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1 Introduction

From the point of view of the practising theorist we want to have a man-
ageable way of handling nuclear reactions involving complex nuclei. The
quantum mechanical theory of 2- and 3-nucleon scattering with local or non-
local inter-nucleon potentials is well understood and it is therefore natural to
try and model nuclear reactions involving complex nuclei as 2- and 3-body
sytems. In the case of reactions involving deuterons and single-nucleon halo
nuclei (e.g., 11Be) a 3-body model is particularly appropriate because the
small neutron separation energies of these nuclei mean that the break-up de-
gree of freedom is of great importance and needs to be treated explicitly in
any realistic theoretical account of their reactions with other nuclei.

From the point of view of comparison with experiment, in addition to
providing a theory which gives a good account of differential crosssections
and polarization observables, the task of theory is to show how credible
information about the structure of the nuclei involved can be extracted from
experimental data. This means that we need to know how the few-body
model is connected with the many-problem of real interest. We therefore
have to develop approximation schemes which capture the most important
features of the few-body dynamics in a way which generalises to the many-
body case.

One of the most exciting scientific developments in recent years has been
the advent of accelerated beams of radioactive nuclei with exotic combina-
tions of neutron and proton numbers. The new techniques produce beams of
nuclei which decay by the weak interaction but are stable against decay into
their constituents. Nuclear reactions induced by beams incident on targets of
ordinary stable nuclei are important sources of information about the struc-
ture of the exotic species. For example, experiments of this type led to the
discovery of the important new class of nuclei known as halo nuclei.[1, 2, 3]

New experiments are extending our understanding of these novel systems.
The mechanisms involved in reactions involving haloes and other nuclei far
from the valley of stability present a special challenge to theorists. An im-
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portant consideration is that exotic nuclei are often very weakly bound and
easily broken up in the Coulomb and nuclear fields of the target nucleus.
Halo nuclei are an extreme case with almost zero binding energy. As a con-
sequence, theories which address the special features associated with strong
coupling to excited states of the projectile which may be in the continuum
are a prerequisite if reliable information on nuclear structure is to be de-
duced from reaction experiments. On the other hand, many of the relevant
experiments, both current and planned, involve projectile energies which al-
low simplifying assumptions to be made which help to make the theory more
transparent. I will present some of the insights obtained in this way with
illustrations from recent experiments.

Earlier versions of these notes have been published in [4], [5] and [6]

2 Halo nuclei.

Key features of halo nuclei [7] remind us of some familiar features of the
deuteron. For present purposes we can ignore the small deuteron D-state
and consider the deuteron to be a 1S state in an attractive n-p potential
of depth about 30MeV and range about 1fm. The deuteron has a binding
energy of εd = 2.2MeV. Quantum mechanics tells us that in the classically
forbidden region where the n-p separation r is bigger than 1fm the space part
of the deuteron’s wavefunction will have the form

φ0 = Nd

exp(−λdr)

r
, r > 1fm, (1)

where Nd is a normalisation constant. The constant λd is determined from

the deuteron binding energy by λd =
√

2µεd/h̄
2 where µ is the reduced mass

of the n-p system. This is the functional form predicted by Yukawa for
the interaction associated with the exchange of massive particles. Particle
exchange also proceeds through classically forbidden regions and hence gives
rise to the same functional dependence on distance.

The small deuteron binding energy results in the value 1/λd = 4.2fm
which is much larger than the range of the n-p interaction and means that
in the deuteron the neutron and proton spend a significant part of the time
in the classically forbidden region. Indeed, for many purposes its a good
approximation to approximate the deuteron wavefunction by the form (1)
for all values of r.
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The one-neutron halo nucleus 11Be can be described in a similar picture.
It costs 0.503MeV to remove a neutron from 11Be and leave 10Be in its ground
state. The simplest version of the halo model describes the corresponding
component of the 11Be wavefunction as a 10Be core and a neutron in an
S-state. For n-core separations r bigger than the core radius the neutron
wavefunction is

φ0 = N11
exp(−λ11r)

r
, (2)

where 1/λ11 = 6.7fm as detemined by the neutron separation energy.
The key point here is that 1/λ11 is much bigger than the size of the core so

that the classically forbidden region outside the core plays a very important
role, just as in the case of the deuteron.

There are however some important differences between the d and 11Be
cases. In the first place, unlike the deuteron, 11Be has a bound excited state
with a separation energy of 0.18MeV. Secondly the Pauli principle demands
that the ground state of 11Be be a 2S state with a node in the core region in
contrast with the nodeless function which simple potential models give for
the deuteron. This reflects the fact that underlying this 2-body picture of
11Be is a many fermion system.

The qualitative features associated with very weak binding suggests that
an approach based on the 2-body picture might be a good starting point
for studying the structure of 11Be, in contrast with mean field models which
emphasise the identity of all nucleons. It is this possibility of an alternative
good starting point for models of their structure which makes halo systems
interesting from a theoretical point of view. For an excellent bibliography
and a discussion of corrections to the basic few-body models see [16]

In these lectures I will concentrate on one-neutron halos. Much of what
I have to say is also relevant to multi-neutron halos such as the famous two-
neutron halo 11Li [1, 7].

3 2-body scattering

To calculate the scattering of a particle from a target represented by a central
potential V (R) we have to solve the equation

(TR + V (R))χ(~R) = Eχ(~R). (3)
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The kinetic energy operator TR is as defined by

TR = −
h̄2

2µPT

∇2
R, (4)

where µPT is the particle-target reduced mass.
We require solutions which are regular at R = 0 and which for R → ∞

in the direction ~̂R satisfy

χ(~R) → exp(i ~K.~R) + f( ~̂R) exp(iKR)/R, (5)

where ~K is the incident momentum. For present purposes I have ignored spin
dependence and Coulomb forces (their long range introduces well understood
technical complications in the 2-body problem).

The elastic differential cross section is related to f by

dσ

dΩ
~̂R

=| f( ~̂R) |2 . (6)

Calculating f for given V is a completely solvable problem. We use the
fact that for a central V angular momentum is conserved just as in classical
mechanics. This means that we can find solutions of (3) which are eigen-

functions of ~L2 and Lz where ~L = ~R ∧ (i−1)∇R is the angular momentum
operator (in units of h̄) and z is an arbitrary z-axis. Such solutions have the
form

χ(R, θ, φ) = χLM(R)YLM(θ, φ), (7)

where the angles (θ, φ) describe the direction of ~R in the chosen co-ordinate
system. The spherical harmonics YLM are angular momentum eigenfunctions[8]
and satisfy

~L2YLM = L(L+ 1)YLM , (8)

LzYLM = MYLM . (9)

The radial function χLM(R) satisfies the ordinary differential equation

−
h̄2

2µPT

1

R

d2

dR2
(RχLM(R))+[V (R)+

h̄2

2µPT

L(L+ 1)

R2
]χLM(R) = EχLM(R).(10)

This equation has a unique solution within a constant of proportionality
when the condition limR→0RχLM(R) = 0 is imposed.
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For a finite range potential satisfying V (R) = 0, R > R0 this unique
solution has the form

χLM(R)
R>R0= α(cos δL jL(KR) + sin δLnL(KR) (11)
KR≫L
→ α sin(KR− Lπ/2 + δL)/KR, (12)

where α is a constant independent of R and in the second line I have used the
asymptotic forms of the regular and irregular spherical Bessel functions[8]:

jL(KR)
KR≫L
→ sin(KR− Lπ/2)/KR (13)

nL(KR)
KR≫L
→ cos(KR− Lπ/2)/KR. (14)

The spherical Bessel functions are 2 standard linearly independent solutions
of eq.(10) in any region where V (R) vanishes[8].

In these equations the phaseshifts δL appear. They are functions of energy
and angular momentum and contain all the interesting dependence of the
scattering on the potential V . The phaseshifts are complex if V is. The
terminology is easily understood from eq.(12). If V is identically zero for
all R the correct solution of eq.(10) is the spherical Bessel jL(KR) with
asymptotic form eqs.(13,14). Thus δL determines the phase difference at
large distance between the free (V = 0) and the scattering wavefunction for
a given L.

In order to relate the phase shifts to the scattering amplitude and hence to
cross sections we must learn how to choose the cLM so that the superposition

χ(~R) =
∑

LM

cLMχ
(+)
L (~R)YLM(R̂), (15)

has the asymptoic form (5). I have added a (+) superscript to χL to designate
that this function is normalized so that it satisfies eq. (11) with α = 1.

It is easy to find the correect cLM ’s because we already know that the
incident plane wave has the expansion

exp i ~K.~R = 4π
∑

LM

iLY ∗
LM(K̂)YLM(R̂)jL(KR). (16)

A simple calculation using eqs.(12)-(16) and (5) gives

cLM = 4π exp (iδL)iLY ∗
LM( ~K), (17)
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and hence

f (+)(θ, φ) = 4π
∑

LM

Y ∗
LM( ~K)YLM(θ, φ) exp (iδL) sin δL/K, (18)

χ
(+)
~K

(~R) = 4π
∑

LM

iLY ∗
LM( ~K)YLM(~R) exp (iδL)χ

(+)
L (R), (19)

where (θ, φ) are the angles defining the direction of observation with respect
to a chosen co-ordinate system.

Eq.(18) shows explicitly the relation between the scattering amplitude
and the set of phase-shifts. The scattering amplitude is related to the elastic
differential cross section by eq.(6). The phase shifts also determine the total
reaction cross section, which is a measure of the flux going into all channels
except the elastic channel and is given by

σR =
π

K2

∑

L

(2L+ 1)(1 − |SL|
2), (20)

where

SL = exp 2iδL, (21)

is the elastic S-matrix (a 1x1 matrix in this special case).
Eq.(19) gives the relation between the full scattering state wavefunction in

3 dimensional space and its components with definite angular momentum L.
The radial wavefunctions, χ

(+)
L (R), have an asymptotic form which is deter-

mined by the phase shifts. At finite distances χ
(+)
L (R) is determined obtained

by solving the radial equation (10) numerically or otherwise. The phase-shift
is found by matching the numerical value of the logarithmic derivative at
some R > R0 to the formula (11). Knowing the phase-shift the computed
numerical values of the radial wavefunction can now be re-normalized so that
it satisfies eq.(11) with α = 1, thus defining χ

(+)
L (R).

The function χ
(+)
~K

(~R) defined in this way is an example of a ‘distorted
wave’. The subscript tells us that it is associated with an incident plane
wave with momentum ~K. This label does not mean that χ

(+)
~K

(~R) is an

eigenfunction of the momentum operator with eigenvalue ~K! The superscript
(+) indicates that χ

(+)
~K

(~R) asymptotically has an outgoing spherical wave
component. The complete asymptotic form is as in the RHS of eq.(5).
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3.1 The mysterious χ
(−)
~K

(~R)

In formulating theories of complex collisions we frequently come across other
scattering states which asymptotically look like a plane wave plus an ingoing
spherical wave. We can construct such a state using the same radial wave-
functions by making a different choice for the cLM in eq.(15) (simply change
the factor exp iδL in eq.(17) to exp−iδL) .

In nuclear physics where the potentials V are frequently complex another
case occurs. χ

(−)
~K

(~R) is defined to be a solution of eq.(3) with incoming
spherical waves and with V replaced by its complex conjugate V ∗:

(TR + V ∗(R))χ
(−)
~K

(~R) = Eχ
(−)
~K

(~R). (22)

It is easy to show that the radial part of this function must be the complex
conjugate of χ

(+)
L within a multiplicative factor and hence does not require

separate calculation and a new phase-shift. We find

χ
(−)
~K

(~R) → exp(i ~K.~R) + f (−)( ~̂R) exp(−iKR)/R, (23)

f (−)(θ, φ) = 4π
∑

LM

(−1)LY ∗
LM(K̂)YLM(θ, φ) exp−iδ∗L sin δ∗L/K, (24)

χ
(−)
~K

(~R) = 4π
∑

LM

iLY ∗
LM(K̂)YLM(R̂) exp−iδ∗L(χ

(+)
L (R))∗. (25)

With these definitions the precise relationship between χ(+) and χ(−) is

(χ
(−)
~K

(~R))∗ = χ
(+)

− ~K
(~R). (26)

These 2 distorted waves and their multi-channel generalisations appear fre-
quently in theories of nuclear reactions.

4 Formal methods

4.1 The 2-body case

We have seen that the problem of the scattering of 2 bodies interacting
through a potential is completely solvable. We want to be able to recognise
such solvable sub-problems when they appear in the formulation of many-
body theories and to achieve this we must learn how to write the 2-body
results in a more formal way.
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We define the 2-body state | χε
~K
> as the solution of

(E + iε− TR − V ) | χε
~K
>= iε | ~K >, (27)

where TR is the kinetic energy operator and | ~K > is the incident plane wave
state

< ~R | ~K >= exp i ~K.~R (28)

Clearly for ε→ 0 the state | χε
~K
> satisfies the same equation as | χ

(+)
~K

>,eq.(3),
but unlike the latter eq.(27) has the unique solution

| χε
~K
>=

iε

(E + iε− TR − V )
| ~K >, (29)

and incorporates the correct boundary conditions for ε > 0. To show this we
re-write eq.(27) as

(E + iε− TR) | χε
~K
>= iε | ~K > +V | χε

~K
>, (30)

and multiply both sides of this equation by the inverse of the operator
E + iε− TR. We deduce

| χε
~K
> =

iε

E + iε− TR

| ~K > +
1

E + iε− TR

V | χε
~K
>

= | ~K > +
1

E + iε− TR

V | χε
~K
>, (31)

where we have used the result

(E − TR) | ~K >= 0. (32)

When written out in configuration space eq.(31) is an integral equation

for χε
~K
(~R). In the same basis and for ε≪ E and positive the matrix elements

of (E + iε− TR)−1 are

< ~R |
1

E + iε− TR

| ~R′ > = −
2µ

4πh̄2

exp iK|~R− ~R′|

|~R− ~R′|
exp−

εK|~R− ~R′|

2E

R≫R′

→ −
2µ

4πh̄2

exp iKR− i ~K ′. ~R′

R
exp−

εKR

2E
,(33)

where ~K ′ has the same magnitude as ~K but points in the direction (θ, φ) of
~R. The quantity µ is the reduced mass of the 2-body system.
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Using (33) in (31) we find that for R well outside the range of V but not
large compared with 2E

εK

χε
~K
(~R) → exp i ~K.~R + f ε(θ, φ)

exp (iK − εK
2E

)R

R
, (34)

where

f ε(θ, φ) = −
2µ

4πh̄2 <
~K ′ | V | χε

~K
> . (35)

The scattering amplitude f introduced in (5) is given by

f = lim
ε→0+

f ε,

= −
2µ

4πh̄2 <
~K ′ | V | χ

(+)
~K

> . (36)

The amplitude f ε also has a physical meaning. It can be thought of as the
scattering amplitude for an incident wave packet with a spread in time of
order h̄/ε[12].

Eq.(36) expresses the scattering amplitude as a matrix element of the
potential V between a plane wave describing the final observed state and the
distorted wave | χ

(+)
~K

> which, of course, also depends implicitly on V . This
expression does not at first sight appear very useful as a way of determining
V . However this type of expression, especially when generalised to systems
with many degrees of freedom, lends itself well to generating useful insights
and guiding the approximations which are essential when we are dealing with
the reaction calculations invoving more than a few nucleons.

As a simple application, let us suppose that the potential V is very weak.
Then one would expect that to first order in V the distorted wave in (36)

might usefully approximated by the incident plane wave | ~K >. The resulting
formula is the famous Born approximation

fBorn = −
2µ

4πh̄2 <
~K ′ | V | ~K >

= −
2µ

4πh̄2

∫

d~R exp (i ~Q.~R)V (R), (37)

where ~Q is the momentum transfer, ~Q = ~K − ~K ′.
Another way of looking at the matrix element in (36) it to relate it to a

matrix element of a new operator T (E + iε) defined by

T (E + iε) = V + V
1

E + iε− TR − V
V. (38)
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Acting on a plane wave with momentum ~K related to E by

K =

√

2µE

h̄2 , (39)

we find

T (E + iε) | ~K > = V
1

E + iε− TR − V
[(E + iε− TR − V ) + V ] | ~K >

= V
iε

E + iε− TR − V
| ~K >

= V | χ
(+)
~K

>, (40)

where we have used the result (29) to identify | χ
(+)
~K

> in the 2nd line in
(40).

Taking the innerproduct of both sides of (40) with a plane wave state

| ~K ′ >, where ~K ′ has the same magnitude as ~K and is given by (39), we
obtain

f ε(θ, φ) = −
2µ

4πh̄2 <
~K ′ | T (E + iε) | ~K > . (41)

The operator T (E + ε) has matrix elements between plane wave states
with arbitrary momentum. It is only when the initial and final momenta are
related to E by [39] that these so-called on-shell matrix elementa are related
to the scattering amplitude. The half-on-shell matrix elements with Kand
E related by eq.(39) but K ′ arbitrary determine the distorted wave | χ

(+)
~K

>.
To see this we use the last line in (31) and the result (40) to obtain

| χε
~K
> = | ~K > +

1

E + iε− TR

T (E + iε) | ~K >

= | ~K > +
∫

d ~K ′ |
~K ′ >< ~K ′ | T (E + iε) | ~K >

E + iε− E ′
, (42)

where

E ′ =
h̄2(K ′)2

2µ
. (43)

We see that all quantities of physical interest are determined by the T -
operator. Conversely, both the on-shell and half-off-shell matrix elements of
T can be found by solving the Schrödinger equation for | χ+

~K
>.
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An important advantage of the formal methods we have introduced in this
section is that they allow us to manipulate explicit expressions for wavefunc-
tions and scattering amplitudes using the rules of operator algebra without
having to deal with singular operators. For ε 6= 0 operators like (E+iε−H)−1

exist for any real E and for Hamiltonians H of physical interest. Boundary
conditions have been taken care of once and for all by the ε prescription. The
price we have to pay is that in carrying out these manipulations we have to
remember thet the scattering states satisfy inhomogeneous equations such as
eq.(27) rather than eigenvalue equations like eq.(3).

Of course at the end of the day we are interested in the limit ε → 0+.
In the many-body case this limit has to be taken with care, but in practical
nuclear reaction calculations this does not usually cause a problem. Difficul-
ties with this limiting process can arise, for example, in the formulation of
exact numerical solutions of the 3-body scattering problem.A re-formulation
in terms of the Faddeev equations or their equivalents[9] is then an advan-
tage, but for the purpose of exposing the structure of many body theories
this step and its generalisations to more than 3 bodies is not necessary.

4.2 Target with internal degrees of freedom

For definiteness we consider the scattering of a neutron from a target A which
has a set of bound states φ0(ξ), φ2(ξ), . . . , φN(ξ) where ξ denotes the set of
internal co-ordinates of A. By convention 0 labels the ground state, 1 the
first excited state, and so on. The generalisation of the eq.(3) is

(TR +HA + V (~R, ξ))χ(~R, ξ) = Eχ(~R, ξ), (44)

where HA is the Hamiltonian which describes the internal motion of A. TR

is the total kinetic energy operator of the neutron and the target in the
overall centre of mass system and is defined in eq.(4) with a reduced mass

µnT . ~R is the relative co-ordinate of the neutron and the centre of mass of
A. The potential term V (~R, ξ) depends on both ~R and ξ. It describes the
interaction between the neutron and the target and at the most basic level
can be expressed as the sum of the 2-body interactions between the neutron
and the target nucleons. The ξ would then denote the co-ordinates of the
target nucleons relative to its centre of mass.

One approach to solving eq.(44) is to expand χ as a superposition of
the set of states φi which form a complete set if all possible states of A are

12



included. The coefficients in the expansion are functions of ~R which are the
solution of a set of coupled differential equations.

The expansion is

χ(~R, ξ) = χ0(~R)φ0(ξ) + χ1(~R)φ1(ξ) + . . . (45)

Coupled equations are obtained by substituting the expansion (45) into (44),
multiplying by φi and integrating over all ξ for i = 0, 1 . . . , N . The resulting
equations for i = 0, 1 . . . , N are

(Ei − TR − Vii)χi =
∑

j 6=i

Vijχj, (46)

where we have used the eigenvalue equations satisfied by the φi and their
orthonormality relations

HAφi = ǫiφi, (47)
∫

dξφ∗
iφj = δij. (48)

The energies Ei are defined by Ei = E − ǫi.
The coupling potentials Vij are functions of ~R defined by

Vij(~R) =
∫

dξφ∗
i (ξ)V (~R, ξ)φj(ξ). (49)

The functions χi(~R) have a definite physical meaning. They tell us the

relative probability as a function of ~R for the target A to be in state i. The
different possibilities for i are frequently referred to as ‘channels’ and the
Ei are the corresponding channel energies. If the incident channel is i = 0
the boundary conditions to be satisfied by the χi for values of R outside the
range of the coupling potentials are

χ
(+)
0 → exp(i ~K0. ~R) + f

(+)
00 ( ~̂R) exp(iK0R)/R, (50)

χ
(+)
i → fi0( ~̂R) exp(iKiR)/R, i 6= 0 (51)

where the channel momenta Ki are defined by

Ki =

√

2µnTEi

h̄2 , (52)

provided that Ei > 0. If Ei < 0 the channel is said to be ‘closed’ and the
corresponding χi vanishes exponentially at large distances. There is therefore
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no outgoing flux in a closed channel and the crosssection for exciting the
target into state i will vanish.

If the potentials Vij = 0 vanish for i 6= j there will be no coupling between
channels. In this limit the regular solution of the coupled equations satisfying
the conditions (89) is χi = 0 for i 6= 0 and χ0 satisfies

(E0 − TR − V00)χ0 = 0. (53)

Only the cross section for the elastic scattering of the neutron by the target
in its ground state is non zero.

According to (53) elastic scattering in the zero coupling case is generated
by V00 which has the explicit expression (we assume the ground state has
spin 0 for simplicity)

V00(~R) =
∫

dξφ∗
0(ξ)V (~R, ξ)φo(ξ).

=
∑

i

∫

dξ | φ0(ξ) |
2 vni(~R− ~ri) (54)

where the summation over i includes all the nucleons in the target and the
~ri are the co-ordinates of the target nucleons relative to the target centre of
mass. If the target consists of A identical nucleons (54) reduces to

V00(~R) = A
∫

d~r1ρ(~r1)vn1(~R− ~r1), (55)

where ρ(~r1) is the ground state one-body density of the target.
Eq.(55) is the simplest possible model for the optical potential. It re-

lates the effective interaction between the projectile and the target to the
fundamental 2-body interactions between the projectile and the target con-
stituents and their density distribution in space. Eq(55) is often referred to
as a folding model because of the way the co-ordinates appear in the integral
in (55). Note that if the 2-body interaction vni is real so is V00. This model
cannot account for the imaginary part of the optical potential because it cor-
responds to a theoretical model where no flux is lost to non-elastic channels.
We will see below by explicit calculation in a special case how open inelastic
channels give rise to a complex effective interaction.
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4.3 Formal theory of the multi-channel case

The formal approach developed in Subsection 4.1 is easily generalised to in-
clude the possibility that the target has internal degrees of freedom. Eq.(27)
is replaced by

(E + iε− TR −HA − V ) | χε
~K0
>= iε | ~K0, φ0 >, (56)

where

< ~R, ξ | ~K0, φ0 >= exp (i ~K0. ~R)φ0(ξ). (57)

is the wavefunction corresponding to a plane wave incident on the target in
its ground state.

The presence of the iε term on the right hand side of (56) means that the
coupled equations equivalent to (46) are

(Ei + iε− TR − Vii) | χ
ε
i > =

∑

j 6=i

Vij | χ
ε
j > +δi0iε | ~K0 >, (58)

where the channel components are related to | χε
~K0

> by

χε
~K0

(~R, ξ) =
∑

i

χε
i (~R)φi(ξ). (59)

For N = 1 (2 channels) these equations reduce to

(E0 + iε− TR − V00) | χ
ε
0 > = V01 | χ

ε
1 > +iε | ~K0 >, (60)

(E1 + iε− TR − V11) | χ
ε
1 > = V10 | χ

ε
0 > . (61)

The second equation allows us to express | χε
1 > in terms of | χε

0 > as

| χε
1 >= (E1 + iε− TR − V11)

−1V10 | χ
ε
0 > . (62)

Substituting this result into the first of eqs.(61) gives an equation for | χε
0 >

which is

(E0+iε−TR−V00−V01(E1+iε−TR−V11)
−1V10 | χ

ε
0 >= iε | ~K0 > .(63)

We recognise this as a 2-body elastic scattering equation for | χε
0 > with the

effective potential

Vopt = V00 + V01(E1 + iε− TR − V11)
−1V10 (64)
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This analysis shows how an effective potential can always be found which
generates the exact elastic scattering. Note that the second term in eq.(64)
has an imaginary part in the limit ε → 0+, but only if E1 > 0, i.e.. above
the threshold for exciting the state φ1. Furthermore this imaginary part is
negative, indicating that it is associated with a loss of probability flux from
the incident channel. Our treatment of the N = 1 problem is a special case
of a general theory due to Feshbach[17]. A discussion of effective interactions
including the effect of energy averaging and additional references can be
found in Section 2.9 of ref.[11] and in Chapter 11 of [10].

4.4 Inelastic scattering and the DWBA

From eq.(62) we obtain an explicit expression for the amplitude for exciting
the state φ1. We use the operator identity

1

A
−

1

B
=

1

A
(B − A)

1

B
, (65)

to deduce

1

(E1 + iε− TR − V11)
=

1

(E1 + iε− TR)

[

1 + V11
1

(E1 + iε− TR − V11)

]

,(66)

and therefore

| χε
1 >=

1

(E1 + iε− TR)
Ω

(−ε)†
1 V10 | χ

ε
0 >, (67)

where

Ω
(−ε)
1 =

[

1 +
1

(E1 − iε− TR − V11)
V11

]

. (68)

Following similar reasoning as in the analysis surrounding eq.(34) we find
that for R → ∞ and ε→ 0+

< ~R | χ+
1 >→ f

(+)
10

exp iK1R

R
, (69)

where

f
(+)
10 = −

2µ

4πh̄2 <
~K1 | Ω

(−)†
1 V10 | χ

(+)
0 >, (70)
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and the wave number ~K1 is in the direction of observation and has magnitude

K1 =

√

2µ

h̄2E1. (71)

Note that in eq.(70), χ
(+)
0 is the exact elastic scattering distorted wave as

generated by Vopt, or by solving the coupled equations (61).
It can be shown that for ε→ 0 through positive values

< ~K1 | Ω
(−)†
1 =< χ

(−)
~K1

|, (72)

where | χ
(−)
~K1

> is a distorted wave of the type defined in Sub-section 3.1 and

generated by the potential V11. The inelastic scattering amplitude (70) can
therefore be written

f
(+)
10 = −

2µ

4πh̄2 < χ
(−)
~K1

| V10 | χ
(+)
~K0

>, (73)

where we have written χε
0 as χ

(+)
~K0

to conform to our earlier notation in the

limit ε→ 0.
The DWBA as originally formulated can be obtained from this exact

expression by replacing the initial distorted wave by the distorted wave gen-
erated by the potential V00 instead of Vopt. This approximation includes the
diagonal elements V11 and V00 to all orders but the potential V10 responsi-
ble for coupling the 2 channels is included in first order only. The usual
Born approximation of inelastic scattering corresponds to replacing the 2
distortwaves by plane waves. The DWBA attempts to do better than that
by recognising that the target-projectile interaction will scatter the 2 nuclei
and convert the plane waves into distorted plane waves. The DWBA is a
consistent way to take this physical effect into account when the channel
coupling is weak enough to be treated to 1st order.

We emphasise that in the realistic multi-channel situation we frequently
meet in nuclear physics the DWBA as just defined is rarely used. An expres-
sion with a structure similar to (73) is used but with the 2 distorted waves
generated by complex potentials which fit elastic scattering data. This is
called the ‘Distorted Wave Method’ by Satchler[11].

Modern computer methods emphasise exact solutions of coupled channels
models although Distorted Wave ideas often still underlie much qualitative
thinking about nuclear reactions.
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4.5 Practical evaluation of DW matrix elements

It is useful to have some insight into how expressions such as (73) are actu-
ally evaluated. For central distorting potentials the 2 distorted waves have
expansions of the form introduced in subsection 3. We can write

χ
(+)
~K0

(~R) = 4π
∑

L0M0

iL0Y ∗
L0M0

(K̂0)YL0M0
(ΩR) exp (iδ0

L0
)χ

(+)
L0

(R), (74)

(χ
(−)
~K1

(~R))∗ = 4π
∑

L1M1

(−i)L1YL1M1
(K̂1)Y

∗
L1M1

(ΩR) exp (iδ1
L1

)χ
(+)
L1

(R).(75)

Inserting these expressions into (73) we obtain

f
(+)
10 = −

8πµ

h̄2

∑

L0M0L1M1

iL0−L1Y ∗
L0M0

(K̂0)YL1M1
(K̂1) exp i(δ0

L0
+ δ1

L1
)

×
∫ ∞

0
R2dRχ

(+)
L1

(R) < L1M1 | V10 | L0M0 > χ
(+)
L0

(R), (76)

with summation over L0,M0, L1,M1. Integration over the direction of ~R and
the internal co-ordinates of the target are contained in the matrix element
< L1M1 | V10 | L0M0 >

< L1M1 | V10 | L0M0 >=
∫

dΩR dξ Y
∗
L1M1

(ΩR)φ∗
1(ξ)V10(~R, ξ)φ0(ξ)YL0M0

(ΩR).(77)

By making a multipole expansion of the interaction V10 this matrix element
can be factorised into reduced multipole matrix elements, which contain all
the dependence on the structure of the target states φ0 and φ1, Clebsch-
Gordan coefficients which carry the implications of angular momentum con-
servation and form factors which depend on the radial co-ordinate R (see,e.g.,
Section 5.6 of ref.[11]). We do not have space to expand further on these im-
portant ideas here.

Standard codes exist which evaluate DW amplitudes such as (76) and
solve the coupled equations (46) exactly for given poentials and target wave
functions as a routine matter[13].

We note that most of the formulae in this section have to be modified
when the nuclei involved are charged. The formal expressions we have used
are perfectly valid when all the Coulomb interactions are screened at large
distances. The correct expressions to be used for partial wave expansions
when the uninteresting dependence on the screening radius is extracted are
given in many standard texts, eg, [11]. Reviews which include Coulomb and
spin-dependent effects can be found in [14] and [15].
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4.6 Many-body T -operator

As in the 2-body case we introduce an operator T whose on-shell matrix
elements are proportional to the inelastic and inelastic scattering amplitudes.
The key difference is that this operator now acts in the space of the variables
ξ as well as ~R. The definition of T is

T (E + iε) = V + V
1

E + iε− TR −HA − V
V. (78)

This expression has exactly the same formal structure as (38) in the 2-body
case, but the presence of the target Hamiltonian, HA in the denominator in
(78) makes this T a much more complicated operator.

In terms of T the elastic and inelastic scattering amplitudes are given by

f ε(θ, φ)i0 = −
2µ

4πh̄2 <
~Ki, φi | T (E + iε) | ~K0, φ0 >, (79)

and the scattering state is expreessed in terms of the off-shell matrix elements
of T through

| χε
~K0
>=| ~K0, φ0 > +

∑

i

∫

d ~K ′ |
~K ′, φi >< ~K ′, φi | T (E + iε) | ~K0, φ0 >

E0 + ǫ0 + iε− E ′ − ǫi
.(80)

The point about these formal expressions is that they help us to recognise
quantities that are calculable using standard techniques when they are buried
in a complicated theory of a nuclear reaction. To calculate a matrix element
of a T operator in practice one usually, but not always re-expresses the
calculation in terms of coupled differential equations.

5 Selected topics in the scattering and reac-

tions of deuterons and other halo nuclei

5.1 The adiabatic approximation for loosely bound pro-

jectiles

The use of adiabatic approximations in nuclear reaction theories has a long
history. The key idea is to separate the relevant degrees of freedom into ‘slow’
and ‘fast’ categories. The ‘slow’ variables are treated as fixed during the col-
lision and the associated scattering problem for the ‘fast’ variables is treated
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quantum mechanically or semiclassically depending on the masses and ener-
gies involved in the reaction. This is the analogue of the Bohr-Oppenheimer
approximation for bound states of molecules, where the electronic motion for
fixed nuclear positions is calculated quantum mechanically.

An early example is Barrett’s treatment of neutron scattering by a nu-
cleus regarded as a rigid rotor[18]. He calculated the scattering amplitude
for the scattering of a neutron by a deformed potential as a function of the
orientation of the nuclear body-fixed axes. Scattering amplitudes were then
calculated by taking matrix elements of this amplitude between the nuclear
states of interest. Here the ‘slow’ motion is obviously the nuclear collective
rotation and the incident neutron motion is regarded as ‘fast’. Other ap-
plications of the adiabatic approximation to theories of elastic and inelastic
scattering in nuclear physics are reviewed in ref.[11], pages 83-84 and else-
where in that book.

In the case studied by Barrett the approximation in the energy domain
which complements this time picture is that the energy associated with rel-
evant rotational excitations is assumed to be small compared to the trans-
lational energy of the neutron. In the adiabatic limit all excited rotational
states are assumed to be effectively degenerate on a scale determined by the
incident energy. We will see how this comes about formally below. This
way of thinking tends to give too conservative an idea of the usefulness of
the adiabatic approximation because it fails to take into account the crucial
role played by absorption in nuclear reactions. In addition, we now have a
better understanding of the spatial regions in which adiabatic solutions of
the few-body Schrodinger equation are expected to be most valid and how to
exploit this knowledge in applications to particular reaction channels. This
insight has proved to be particularly useful in applications to (d, p) and p, d)
reactions[20, 21, 23, 25].

Historically an important feature of the adiabatic approximation was that
it is a cheap way of doing a complicated coupled channels calculation. For
example, in Barrett’s calculation, channels with a fast neutron and the ro-
tor in any one of its excited states are taken into account coherently and
non-perturbatively. With modern computing power this may not be a big
advantage, but when the projectile is loosely bound and the relevant exci-
tation spectrum is in the continuum the adiabatic approximation can be a
powerful tool as well as frequently providing important insight and checks of
more complete calculations. CDCC calculations, which were pioneered[20]
and developed in [26],[27],[28],[29], discretise the continuum and are in prin-

20



ciple an improvement over the adiabatic approximation, but CDCC codes are
generally available only for 2-body projectiles. See [30] for a recent review.
CDCC calculations for a 3-body projectile have been published[31][32]. An
adiabatic code which treats 3-body projectiles has been available for some
time[33].

In this historical context we note that the adiabatic approximation in
the sense we use here is the basis of Glauber’s theory[34] of high energy
composite particle scattering which has been widely used in the analysis
of reaction experiments with halo and other light nuclei[30],[37]. In these
calculations selected co-ordinates are treated adiabatically and the eikonal
approximation is used to describe the scattering of the frozen object. In his
development of a microscopic theory of the nucleon optical potential, Glauber
goes further and treats all the internal co-ordinates of the target nucleus as
frozen during the scattering. The resulting 2-body problem for a set of frozen
internal nuclear co-ordinates is then solved using the eikonal approximation.

5.2 Deuteron-nucleus collisions

This section discusses a 3-body model of the system n + p + A, where A is
a heavy nucleus in its ground state. The theory we describe can, and has
been, applied to other systems and we shall mention several in passing. Some
cases, for which the adiabatic approximation is potentially useful, have spe-
cial problems, e.g., Coulomb and antisymmetrisation effects. These problems
are best discussed separately and will be ignored here.

In a 3-body model of deuteron-nucleus collisions, for example, channels
corresponding to elastic deuteron scattering and elastic deuteron break-up in
which the target is left in its ground state are all included in a unified way.
Excited states of the target A do not appear explicitly. The relation between
this model and the underlying many-body problem will be discussed below.

In a widely used notation we use ~r for the position of the neutron relative
to the proton and ~R for the position of the centre-of-mass of n and p relative
to A. The Hamiltonian of the model is

H = TR +Hnp + V (~R,~r), V (~R,~r) ≡ VnA(~R + ~r/2) + VpA(~R− ~r/2)(81)

where Hnp = Tr + Vnp is the Hamitonian for relative motion of the n − p
system. The T ’s are kinetic energy operators. For the purpose of this talk
we assume that all Coulomb interactions are screened at large distances. We
use φ0(~r) for the ground state of the deuteron with energy −ǫ0 < 0, and

21



φ
(+)
~k

(~r) for the continuum of n− p scattering states which are eigenstates of
Hnp with energy ǫk > 0 and satisfy outgoing wave boundary conditions. It is
the purpose of the adiabatic approximation to treat the coupling between the
deuteron and the scattering state continuum in as accurate and transparent a
way as possible. In the 3-body model this coupling comes from the tidal forces
generated by the fact that, over the volume of the deuteron, VnA(~R + ~r/2)

and VpA(~R− ~r/2) generate forces on the nucleons which differ in magnitude
and direction.

5.3 Time dependent picture

Under the transformation

Ψtrans = exp(−
iHnpt

h̄
)Ψ. (82)

the time dependent Schrodinger equation for Ψ(~R,~r, t) becomes

(TR + V (~R,~r(t)))Ψtrans(~R,~r, t) = ih̄
∂Ψtrans

∂t
. (83)

In eq.(83) the n− p relative co-ordinate ~r(t) has acquired a time dependence
through the relation

~r(t) = exp(
iHnpt

h̄
)~r exp(−

iHnpt

h̄
). (84)

The adiabatic approximation assumes that the collision time T is so short
that we can replace ~r(t) by ~r(0) = ~r. A sufficient condition for this step to
be valid is that T satisfy

∣

∣

∣

∣

< Hnp > T

h̄

∣

∣

∣

∣

≪ 1. (85)

where < Hnp > is the maximum eigenvalue of Hnp excited in the colli-
sion through the tidal forces. For the strong interaction this maximum is
related to the shape of the nuclear surface and is insensitive to the incident
deuteron energy. Hence for sufficiently high energy the collision time will
always become small enough that the condition (85) is satisfied.

Implementation of the adiabatic approximation for a stationary state re-
quires the solution of the adiabatic equation[20]

(TR + V (~R,~r) − Ed)Ψ
ad(~R,~r) = 0, (86)
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which for fixed ~r is a 2-body problem. Note that even for central VnA and
VpA the potential in eq. (86) is not central when considered as a function of
~R for fixed ~r so coupled equations still have to be solved in general.

5.4 Solution of the adiabatic equation

The solution of the adiabatic equation can be reduced to a manageable set
of coupled equations by either of two methods which are based on different
truncation schemes. Both methods assume the nucleon potentials VnA and
VpA are central.

(i) In this method[26],[27],[35][36] the adiabatic wavefunction is expanded
in the basis [Yl(r̂) × YL(R̂)]JM and uses the fact that VnA + VpA is diagonal
in J,M, although not in l and L. Truncation in these angular momenta is
required.

(ii) The method used by Barrett[18] uses the fact that VnA + VpA is diag-

onal in ~L.r̂ and proceeds by making a truncated multipole expansion of the
potentials.

Method (ii) is well adapted to the case of scattering by a deformed nucleus
when a natural truncation of the multipole expansion occurs. In the present
context, convergence in l is found to be very rapid and truncation is linked
with the adiabatic assumption of low excitations in the ~r co-ordinate.

The adiabatic wavefunction corresponding to a deuteron incident with
momentum ~Kd has the structure[20]

Ψad
~Kd

(~R,~r) = φ0(~r)χ
ad(+)
~Kd

(~R,~r), (87)

where χ
ad(+)
~Kd

satisfies

(TR + V (~R,~r) − Ed)χ
ad(+)
~Kd

(~R,~r) = 0, (88)

with the boundary condition (~r fixed)

χ
ad(+)
~Kd

(~R,~r)
R→∞
→ exp(i ~Kd. ~R) + f(R̂, ~r)

exp(iKdR)

R
. (89)

Note that the adiabatic equation (88) is exactly the equation one obtains
by replacing Hnp in the exact 3-body Hamiltonian (81) by a constant and
choosing this constant to be the deuteron ground state energy[20].
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The function χ
ad(+)
~Kd

and the scattering amplitude f(R̂, ~r) both depend on

~r. The physical meaning of f(R̂, ~r) is that it describes the elastic scattering
in the direction R̂ of an n − p pair with fixed separation ~r by the potential
V (~R,~r). The factor φ0 in (87) ensures that the coefficient of the plane wave in

eq.(87) and the exact 3-body wave function Ψ
(+)
~Kd

(~R,~r) coincide. The formula

(89) can also be derived by taking the adiabatic limit of formal expressions
for the exact three-body wavefunction[19].

The adiabatic equation must be solved for as many values of ~r as is
required for the application. For example, for elastic deuteron scattering we
have to evaluate the scattering amplitude f(R̂, ~r) for as many values of ~r as
is required for the accurate evaluation of the integral

felastic(R̂) =
∫

d~rφ∗
o(~r)f(R̂, ~r)φo(~r), (90)

i.e., for 0 < r < rd, where rd is a measure of the size of the deuteron.
This formalism can be simplified considerably in several interesting cases.

5.5 Glauber theory

When the conditions are such that eq. (86) can be solved in the eikonal
approximation an explicit formula for f(R̂, ~r) in terms of a path integral of
VnA + VpA can be obtained. This is Glauber’s theory of deuteron-nucleus
scattering. The method has been extensively applied to the calculation of
elastic scattering and reaction cross-sections of halo nuclei with 2 or more
clusters[30],[38]. The integral in (90) is carried out numerically without fur-
ther approximation of the expression using the best available models for the
ground state wave function φ0.

There are also considerable simplifications in the zero range limit of
deuteron stripping or when one of the potentials VnA and VpA vanishes. These
simplifications can be applied even when the eikonal approximation is not
appropriate. They cases will be discussed below.

5.6 Application to Li scattering

The non-eikonal adiabatic method has been applied to the elastic scattering
of 6Li in an α+ d model[39], 7Li in an α+ t model[40] and to the scattering
of 11Li in a n+ n+9Li 3-body model[33].
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5.7 Validity of the adiabatic assumption

It is shown in[19] that estimates based on eq.(85) are too conservative. For
short range forces the collision time decreases as the impact parameter in-
creases. Hence for a given range of excitation energies the worst violations of
the inequality (85) tend to occur at low impact parameters. Under conditions
of strong absorption these are just the impact parameters whose contribu-
tions to the excitation are suppressed. A revised adiabatic condition which
includes this effect is given in ref.[19]. Eq.(85) is replaced by an expression
that is proportional to the derivative of the projectile-target optical potential
i.e., the tidal force) at the strong absorption radius and inveresely proprtional
to the cube of the relative velocity of the projectile and target. By compari-
son with CDCC calculations in a special case the revised condition was shown
to give an excellent idea of the accuracy of the adiabatic approximation for
a model of 11Be elastic scattering. The new criterion shows that for elastic
scattering of strongly absorbed particles the adiabatic approximation can be
valid down to much lower energies than hitherto believed.

We show below that the criterion for validity of the adiabatic method to
deuteron stripping is quite different from elastic scattering. It will be shown
that the adiabatic approximation is a sufficient but not necessary condition
for the validity of the Johnson-Soper method[20, 21, 23] instead of a deuteron
optical potential for calculating the distorted wave in the deuteron channel.

5.8 An instructive special case

We discuss the case of for deuteron scattering by a massive target as an
example.

When one of the interactions VnA, VpA vanishes (or is a constant) the
adiabatic equation can be solved exactly in a very simple way. We take
VnA = 0 for definiteness. This is obviously not a very realistic model of
elastic deuteron scattering in general, but it is very relevant to Coulomb
break-up of the deuteron[51]. Eq.(86) becomes

(TR + VpA(~R− ~r/2) − Ed)Ψ
ad(~R,~r) = 0. (91)

For a deuteron incident with momentum ~Kd this has the exact solution[41][42][43]

Ψad
~Kd

(~R,~r) = φ0(~r) exp(i ~Kd.~r/2)χ
(+)
~Kd

(~R− ~r/2), (92)

25



where χ
(+)
~Kd

is the distorted wave for a particle with the mass of the deuteron

by the potential VpA and evaluated at the argument ~R−~r/2 i.e., at the p−A
relative co-ordinate.

In this limit the elastic deuteron cross-section is simply expressed in terms
of the deuteron ground state form factor and the deuteron elastic cross-
section generated by VpA. In the generalisation to the case of a projectile
with unequal mass clusters the factors of 1/2 are replaced by ratios involving
the masses of the clusters [41]. The generalisation gives a good account of
some features of 11Be scattering[41].

The explicit form (92) also makes a deficiency of the adiabatic wavefunc-

tion very clear. It predicts that for any ~R, Ψad
~Kd

→ 0 exponentially for r → ∞,

i.e, in regions of space where we look for outgoing waves in the stripping and
break-up channels. We therefore cannot expect the adiabatic wavefunction
to be accurate for large r even though it may be perfectly adequate for finite
values of r. The reason for this shortcoming can be traced to the treat-
ment of the break-up continuum as degenerate. It is then not possible for
the 3-body wavefunction to carry the phase relations between the R and r
dependence which are essential to generate the correct asymptotic form in
rearrangement and break-up channels. We must use the adiabatic wavefunc-
tion in ways which respect this observation. We do this by using it as the
basis for an iterative solution to the Schrödinger equation.

5.9 Iteration of the adiabatic solution. Implications

for deuteron stripping calculations. The ADW

method.

We re-write the 3-body Schrödinger equation in the form

(E − TR − Tnp − VpA − VnA)Ψ ~Kd
= VnpΨ ~Kd

, (93)

where we have transferred the Vnp term to the right-hand-side. This term
requires Ψ ~Kd

only within the range of Vnp, and for which we can therefore use,
e.g., the adiabatic wavefunction[20] or its generalisations [21, 23, 25, 22, 24].

The method proceeds by treating the equation

(E − TR − Tnp − VpA − VnA)Ψ ~Kd
= VnpΨ

ad
~Kd
, (94)

as an inhomogeneous equation for Ψ ~Kd
with the right-hand-side given. In

particular, by examining the outgoing Green’s function for the operator
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E − TR − Tnp − VpA − VnA it is found that the iterated solution has the
correct asymptotic form in the stripping and break-up channels with outgo-
ing waves with momenta correctly given by the conservation of energy, i.e.,
without the assumption of degenerate break-up channels used in the adia-
batic wavefunction. In the exact solution of the inhomogeneous equation
the coefficients of the outgoing waves in the stripping and break-up channels
(transition amplitudes) are given by

Td,p = 〈χ(−)
p φn | Vnp | Ψad

~Kd
〉, (95)

Td,np = 〈χ(−)
p χ(−)

n | Vnp | Ψad
~Kd
〉, (96)

where the χ(−)
p and χ(−)

n are distorted waves generated by VpA and VnA, re-
spectively, and φn is a neutron bound state, all evaluated at the correct
energies predicted by energy conservation.

Strictly speaking, to deduce (95) and (96) from eq.(94) requires the ad-
ditional assumption that the target has infinite mass, A → ∞. It is only
then that the kinetic energy separates into n and p terms and solutions of
the homogeneous equation have a product form. Recoil terms of order 1/A
can mix in terms in the final state in which the neutron is excited out of the
state φn. These corrections (Recoil Excitation and Break-up (REB) effects)
can be very significant for light nuclei[25].

All the quantities in (95) and (96) are solutions of 2-body problems and
are readily calculated. The evaluation of the amplitudes requires techniques
similar to those used in the evaluation of DWBA amplitudes. We emphasise
that this iterated theory goes far beyond DWBA. No Born approximation is
involved. Couplings between 3-body channels are included to all orders in
Ψad

~Kd
.

It should be clear that if Ψad
~Kd

were replaced in equations (95) and (96)

by the exact three-body wavefunction Ψ ~Kd
then these expressions would give

the exact reaction amplitudes. The approximations (95) and (96) assume
that all coupling effects in the wavefunction for r less than the range of Vnp

can be adequately accounted for by the adiabatic wavefunction.
In principle this whole procedure could be iterated by calculating the

complete solution of the inhomgeneous equation (93) (not just the asymp-
totic form as explained above) and then using the solution to re-calculate an
improved inhomogeneous term (see [44] for an application of this idea to the
(p, d∗) reaction).
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In the zero range limit for Vnp the evaluation of equations (95) and (96)
becomes particularly simple because then we can use[20]

VnpΨ
ad
~Kd

(~R,~r) = Vnpφ0(~r)χ
ad(+)
~Kd

(~R,~r) = Vnpφ0(~r)χ
ad(+)
~Kd

(~R, 0).. (97)

From eq.(88) we see that χ
ad(+)
~Kd

(~R, 0) satisfies

(TR + V (~R, 0) − Ed)χ
ad(+)
~Kd

(~R, 0) = 0, (98)

and is, therefore, simply a distorted wave generated by the central potential
VnA(R) + VpA(R).

We see that in this limit the adiabatic theory of stripping looks even more
like a DWBA theory, but this is misleading because the function χ

ad(+)
~Kd

(~R, 0)

includes outgoing waves in break-up channels and the potential VnA(R) +
VpA(R) may have very little to do with elastic deuteron scattering. We would
expect that a first approximation to the latter would be to average the nu-
cleon optical potentials over the deuteron ground state density distribution
φ0(r)

2 (see the Watanabe model[45]and its generalisation to non-local nu-
cleon potentials [46]). This produces a much more diffuse potential than
VnA(R) + VpA(R). The nature of the differences produced by this smaller
diffuseness in the (d, p) are analysed in detail in [21].

When s-wave break-up dominates at small r the formalism can be mod-
ified to correct for a finite range Vnp[20]. We expand the three-body wave-

function in terms of the complete set of n−p relative motion states {φ0, φ
(+)
~k

}
introduced earlier. Provided the continuum states which contribute do not
have very high energy we can safely assume that only s-wave states will
overlap Vnp and we can write

Ψ ~Kd
(~R,~r) = φ0(r)χo(~R) +

∫

d~kφ
(+)
k (r)χk(~R), r < rnp, (99)

where rnp is the range of Vnp. For continuum energies less than roughly

10 MeV the shape of the s-wave state φ
(+)
k (r) does not depend strongly on

energy for r < rnp and we can write

φk(r) ≃ g(k)φ0(r), r < rnp, (100)

where g(k) is independent of r. Inserting this approximation into (99) gives

VnpΨ ~Kd
(~R,~r) ≃ Vnpφ0(r)χ̄ ~Kd

(~R), (101)
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where

χ̄ ~Kd
(~R) = χo(~R) +

∫

d~kg(k)χk(~R). (102)

We emphasise that the form implied by (101) for the 3-body wavefunction
is generally only valid inside the range of Vnp. The r and R dependence
of the adiabatic wavefunction does not factorise in this way in general (see,
e.g., eq.(92)). It is this special nature of the assumptions involved in ap-
plying the ideas of ref.[20] to stripping which means that the Johnson-Soper
distorted wave can have wider applicability than simple adiabatic criteria
might suggest.

In the next subsection we will show how these qualitative ideas can be
systematically exploited to give an equation for χ̄ ~Kd

(~R).

5.10 The method of Johnson and Tandy

A more general approach to obtaining VnpΨ, the projection of the 3-body
wavefunction which is most relevant to the transition amplitude for stripping,
and break-up according to (95) and (96), is to expand in terms of a set of
functions which are complete within the range of Vnp.

A convenient set for this purpose is the set of Weinberg states[50], or
Sturmians, φ̄i(r), i = 0 . . .∞, used by Johnson and Tandy[22]. They satisfy

(Tr + αiVnp)φ̄i = −ǫ0φ̄i (103)

where the αi’s are Sturmian eigenvalues. For i = 0, α0 = 1 and φ̄0 is
proportional to the deuteron ground state φ0. These states all look like the
deuteron asymptotically, but as i and αi increase they oscillate more and
more rapidly at short distances.

An expansion in terms of this set converges rapidly if the dependence on r
of the three-body wave function inside the range of Vnp is similar to φ0. Cou-
pled equations for the coefficients are readily derived using the orthogonality
property

〈φ̄i | Vnp | φ̄j〉 = −δi,j. (104)

The first term in the expansion has the form φ0χ̄ with χ̄ defined by

(Ed − TR − V̄ (R))χ̄ ~Kd
(~R) = 0, (105)
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where the potential V̄ is given by

V̄ (R) =
〈φ0 | Vnp(VnA + VpA) | φ0〉

〈φ0 | Vnp | φ0〉
. (106)

The bra and ket in this equation imply an integration over ~r with fixed ~R.
V̄ reduces to the zero-range result V (R, 0) of eq.(98) if the variation of the
nucleon optical potentials over a distance of the order of rnp can be neglected.
For nucleon potentials with a Wood-Saxon shape the effect of the finite range
correction in eq.(106) is to increase their diffuseness slightly. A simple way
of incorporating these modifications, which can be important for light nuclei,
can be found in refs.[21],[23].

Results that take into account terms in the expansion in φ̄i’s beyond i = 0
are given in refs.[22],[24] in specific cases. They show that this is a promising
approach to the calculation of break-up effects in stripping which go beyond
the adiabatic approximation.

An interesting feature of this derivation is that it makes no reference
to the incident energy but only the assumption that the break-up states
excited have low enough excitation that the 3-body wave function is well
approximated by the form φ0(r)χ̄(~R) inside the range of Vnp. This suggests
that a stripping theory which takes into account break-up effects can be
based on the use of χ̄ as a distorted wave even at low energies where the
adiabatic condition is not well satisfied.

The situation for elastic deuteron scattering is quite different because
there the adiabatic wave function is needed out to distances of the order of
the size of the deuteron where the form φ0(r)χ̄(~R) has no justification. The
use of Sturmians is not then appropriate.

There have been many comparisons between theory based on eqs. (95)
with VnpΨ

ad given by (101), (105), (106) and stripping experiments. We call
this the Adiabatic Distorted Wave (ADW) method. Over a wide range of
energies ADW has gives angular distributions for differential crosssections
and polarization observables which agree with stripping and pick-up experi-
ments more convincingly and consistently than the DWBA and without the
extra ambiguities associated with the use of a deuteron optical potential in
the DWBA. Everything in an ADW calculation is determined by nucleon

optical potentials for the appropriate energy and target. Some early exam-
ples are given in ref.[11], pages 732-734 but there have been many others
since, e.g.[55]. The method has also been successfully used for (p,d*) [44]
and (d,2He)[56] charge exchange reactions.
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The study of Cadmus and Haeberli[47] is particularly noteworthy. These
authors measured a large number of deuteron and proton elastic scattering
observables to pin down optical model parameters so that the DWBA could
be applied unambiguously. It was found to fail badly. They were able to
use their measurements of deuteron and proton polarization parameters to
identify the source of the failures and how these were remedied by the ADWA
method.

A more recent example of how ADW method can be used to give an im-
proved account of the systematics of a particular (d, p) transition as function
of energy is ref.[48].

Although the ADWA method goes well beyond the DWBA and includes
effects due to coupling between the elastic deuteron channel and other 3-
body channels to all orders it is nevertheless an approximate theory which is
expected to need correction at some level. An important example of a clear
indication from experiment of the need to go beyond ADW theory and the na-
ture of those corrections is the work of the Indiana-Surrey collaboration[49].

One way of going beyond the ADW method for stripping and pick-up
is to use the Sturmian expansion method of refs.[22],[24]. An alternative is
to use the CDCC wavefunction in (95). For deuteron stripping this is done
in refs.[52],[53]. Ref.[54] reports a surprisingly large discrepancy between
measured proton polarisation and CDCC predictions for 208Pb(d,p)209Pb at
20 MeV incident energy. Other observables are well reproduced.

5.11 Link with the CDCC method

In the CDCC method the 3-body wave function for deuteron-nucleus scat-
tering, Ψ(~R,~r), is expanded in a set of orthonormal functions φs(~r), s =
0, 1, 2......, which diagonalise Hnp with eigenvalues ǫs and discretise the n− p
continuum. The set are usually defined so that φs=0 is the deuteron ground
state. Coupled equations are then derived as a technique for solving the
3-body Schrödinger equation.

We can expand the adiabatic wavefunction Ψad(~R,~r) in a volume V in ~r
space in terms of an orthonormal set ψs(~r), s = 0, 1, 2...... which is complete
in V :

Ψad(~R,~r) =
∞
∑

s=0

ψs(~r)χs(~R), (107)
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and derive coupled equations for the χs’s of the form

(Ed − TR)χs(~R) =
∑

s′

〈ψs | V | ψs′〉χs′(~R), (108)

where V is defined in eq.(81) and the coupling matrix elements involve an
integration over V .

If we identify the ψi’s and φi’s (to obtain the CDCC equations the φi’s
must diagonalise Hnp) these equations are similar to the CDCC equations
with all the channel energies set equal to −ǫ0. We can put this another way.
If the set ψs(~r), s = 0, 1, 2......, is complete in V , and the functions χs(~R)
satisfy the coupled equations (108) then these equations show that, for ~r in

V ,
∑

s ψs(~r)χs(~R) satisfies

(Ed − TR)
∑

s

ψs(~r)χs(~R) =
∑

s

ψs(~r)
∫

d~r′ψ∗
s(~r

′)
∑

s′

V (~R,~r′)ψs′(~r
′)χs′(~R)

= V (~R,~r)
∑

s′

ψs′(~r)χs′(~R), (109)

where the completeness of the ψs’s has been used. Eq.(109) is just the adia-

batic equation. Hence
∑

s ψs(~r)χs(~R) is the adiabatic solution Ψad(~R,~r).
We see that the Adiabatic approach can be regarded as an approximation

to the CDCC method. Note that the adiabatic method does not take into
account any restrictions imposed by the Pauli Principle on the states which
should be included in the set φs. For example, in the case of 11Be scatter-
ing the adiabatic calculations include transitions into a state in which the
neutron is in a nodeless s-state with respect to the 10Be core. Such contribu-
tions are easily excluded in the CDCC calculation or in the Johnson-Tandy
approach[22], but it is not obvious how to do this in an adiabatic calculation
without introducing non-local projection operators with the consequential
loss of some of the characteristic simplicity of the adiabatic equation.

At first sight it is puzzling that the adiabatic calculation can take into
account effects due to excited deuteron states when only the deuteron ground
state wave function appears explicitly. In CDCC calculations the wave func-
tions of all excited states deemed to be important must be inserted explicitly
into the calculation of the coupling matrix elements. Our derivation above
shows how this puzzle can be resolved but it is also helpful to note that
the ground state wavefunction φ0 determines the Hamiltonian through the
identity (see the Appendix to [19])

Hnp = −ǫ0 −
h̄2

2µnp

φ−1
0 ∇rφ

2
0.∇rφ

−1
0 , (110)
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where the ∇r operators act on everything to the right of them.
We note that the CDCC method uses a basis which is complete in large

volumes of ~r space. As we have seen the stripping and break-up matrix
elements (95) and (96) explore a very restricted part of this space, i.e., within
the range of Vnp. For this purpose the complete set used by Johnson and
Tandy[22] and its generalisations may be more efficient.

In their exploration of the adiabatic approximation Johnson and Soper[?]
proposed an approximation to the CDCC method which replaced the deuteron
continuum by a single pseudo state. In their method the component VnpΨ
of the 3-body wave function is still governed by equations (101), (105) and
(106), but the deuteron elastic scattering wavefunction and the pseudo break-
up state satisfy a pair of coupled equations. This method was critically ex-
amined in great detail by Rawitscher[26],[27] within the CDCC framework.
A more sophisticated version of the single pseudostate method was developed
by Amakawa, Austern and Vincent[57] and is known as the quasi-adiabatic
method.

Some of the clearest evidence for the importance of deuteron break-up
effects and the failure of the DWBA for (d,p) and (p,d) reactions has been
obtained by using the adiabatic approximation as implemented in the ADWA.
However, we have seen that the adiabatic approximation can be regarded as
an approximation to the CDCC, so it might be argued that the adiabatic
approximation no longer has a role. It is only recently, however, that the
CDCC method has become available for projectiles with more than 2 clusters
and, when coupled with the eikonal approximation where applicable, the
adiabatic approximation is a powerful tool for the analysis of reactions with
composite projectiles.

An attractive feature of the adiabatic approach which it shares with
CDCC is that it provides a framework for inserting the systematics of the
interaction of the constituents of the projectile with the target into reaction
analyses. This means that the need for optical potentials for unstable pro-
jectiles can often be avoided, but it still requires reliable information about
the constituents’ optical potentials and hence good elastic scattering data for
appropriate energies and targets.

An advantage of the adiabatic method over CDCC is that its implementa-
tion does not need detailed wavefunctions of strongly coupled excited bound
and continuum states of the projectile. The construction of these states may
introduce considerable uncertainties into a CDCC calculation. It is impor-
tant therefore to understand the limitations of the adiabatic approximation.
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Perhaps the most important feature of the adiabatic approximation is its
ability to provide insights into the mechanism of complex reactions. It can
be used to provide checks of CDCC and other theories as well as being a
relatively easy and transparent way to take into account complicated effects
of channel coupling in some important special cases.

5.12 Link between CDCC, ADW and Faddeev meth-

ods for 3-body models of the deuteron-nucleus

system

One of the attractive features of studying the d+A system on the basis of a 3-
body Hamiltonian is that the Faddeev formulation of the scattering problem
or its practical equivalents[9] can be used to perform calculations that are
not based on the expansions used in the CDCC or Johnson-Tandy methods
and can be carried through to arbitrary precision in terms of truncation
parameters that are well under control.

In the theory of Alt, Grassberger and Sandhas[9] transfer amplitudes ap-
pear as the matrix elements between plane wave channel states of a set of
operators Uα,β, where α and β label all possible channels in the 3-body sys-
tem. These operators satisfy coupled integral equations that are particularly
convenient when an exact solution of the 3-body Schrödinger equation is re-
quired. A major recent advance has made it possible to include Coulomb
break-up accurately[58, 59].

Three-body models of nuclear reactions involving deuterons and massive
nuclei have proved invaluable in increasing our understanding of the key
role of deuteron break-up effects, but we are usually interested in extracting
nuclear structure information from data in a credible fashion and therefore
a key issue is the link between the 3-body models and the underlying many-
body problem. Three-body model Hamiltonians are always going to be an
approximate image of the many-body system. From the point of view of the
nuclear structure practitioner, therefore, we must learn how to use the exact
solutions of 3-body models to provide guidance for how deuteron break-up
effects can be included in a way that can be generalized to the many-body
case. This means, for example that emphasis is placed on determining an
adequate representation of the 3-body scattering wavefunction in restricted
regions of the 6-dimensonal configuration space rather than calculating an
accurate version everywhere, for which latter purpose the coupled equations
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of Alt, Grassberger and Sandhas[9] are well adapted.
The 1999 paper by Timofeyuk and Johnson[25] was motivated along these

lines. In doing so they used a particular formula for the (d, p) and (p, d) tran-
sition amplitude, namely eq.(95) generalised to include recoil (REB) effects.
Deuteron breakup effects were taken into account using the ADW method as
described above. At the same time, because their formula did not contain the
”remnant term” that appears in standard many-body theories of deuteron
stripping and pick-up (see,e.g., [10], page 151) there was a transparent link
to many-body concepts such as overlap functions, spectroscopic factors and
asymptotic normalization factors[6],[60]. In a recent paper[?] it was shown
that this particular formula can be derived from the coupled equations of
Alt, Grassberger and Sandhas[9].

5.13 The underlying many-body theory

Our presentation so far is based on the 3-body Hamiltonian (81) in which VnA

and VpA are optical potentials. These are usually taken at 1
2

of the incident
deuteron kinetic energy Ed. This is reasonable if any break-up components in
the 3-body wave function have a small fraction of Ed and is certainly consis-
tent with the adiabatic assumption. More generally the 1

2
Ed prescription can

be justified[46] by detailed calculation if the energy dependence arises purely
from non-locality and break-up effects are negligible. A deeper question is
why the effective interaction in the 3-body model should have anything to
do with the nucleon optical potential.

To study this further we recall that the 3-body wavefunction in eq.(83)
is the projection of the full many-body A + 2 wavefunction onto the target
ground state. In a standard fashion[17] we can show that the effective Hamil-
tonian which governs this component when the target is in its ground state
in the incident channel is

Heff = TR +Hnp + 〈φA | U | φA〉, (111)

where the bra-ket notation implies integration over the target nucleus co-
ordinates to leave an operator in n and p co-ordinates only. The complicated
many-body operator U satisfies

U = (vnA + vpA) + (vnA + vpA)
QA

e
U, vNA =

A
∑

i=1

v(N, i). (112)

35



The vNA’s, N = p, n, are the sums of the 2-body interactions between the
incident p and n and the target nucleons 1...A. The operator QA projects
on to excited states of the target. U sums up all processes via excited states
which begin and end on the target ground state.

U can be separated into its p and n contributions by using manipulations
from multiple scattering theory. We obtain

U = (UnA + UpA) + UnA

QA

e
UpA + UpA

QA

e
UnA + ....., (113)

where

UnA = vnA + vnA

QA

e
UnA, UpA = vpA + vpA

QA

e
UpA, (114)

and the dots in (113) are terms of 3rd or higher order in UnA and/or UpA,
always with an excited target (though not necessarily excited deuteron) as
intermediate state.

The above expressions for UnA and UpA are strongly reminiscent of Feshbach’s[17]
expressions for the operator which gives the nucleon optical potential when
sandwiched between the target ground state. Note however that the energy
denominator e which appears everywhere is not the denominator one expects
to see in the nucleon operator. It is given (for an infinitely massive target)
by e = E + i0− Tn − Tp − Vnp −HA where HA is the target Hamiltonian. It
is plausible that if low energy weakly correlated break-up states dominate,
then in UnA, for example, we can neglect Vnp and replace E − Tp by 1

2
Ed

on the average. 〈φA | UnA | φA〉 then reduces to a formal expression for the
neutron optical potential at energy 1

2
Ed.

The higher order terms in (113) still have to be dealt with, however. The
second order terms describe a process in which the neutron excites the nucleus
and the proton subsequently de-excites it, and vice versa. The magnitude
of such effects will be small for weakly correlated n − p configurations such
as in the deuteron or low energy break-up configurations. Their neglect is
consistent with approximations already made.

We learn from this analysis that the validity of the 3-body model as
usually assumed is intimately bound up with the assumption of dominance
of low energy break-up configurations. However, all the arguments given
above are very qualitative. Very little work has been done to give substance
to them and estimate any corrections to the usual model. It would seem to be
hardly worth while to go much beyond the adiabatic or CDCC treatments
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of three-body effects, both of which assume that break-up excitations can
be truncated, without investigating many-body corrections to the 3-body
Hamiltonian, eq.(81), more thoroughly.

Finally in this section, note that even in the lowest order version of the
effective interaction one expects to see corrections arising from the identity
of n and p and the target nucleons. There are essentially two distinct ap-
proaches to these antisymmetrization effects. The RGM methods starts from
a many-body Hamiltonian with an assumed N-N interaction and puts in an-
tisymmetrization right from the start, treating the nucleons in the deuteron
and in the target on the same footing. On the other hand it is difficult in
practice to treat all possible open channels and absorption has to be inserted
by hand. RGM calculations have been published[63] which include deuteron
break-up effects using discretisation methods similar to the CDCC method.
Antisymmetrisation effects are very important in this approach[63].

The alternative approach of refs.[20],[64],[65] is based on the idea that
because of the loosely bound extended spatial nature of the deuteron, the
nucleons in the deuteron see the target nucleus much as if they were com-
pletely independent and so much of the effects of antisymmetry and coupling
to excited target states are contained in the complex optical potentials of the
3-body model.In this way one automatically generates a total deuteron reac-
tion cross section which is close to that observed even when deuteron elastic
break-up is neglected. New effects arise for deuteron collisions only because
the nucleons in the deuteron may scatter off each other into occupied target
states (Pauli blocking). These effects are included through a generalisation of
the Bethe-Goldstone equation. The role of break-up channels is to re-adjust
the flow of flux into inelastic channels involving excited target states as well
as transfering flux into break-up channels. For some impact parameters the
effect of the break-up channel may even be to decrease the partial reaction
crosssection because in the break-up configuration the nucleons may overlap
spatially less well with the imaginary parts of the nucleon optical potentials.
Tostevin, et al[65] found that absorption tends to suppress Pauli blocking
and no new major qualitative effects were found. Aoki[52], using a formula
for these effects due to Pong and Austern[64], reported that Pauli blocking
effects gave a 10% repulsive correction to the deuteron optical potential and
improved CDCC fits to elastic deuteron scattering on 208Pb at 20 MeV. The
effect on (d,p) crosssections was negligible.
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5.14 Elastic Coulomb break-up

An interesting application of the expression (96) is the case of Coulomb
break-up of a 2-body projectile where one body is uncharged and we can
neglect its interaction with the target. In the deuteron case, for example, we
can then use eq.(92) and the matrix element factorises[51] as

TADWA
d,np =

(
∫

d~r exp(i(~kn −
1

2
~Kd).~r)Vnpφ0(~r)

)
∫

d~rpχ
(−)∗
~kp

(~rp) exp(−i~kn.~rp)χ
(+)
~Kd

(~rp).(115)

where χ
(+)
~Kd

and χ
(−)
~kp

are distorted waves describing the scattering of a point

deuteron and a proton by the Coulomb field of the target. For a very large
screening radius the second factor has the form of an unobservable phase
factor which goes to infinity with the screening radius, multiplied by an
integral which is similar to that which occurs in the theory of Bremsstrahlung
and can be evaluated analytically for a point target. The first factor is easily
evaluated for any Vnp. The restriction to A→ ∞ is easily lifted[51].

This theory has been applied successfully to Coulomb break-up of the
deuteron[51], 11Be[66], 6He [67] and 19C[66],[68]

We emphasise that the theory which leads to (115) is not perturbation
theory. Terms of all orders in VpA and Vnp are included. The effects of
coupling between Coulomb break-up channels are included in all orders with
the 2 assumptions that the wavefunction eq.(92) adequately represents the
3-b0dy scattering wavefunction inside the range of Vnp and that the nuclear
interaction between the neutron and the target can be neglected.

A DWBA theory which is often used for Coulomb break-up starts from
the expression

TDWBA
d,np = 〈χ(−)

p
~kn | Vnp | Ψelast

~Kd
〉, (116)

where the elastic deuteron wavefunction Ψelast
~Kd

has the form

Ψelast
~Kd

(~R,~r) = φo(~r)χ
(+)
~Kd

(~R). (117)

For the case of Coulomb break-up χ
(+)
~Kd

(~R) is a Coulomb wavefunction de-

scribing the scattering of a point deuteron in the Coulomb field of the target.
The input data required for the 2 expressions (115) and (116) are identical,

i.e., Vnp, and the Coulomb potential of the target, although they are based on
very different physical assumptions. The DWBA expression assumes that the
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coupling between deuteron elastic and break-up channels is small and can be
treated in first order. The expression (115) makes no such approximation but
instead makes the assumption1 that any break-up channels that are relevant
for the 3-body scattering wavefunction inside the range of Vnp have low energy
compared with the incident deuteron energy. It should be noted that this
calculation does not assume that that wavefunction (92) is valid for large
values of rnp. The corect relation between the outgoing nucleon momenta
and the incident deuteron energy is used in calculating the outgoing distorted
waves in(115), i.e, no approximation involving neglect of the relative energy of
the 2 nucleons is made. The 3-body Schr̈’odinger equation guarantees that
the expression (96) is correct if the 3-body wavefunction used adequately
represents the 3-body scattering wavefunction inside the range of Vnp.

The DWBA amplitude for Coulomb break-up involves a 6-dimensional in-
tegration. Various approximations, including the zero-range approximation
for Vnp, have invariably been made to simplify its evaluation. Zadro[68],[69]
has published a momentum-space technique for the exact evaluation of the
DWBA amplitude with a finite range Vnp. This has enabled a meaningful
comparison to be made with the ADWA theory. He studied 11Be→10Be+n
and 19C→18C+n elastic break-up on a 208Pb target at energies near 70
MeV/nucleon. Both theories give very similar projectile-fragment relative
energy distributions in quite good agreement with experiment[70] but the
predicted DWBA crosssection magnitudes for a 2-body projectile model are
up to 50% bigger. Crosssections for break-up into states of more than a
few MeV are very small. The adiabatic approximation therefore ought to be
excellent at 70MeV/nucleon[19]. This suggests that spectroscopic factors ob-
tained by comparison of predicted DWBA crosssections with break-up data
may be significantly underestimated.

References

[1] I. Tanihata H. Hamagaki, O. Hashimoto, S. Nagamiya,
Y. Shida,N. Yoshikawa, O. Yamakawa, K. Sugimoto, T. Kobayashi,
D.E. Greiner, N. Takahashi, and Y. Nojiri, Phys. Lett. B160 (1985)
380.

1Note that because we use the solution (92) in this case we have no need for the extra
assumptions about the break-up spectrum which lead to (101).

39



[2] I. Tanihata, T. Kobayashi, O. Yamakawa, T. Shimoura, K. Ekuni,
K. Sugimoto, N. Takahashi, T. Shimoda and H. Sato, Phys. Lett. B206

(1988) 592.

[3] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa,
K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi,Phys. Rev.
Letts.55 (1985)2676

[4] R.C Johnson, in ”Frontiers in Nuclear Collision Dynamics”,Proceedings
of the 14th Nishinomiya Yukawa Memorial Symposium, Nisinomiya, 18-
19 November 1999, ed. by T. Hatsuda, H. Horiuchi and I. Tanihata,
Prog. of Th. Phys. Supplement No.140, 2000. pp33-50.

[5] R.C.Johnson, in ”An Advanced Course in Modern Nuclear Physics”, ed.
by J.M. Arias and M.Lozano, Springer-Verlag Berlin Heidelberg 2001.
pp 259-291.

[6] R.C. Johnson, in ”Reaction Mechanisms for Rare Isotope Beams”, 2nd
Argonne/MSU/JINA/INT RIA workshop. MSU, East Lansing, 9-12
March, 2005, (ed. by B.A. Brown) AIP Conf. Conf. Procs. 79, 128
(2005), pp 128-139.

[7] P.G. Hansen, A.S. Jensen and B. Jonson, Annual
Rev.Nucl.Part.Sci45(1995)591.

[8] Handbook of Mathematical Functions, edited by M. Abramowitz and
Irene A. Stegun (Dover Publications, Inc., New York, 1965).

[9] E.O.Alt, P.Grassberger and W.Sandhas, Nucl.Phys.B2 (1967) 167.

[10] Ian Thompson and Filomena Nunes, Nuclear Reactions for Astrophysics,
Cambridge University Press, Cambridge 2009.

[11] G. R. Satchler, Direct Nuclear Reactions, Oxford University Press, Ox-
ford, 1983.

[12] B. Lippmann and J. Schwinger, Phys. Rev.79 (1950)469.

[13] I.J. Thompson, Comp. Phys. Rep.7 (1988) 167.

[14] I.J. Thompson, Methods of direct reaction theory in ”Scattering” eds.
R.Pike and P.Sabatier, Academic Press, Chapter 3.1.2.

40



[15] J. Gomez-Camacho and R.C. Johnson, Polarisation in nuclear physics

in ”Scattering” eds. R.Pike and P.Sabatier, Academic Press, Chapter
3.1.4.

[16] I.J. Thompson, B.V. Danielin, V.D. Efros, J.S. Vaagen, J.M. Bang, and
M.V. Zhukov, Phys. Rev. C61 (2000) 024318.

[17] H. Feshbach, Ann.Phys.(N.Y.)5 (1958) 357.

[18] R. C. Barrett, Nucl. Phys.51(1964)27.

[19] N. C. Summers, J. S. Al-Khalili and R. C. Johnson , Phys. Rev.
C66(2002) 014614 .

[20] R.C. Johnson and P.J.R. Soper, 1, 976 (1970).

[21] J.D. Harvey and R.C. Johnson, 2, 636 (1971).

[22] R.C. Johnson and P.C. Tandy, Nucl. Phys. A235, 56 (1974).

[23] G.L. Wales and R.C. Johnson, Nucl. Phys. A274, 168 (1976).

[24] A. Laid , J.A. Tostevin and R.C. Johnson, Phys Rev C48 (1993) 1307.

[25] N. K. Timofeyuk and R. C.Johnson, Phys. Rev.C59 (1999) 1545.

[26] G. H. Rawitscher, Phys.Rev.C9(1974)2210.

[27] G. H. Rawitscher, Nucl. Phys. A241(1975)365.

[28] M. Kamimura, M. Yahiro, Y. Iseri, H. Kameyama, Y. Sakuragi and
M. Kawai, Prog.Theor.Phys.Suppl.89(1986)1.

[29] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher and
M. Yahiro, Phys.Rep.154(1987)125.

[30] J. S. Al-Khalili and J. A. Tostevin, Few-body models of nuclear reactions,
Chapter 3.1.3 in ”Scattering” eds. R. Pike and P. Sabatier, Academic
Press, London and San Diego, 2002, pages 1373-1392.

[31] T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba
and M. Yahiro, Phys.Rev. C70(2004)061601(R).

41
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