderate bombarding energies (for example, some (d, p) reaction 3 , B reaku P reactions: Usua I Iy refe rrin g to brea k up Of
with 20-MeV deuterons)

projectile a into two or more fragments. This may



be elastic breakup or inelastic breakup depending on
whether target remains in ground state. eg. A(a,zy)A
or A(a,zy)A” where a =z + .

. Transfer reactions: of which there are two types:-

(a) stripping reactions: eg.  deuteron stripping
A(d,p)B.
(b) pickup reactions: eg. deuteron pickup A(p,d)B.

. Knockout reactions: nucleon or light nucleus ejected
from target while projectile continues on. Rest of target
acts as spectator (also know as quasi-free scattering)

eg. A(p,2p)B and A(e,e'p)B.

. Charge exchange reactions: mass numbers remain
the same. Can be elastic or inelastic. eg. *C(p,n)*N

and "Li(°Li,% He)" Be.

Reaction channels:

In nuclear reaction, each possible combination of nuclei is

called a partition.

Each partition further distinguished by state of excitation
of each nucleus and each such pair of states is known as a

reaction channel.

The initial partition, a + A (both in their ground states)
is known as the incident, or entrance channel. The various

possible outcomes are the possible exit channels.

In a particular reaction, if not enough energy for a particular

exit channel then it is said to be closed.



LECTURE II

Quantum Scattering Theory

Will be using non-relativistic, 2-body formalism of
Schrodinger equation (SE).
Look at 2-body system in potential V()

m,

r=(r —ry)

R = (myry + mars)/(m1 + my)

The T.L.S.E. is

HY = EV (1)

The Hamiltonian for the system is

A B2 B2

H = - ——2m1v31 ~ —2m2v32 + V(r)
K2, R _,
S & L 2
ZMVR 2mvr + V() (2)

[m:mlmg/(ml—l—mg) and M:ml—]—mg]

Thus can look for separable solutions of the form

V(R,r) = ¢(R)y(r) (3)
Substituting for W back in Eq.(1) means can rearrange SEso
that LHS is function of R and RHS function of r. Thus both

equal to common constant, E,,,. Hence

R,
- WVR ¢(R) = Ecm ¢(R) (4)

and
2
(VO 4l =Bas)
where Eag = FE — E,.

In scattering, if m; is projectile incident on stationary target

ms then
m
E., = ! _E
my + My
My
Erel =——F
m1 + ma

Solution to (4) is simple: ¢(R) = A exp(iK - R) which is
plane wave. Thus c.o.m. moves with constant momentum

kK and does not change after scattering.
(Note, E.,=h’K?/2M).



Boundary conditions on %(r):

detector
scattered

foll Q
particles

__________________ imerge radially

beam of particles ~\\ ({outgoing

(incident flux) ‘ flux)

If incident beam ~ 1 cm wide (= 10'? x nuclear size).
Thus beam can be represented by plane wave

As |r] — oo (i.e. moving away radially from scattering

centre),
: _ exp(tkr)
¥(r) — N |exp(tk-r) + f(6,¢) — (6)
where k is defined as E,o = hzkz/Qm

(Take N =1)

In QM, flux (probability current density) is given by

a2

| 2

For incident flux, ), = exp(Zk -r) and

Jine = Re [exp(—z'k -r) (— %Vr) exp(ik - r)]

- (7

m

For scattered flux  vsar = f(9, ) ﬂ’g@ and hence

we obtain

(6, ) -
Jocat = Jine ( 2 )| r (8)
le. Jsca.t X Jinc
and x 1/r? (traditional fall-off).

All scattering information contained in f(6,¢) known as

the |scattering amplitude

During experiment, number of particles collected by detec-

tor in unit time

= Joom dA (dA is cross—sectional area of detector)

d4
= Jinc |F(0, )/ 2
Jine 1F(0,0)? dQ  (dQ is solid angle subtended

by detector)
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Define the differential cross-section (in units of area) as

The number of particles scattered into unit solid angle

per unit time, per unit incident flux (Jine = 1).

d
Thus = =110, - (©)
What does f(8, ¢) look like?

Go back to SE in Eq.(5)

We know what the solution must look like asymptotically:

60 = N [oxplik0) + £0.9) =) o

Assume V central (i.e. function of |r|) therefore can choose

separable solution

¥ =5 ”Ye;,a ) (11)
&

Y
Thus can extract radial SE as

dz'l.Lg ( -]— 1)

+ kz——~V( ) — g = 0 (12)

Ht

Choose V('r). =0 for r > g

Beyond 7 get free solution

T2

wy + {k‘z _ At 1)] ug =0 (13)

Solution related to spherical Bessel functions

T>T w = ApFy(kr) + B; Go(kr) (14)
T T
kr jo(kr)  —krng(kr)

(regular) (irregular)
As r —» 00

uy — Ay sin(kr — n/2) + By cos(kr — £m/2)

= Cysin(kr — {n/2 4+ 6;) (15)

where &, is known as the phase shift.
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If ¥V = 0 then solution must be valid everywhere, even at

origin where it has to be regular. Thus By =0,

So, asymptotically (long way from scattering centre):

For V =0 uy = Ay sin(kr — £rx/2) (16)

and for V 5 0 ug = Cy sin(kr — In /2 + &) (17)

Thus, switching scattering potential ‘on’ produces a shift
in the phase of the wave function at large distances from

the scattering centre.

Now substituting for ug from Eq.(17) back into Eq.(11) for
v,b(r),éj:i after some angular momentum algebra)/we ob-
tain a scattering wave function which, when equated with

the required asymptotic form of Eq.(10) gives

Xe: (26 +1) Ty P6) (18)

I b

f(6) =

where

Ty = exp(18;) sin & (19)

and is connected to the T-matrix (see later).

Note that there is no dependence on ¢ because central po-

tentials [ead to azimuthal symmetry.

Integral expressions:
Can write SE as
(E~H)¢ =0 o (E—H)¢ =V (20)
where H = Hy+ V.
Thus
Y = (E-H) 'V = Gy(B)V¢ (21)

Go(E) is the Green’s operator.

Eq.(21) is not general solution for 1/ as can add on solution

of homogeneous equation

(B - Hy) ¢ = 0 (22)
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General solution of Eq.(20) is

v = ¢ + Go(E)V (23)
This is iterative

v = ¢ 4+ GV + Gy VGV + ... (24)

Eq.(23) can be written in integral form as the Lippmann-

Schwinger equation

¥(r) = ¢(r) + [dr'G(re)V(r)%(r')  (25)

where G(r,rt') is the Green’s function.

If we choose z-axis to be along direction of incident beam

L§

detector

[

— 7-aXi8
R scatterer

Then o(r) = exp(ik-r) = exp(ikz)

and we use the notation " (r) for the scattering wave

function.

(i.e. incident momentum k and (+) for outgoing waves

solution).

Comparing Eq.(25) with required asymptotic form for ¢ we

see that integral term must tend to

#(6, ) Z2URT)

. as |r| — oo . (26)

Thus, using properties of Green’s function we can obtain

£(8,¢) = ““2";"% [ dr exp(~ik"-0) V(1) D) .(27)
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In Dirac (bra-ket) notation we write this

) =~ (K IV ) (28)
- ..2_;% T(k',k) . (29)

T(k’, k) is known as the Transition matrix element.

It can be shown, using some algebra (eg. plane wave ex-
pansion formula for exp(—ik’ - r)), that Eq.(27) leads to
Eq.(18). |

Internal states:

So far, we have dealt with 2-body system where colliding

bodies do not have internal structure.

Thus, definition of the scattering wave function through
the Lippmann-Schwinger equation (25) is incomplete for

complex nuclei.

1o

Assume projectile and target initially have intrinsic wave

functions ¢, and ¢4, respectively.

If the entrance channel is denoted by a then the asymptotic

form of the scattering wave function in Eq.(10) is written

W0 =N (exp(z'ka-ra) bus + % ¢fe°““) . (30)

where we must sum over all possible exit channels, 3. For a
particular channel, say for the reaction A(a,b)B, the scat-
tered part of the wave funetion is therefore

,()[)}gca,tt — faﬁ(g) exp(ikﬁrﬂ) ¢b QﬁB ) (31)

s

The scattering amplitude of Eq.(28) is then written

m

fap(0) = ~— 72 (k'¢pop | V| 15(1:3,A ) o (32)
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LECTURE i

Approximation methods

Born approximation

Substituting the iterative expression for the scattering wave
function of Eq.(24) into the expression for the scattering
amplitude of Eq(27) we obtain the multiple scattering series
(or Born series) |

f(6,9)= — [ fdr exp(—ik’ - r) V(r) exp(ik --r)

27h
+ fdr/dr’ exp(—ik' - 1) V(r) Go(r,r') V(') exp(ik - r')

+ [defae far".) | (1)

The first term in above series is known as the first Born
approximation and could have been obtained directly by
replacing the scattering wave function in the the 2nd term
of the L-S equation by a plane wave.

¥(r) = ¢(r) = exp(ik-r) . 2)

7

incident
beam

Thus can interpret Green’s function as a propagator taking
wave from one scattering point to the next.

In terms of the transferred momentum q = k—k' the Born
approximation scattering amplitude is

fpa(f,9) = - 277;12 fdr gexp(--ik' - rj V(r) exp(ik - r)
= M [ drepia 1) V(Y )

which is proportional to the Fourier transform of the po-
tential. For the case of a central potential, this reduces to
a 1-dimensional integral

fBa(0) = m‘% fooo dr sin(gr)V(r) . (4)

Simple rule of thumb: approximation valid in the limit of
weak potentials and/or high incident energies.
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More careful estimate of validity yields the condition

Vo| 1

—_— & 5
E < ka (5)
where V; is the strength of the potential, and a is its dif-
fuseness, which is a measure of the range over which it
varies appreciably. :

The Glauber (or eikonal) approximation:

This is a better approximation than Born for the case of
elastic scattering. It is also known as the high energy or
semi-classical approximation. There are many versions
of it and many ways of defining it.

In general for the Glauber approximation to be valid, the
following two conditions must hold

V
%§<1, ka>1 . (6)

In the Glauber approximation, scattering wavefunction
written as

(1) = plr) explik 1) (7)

where p(r) is the modulating function that distorts the
plane wave and therefore depends on V{r).

4

Thus comparing with Eq.(3), the scattering amplitude can
now be written-

fGL(ez 90) -

m
Inh?

fdr exp(iq- 1) V(r)p(r) . (8)

There are various ways of deriving the Glauber amplitude.
Will start here from S.E.

Need to solve

(k* + V(r) = U(r) ¥(r) (9)

where U (= 2mV/k?) is the reduced potential.

Substituting for ¢ from Eq.(7) the LHS of (9) becomes

(k* — k) exp(ik - 1) + 2ik.V (p exp(ik - r)) + exp(ik - 1) V7p

. and choosing the z-axis to be along the incident beam

F_HS = exp(ikz) (2ik 8p/0z + 8%p/02*)

it can be shown from the Glauber conditions that the 2nd
term above is much smaller than the first. Thus the S.E.
is reduced to a first order differential equation:

g«g ~ 2—1’5U(r)p(r) : (10)



and the solution is of the form

) =ep o [LUEE

[Note this assumes that p(—oo) = 1 so that P(—o0) is a
plane wave].

Now introduce the impact parameter, b, such that

t=b+kz, b-k=0. (12)
Glauber approximation is valid at small forward ahgles
where q almost L to k. That is

q-r=q-b+q-kz~q-b . (13)

this is eikonal part of approximation and assumes straight
line trajectories.

Thus, the z integration in Eq.(8) can be done first

far(8,9) = - i [ db exp(iq - b) [ " dzV(n)e(r) (14)

e
-~ -

-
------

Using Eq.(10) this can be written

fer(8,¢) = — T—:/db exp(iq - b) (exp(ix(b)) — 1) (15)

The function x(b) is known as the Glauber phase shift

m e

x(b) = — 277 oo V(rydz . (16)

If we are dealing with central potentials (not neccesary just
simpler) then azimuthal symmetry means

for(8) = —ik [ bdbJo(ab) (exp(ix(®)) = 1) , (17)
where ¢ = 2ksin6/2.

Note that the small angle approximation of Eq.(13) is only
true for elastic scattering (where {k| = |k'|). For inelastic
scattering other approximations are more appropriate.
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Distorted Wave Born Approximation
(DWBA):

More sophisticated version of the Born approximation.

Very widely used for inelastic scattering and reactions.

Suppose that the potential V' can be written as a sum of
terms V = Vi + V3, where V;, weaker than V7 and that we
know the scattering solution for V3

(E — Ho) xa(k,r) = Vi xi(k,r) (18)

which leads to a scattering amplitude

£u(6,9) = = 5z [ dr exp(—ik’ - 1) Vi(s) 2" (ko) (19)

Using standand derivation one can obtain expression (also

known as the two potential formula) for the scatting am-
plitude

f(8,9) = f1(6, ) + F2(0, 0) (20)

where the second term is defined as
m

fa0,0) = = oy [drxT (KR UI (W) ()

Above expression is EXACT.

The DWBA involves replacing 'gbl(:r)(r)' (the scattering so-
lution in presence of Vi + V3) with X(1+)(k,r) (scattering
solution in presence of Vi only).
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Note that x(1+)(k,r) and Xg_)(k,r) are both solutions of
Eq.(18). But one is time reverse of other.

( ) = plane wave + outgoing spherical wave
(k r} = plane wave 4 incoming spherical wave
Ok, = (7 (k)

Thus full amplitude (for V) is sum of exact amplitude for
Vi plus DWBA amplitude for V3

J a7 (<! 0 Va(e) 6 (k. 1)(22)

Kit?
7, = —
f DWBA( ;‘P) k2
Why DWBA?

Born because first order in Vs

Distorted wave because instead of using plane waves (as
in Eq.(3), use xj () and X( (plane waves distorted in the
presence of V).

Typically, V1 is optical potential describing elastic scattering
and V5 describes some inelastic process.

(i.e elastic scattering most important event. Other pro-
cesses are perturbations.)

1o

Coupled channels method

In some cases, first order perturbation theory not good.

Example: collective excitations of 1-phonon state by
inelastic scattering i.e. A(p,p')A*(27).

Assume cross section large. Thus coupling between 0T
(g.s.) and 27 (excited state) strong.

Thus, DWBA not good (one step).
Multistep processes important.

Assume internal wave functions of nucleus A for 0T and 27

known. .Call them ¢o(€), ¢1(§)
Hy $9(§) = eo do(€) Hai(8) = e du(§) - (23)

Thus approximate scattering wave function for system is

V(R,€) = ¢o(£) xo(R) + #1(€) xa(R) - (24)



)
The SE for the system is written
(T + Hs +U(R, &) — E)¥(R,£) =0 (25)

Substituting for W(R, £) then multiplying from the left by
#5(€) and $5(€), respectively and integrating over £ gives
two coupled equations:

(T + (¢0|Uldo) — Eo) xo(R) = — (¢0]U|01) x1(R)

(Tr + (6:|U]#1) — E1) x1(R) = — {1]|U|¢0) x0(R) (26)

where By = F — ¢y and B} = E — € and the matrix
elements

(@alU16m) = [ dE $3(6) UR,E) (&) = Unn(R) (27)

The matrix elements on the LHS of Eq.(26) are called the
coupling potentials.
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LECTURE IV
Direct reaction models

The optical model for elastic scattering
(Optical: due to similarity with scattering of light).

When a nuclear beam interacts with a nuclear target, part
of the flux may be lost (absorbed by target). The interac-
tion is therefore described by a complex potential called the
optical potential whose imaginary part describes absorp-
tion of flux from elastic channel due to various competing
reactions.

Thus optical potential describes all processes that con-
tribute in elastic scattering A(a,a)A.

Thus for A(p, p)A, optical potential takes into account pos-
sibility of A being excited in intermediate states.

Composite projectile may also be excited eg. A(d,d)A

. Outgoing
Incoming deuteron
deuteron

""" - ? T,
| ! ®
e target  /f
potential @ (b) ©

2%

Optical potential used in DWBA to calculate distorted
waves, and in coupled channels calculations.

Optical potentials usually chosen to have simple analytical
form with parameters chosen so as to reproduce experimen-
tal cross section.

Most popular form is the Woods-Saxon (W-S) potential.

Veers(r) = = Vo fv(r) — iWofw(r) , (1)

where the W-S formfactors are defined as

£(r) = [1 + exp(r — rgAY?) {a]_l . (2)

Often, for nucleus-nucleus scattering, the formfactor for
the real part is obtained microscopically using the double
folding model. Here it is assumed that potential is the
sum of all pairs of nucleons avaraged over the ground state
densities of the two nuclei.

for(r) = f dr; f dr pi(r1) pa(r2) vaw(ra) . (3)

Note this 6-dimensional integral is in practice reduced by
taking the Fourier transforms of the quantities in the inte-
grand.
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Then it is assumed that the imaginary part of the optical
potential has the same formfactor

View(r) = —(Ng + iN7) for(r) (4)

and the two strength parameters are varied to fit the data.

Often (eg. for proton scattering) a spin-orbit potential is
required. Often taken to have a form factor of Thomas
form (i.e. derivative of a Wood-Saxon)

Vot () = Veent + Vso(r)l-s (5)
where

1 d
Vso(r) = A2 Vg”;gf(") ; (6)

Ar = (h/mec) = V2.

185

p-"Ca at 180 MeV

Optical potential parameters from Perey and Perey

10
10° | —— With complex Central and Real Spin-Orbit
—-— without Spin-Orbit
10* |\ ——~ without Imaginary Central ]
i
3 \
107 F "\ 4
s N .
107 F \\ 4

do/d€2 {mb/sr)
50

100 |
10° k
10°
10™
10°

O 10 20 30 40 50 60 70 80
8t:.m.(deg‘)
Dirac optical model

For nucleon-nucleus scattering at intermediate energies
(several hundred MeV) standard W-S model no longer ad-
equate. Therefore use optical model based on the Dirac
equation [Clark, 1983]

[a-p+B(m+ Us(r)) + Up(r)]¥(r) = EV(r) . (7)

Us and Uy are Lorentz scalar and vector (time-like comp.)
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potentials, respectively. Each is parameterised as complex

W-S.

Dirac Eq. can be reduced exactly to an equivalent S.E. with
effective Central and S.O. potential terms that depend on

Us and Uy.

1
2FE
where Uy = Uy + Vgou, and Darwin term responsible for
non-local effects.

(512/ - Ug) + UDarwin 3 (8)

cent

Dirac _ [} EU _
V. Uy + =

p-wCa at 200 MeV

10
10° 1 1
4 » Experimental data
10 r ——— Dirac optical medel fit 1
N — = Non-rel. W-5 fit
EVI ¢
2
10
= r
B 1
E 10 [
% 10 r
g .
10
10°
1o’ 1
10
107
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T

Proton-nucleus scattering now interesting with advent of |
RNB by studying them in inverse kinematics. eg. study of
halo nuclei such as ®He and LLi.

Thus to study the reaction p(BHe® He)p, theoretical
cross ‘sections can be calculated for the inverse reaction
"He(p,p)*He.

[eg. Crespo, 1995]
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Will now look at scattering of composite projectiles

The deuteron is simplest composite nucleus and many re-
action mechanisms understood by studying deuteron case.

The 3~bbdy model

Exact Hamiltonian for A + 2 system too complicated.
Therefore suppress internal degrees of freedom of target
(treat as structureless body) = Problem reduced to 3-body
(p + n + A) one [Austern, 1987].

(T +p+Tn+ Voat Vst Ver) V(1p, 1n) = EVW(rp, 1) .(9)

Single folding model (SFM) [Watanabe, 1958]

n

In c.o.m. and relative coordinates, SE becomes

29

(Tr + V(R 1) + Hp) W(R,1) = BY(R,1) ,  (10)

where V(R,r) = Vpa(R +r/2) + V4(R — 1r/2)

and H,, = H, + Vp, is the internal Hamiltonian of the
deuteron.

At high enough energies, p and n feel target potential in-
dependently. Can make approximation

W(R,r) = ¢u(r) Y(R) . (11)

Then multiplying Eq.(10) from left by ¢5(r) and integrating
over r gives

[Tr+ Uwa(R) — (B + lea)] ¥(R)=0 ,  (12)

where ¢ is B.E. of deuteron,  Hp,¢a(r) = €a¢04(r)

and Uy, is the single folded (or Watanabe) potential

Uwat(R) = fdf &2(r) [Voa(R, 1) + Vea(R, v)] @a(r) . (13)

Thus comparing (12) with (10) see problem has been re-
duced to 2-body one.



Virtual breakup
(i.e. effect of breakup on elastic channel)

The reactions A(d,pn)A and A(°Li, ad)A are examples of
real breakup.

But if projectile detected in exit channel then it may still
have been excited (or broken up) in interaction region (in-
termediate state).

QM: as long as projectile in g.s. in initial and final states
then anything is possible in between.

Qutgoing
deuteron
Incoming unbound (break-up)
deuteron state
T T —xeP T .
& LY ra Al i
E kY ’ kY ’
{ v RN Y { ’
1 : ‘. '
. @ 1 @
. K 4 rl ' ;]
/{\ target K S K \ S
potential - _ R A ’," A ’_r’
() ib) (c)

In SFM, deuteron was not allowed to breakup in interme-
diate states. But d should be allowed to breakup (couple
to continuum) in intermediate states

¢ty

Figures below are from [Yahiro, 1986] and [Sakuragi, 1986]. |
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Adiabatic approximation
[Johnson, 1970]

If incident deuteron energy high enough then assume that
internal motion of deuteron frozen for duration of interac-
tion (i.e. r varies slowly wrt R).

[cf. low energy adiabatic approx. as used in fusion reac-
tions.]

H,, in Eq.(10) replaced by €g. Thus no energy transfer be-
tween c.o.m. and relative motion = r no longer dynamical
variable but simply parameter.

Now, S.E. to be solved is
[Tr+V(R,1) = (B + leal)]x*”(R,r) =0, (14)
where we have replaced W(R, r) with W4P(R,r) and
WAP(R, 1) = ga(r) x** (R, 1) . (15)

Eq.(14) solved as a scattering problem in R for each value
of r.

Elastic scattering obtained from overlap of W42(R, r) with
¢4(r), and breakup amplitude from overlap of VAD(R, 1)
with ¢(r) {the n — p continuum wave function).

4%

4-body models

If projectile can be considered as 3-body object (eg. *He,
5He, 11Li) and target not of interest = structureless. Then
require 4-body scattering model [Al-Khalili, 1995a].

Example: scattering of '!Li from 12C

S.E. equation for system is

(Tr+ Hs +V(R,p, 1)) V(R, p,r) = EV(R, p,r) (16)

where Hj is the internal 3-body Hamiltonian of the MLi.

Can also make adiabatic approximation [Christley, 1995]
and replace Hs by the Li B.E. Then both r and p become
parameters.
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"Li+'*C elastic at E, =637 MeV |

Breakup reactions
(eg. A(d,pn)A). Usual approach is DWBA.

Transition amplitude is

3 = {47) +)

‘ T = () X 0) | Vi | W R)) (17)
..... iﬁi‘;ﬁiﬁic (s wave) ' where W(*) is solution of Eq.(10).
~-—-- Adiabatic (s,p,d wave) ]

1 This is known as the Post form. Can also write amplitude
, . R in Prior form
0 5 10 15 20 )
O, (degrees) T = (R) |V + Vo | da(r)xz”(R)  (18)
"Li+"C

In the DWBA approach, we replace W& by x&). eg

Tf)DI?T?fBA = (X;Es_)(rp) Xn (rn) | Ven | @a(r) x )(R)) ; (19)

where x{™), x(~) are distorted waves due to Vp and V,

il
Xfﬁ is distorted wave due to V.

3 For discussion of Post and Prior forms of DWBA see [Ry-
_30MeV/nucleon E bleI, 1972]

,\ -~ S —
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Breakup reactions can tell us about structure of pI‘OJeCtlleS
if loosely bound (eg. halo nuclei).

3 —~ == Folded only (Single channel) 3

Folded + breakup (4-body)
One method is to study momentum distrubution of con-

I T R R I , stituents of projectile in exit channel. For example, in
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breakup of ®He (into & + n + n), narrow transverse mo-
mentum distribution of detected «'s led to verification of

large spatial extent of ®He.

Explanation: narrow momentum-space wave function =
extended configuration-space wave function (by Fourier

transforming or via the Uncertainty principle). [Zhukov,
1993). |
1000
*He breakup
Q0 | ]
- 400 MeV/A
600 i
£
3
&)
400
200 | s ®
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Transfer reactions

Simplest example is one-nucleon transfer, and best studied
reactions are those involving deuterons (i.e (d,p), (p, d)).

- -

4%

(a) Stripping A(d,p)B
TE = (7 (1) dn(ra) | Vi | 6a(0) X7 (R))
(b) Pickup A(p,d)B
T = (W0,R) | Ve | 57 (1) (1)
Can calculate above amplitude in different ways.
a) replace W& by WE;% (3-body)

b) replace W) by ¢, Xgi) (2-body).

e D)

------------ DWBA (with folding potential)

— — - DWBA (with optical potential) |
#® Experiment

do/d$2 (mb/sr)

0.0 25.0 50.0 75.0 100.0 125.C 150.0

@_, (Degrees)

Figure from [Goniil, 1994].
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Chafge exchange reactions
eg. A(p,n)B, A(n,p)B, A(*He,t)B

Study of c.e. reactions useful in providing information
about structure of nuclear states (eg. low-lying resonances,
isobaric analogue states). |

Usual theoretical model is DWBA. For the reaction
A(a,b)B

T=(x"¢dp |V |dadarx!™) , (22)

where V is sum of all NN interactions.
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