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Session (learning) aims:

To bring out the importance of the eikonal S-matrix, a
function if the impact parameter of the projectile or
component of the projectile, to this formulation of the
reaction and scattering of the interacting systems.




Session (learning) outcomes:

To understand the important role of the eikonal S-matrix in
this formulation of the reaction and scattering of both inert
and of composite nuclear systems.
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Our ... bits and pieces...

g _valence
U(r) = Ve(r) + V() + Vi (r)l - § 4 -
(1) =Velr) +¥ () + Vi) 5 o7 ()
Coulomb Nuclear -
(. ~ J
Need descriptions of wave functions of: 7, M

(1) Bound states of nucleons or clusters (valence particles)
to a core (that is assumed for now to have spin zero).
(2) Unbound scattering or resonant states at low energy

(3) Distorted waves of such bodies in complex potentials

—

U(r)=Vo(r)+V(r)+W(r) + Vso(r)f-s



Optical potentials - parameterisations
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Phase shift and partial wave S-matrix: Recall

ukej(r) —  €"%[cos 8g;Fy(n, kr) + sinég;Go(n, kr)]

N— 7
—~—

If U(r) is real, the phase shifts 0., are real, and [...] also

weei(r)  — (i/2)[Hy ) (n,kr) — So H" (n, ker)

Ingoing outgoing
waves waves
1Se;|° survival probability in the scattering

Sej = 2403

(1 — |S¢;|?) absorption probability in the scattering




Ingoing and outgoing waves amplitudes
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Semi-classical models for the S-matrix - S(b)

b=impact parameter

K,/

©
©

for high energy/or large mass,
semi-classical ideas are good

kb = /7, actually = /+1/2

L b
1 = :J_W 1 >
absorption R
|S£j‘ 00 i transmission ‘S(b)‘
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Use an old friend — and meet some new ones

bound (bound states solver — see bound.outline)

eikonal s (for eikonal S-matrix from a specified
Interaction potential - etkonal _s.outline)

glauber (elastic scattering calculation from a specifies
eikonal S-matrix - glauber.outline)

knockout (composite two-body projectile S-matrix from a

bound state wave function and component S-
matrices — knockout.outline)



Eikonal approximation: point particles (1) °

Approximate (semi-classical) scattering solution of

B 5 e MMy
(<5, 92+ U~ Eon )X =0, 1=

(Vf — %U(r) + kQ) Xg(ff‘) =0
small wavelength
valid when |U|/E < 1, ka>1 - high energy

Key steps are: (1) the distorted wave function is written

W (F) = exp(z’E- ) w(F) < all effects due to U(r),
& modulation function

(2) Substituting this product form in the Schrodinger Eq.

. 9 .
2k - Vw(7) — h—gU(T)w(F) + V20(7) | exp(ik - 7) = 0



Eikonal approximation: point neutral particles (2)

L 9 L
21k - Vw(r) — h—gU(r)w(F) +V 'F)] exp(ik - ) =0
The conditions |[U|/E <1, ka>1 - imply that

2k - Vw(F) > V2w(r) = Slow spatial variation cf. k

and choosing the z-axis in the beam direction k

Z_‘;’ ~ _%U(ﬂw(?ﬁ) phase that develops with z
— ?’u : /
w(r) = exp [_ﬁ ]OO U(fr')dz}

1D integral over a straight
line path through U at the
Impact parameter b




Eikonal approximation: point neutral particles (3)

Xg(f’) — exp(ik - 7) w(7) ~ exp(ik - 7) exp [—% / U(fr)dz’}

— 0

So, after the interaction and as z—«

X%_ (7) — exp(ik - 7) exp {—% / U(fr)dz’] — S(b) exp(ik - 7)
N - __ S(b) is amplitude of the forward
XE (7“) — S(b) exp(zk ' ’F) going outgoing waves from the

. . _ scattering at impact parameter b
Eikonal approximation to the J pactp

S-matrix S(b)

S(b) = exp [—% f N U(fr)dz’}

— 0O

Moreover, the structure of the
theory generalises simply to few-body projectiles



Eikonal approximation: point particles (summary)

xi (F) = exp(ik - 7 expl al / ; U('r‘)dz"}

v=hk/m Imm 1 /_OO U(r)d-




Semi-classical models for the S-matrix - S(b)

b=impact parameter

K,/

for high energy/or large mass,
semi-classical ideas are good

kb = /7, actually = /+1/2

L b
1 P00 1 >
absorption e i
|S£j‘ OO i transmission ‘S(b)‘




Point particle scattering — cross sections

Ool = %Z(zm 1)|1 — Se|? ~ /d%’ 11— S(b)?
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Eikonal approximation: several particles (preview) ©

with composite objects we will | . i (p, )] = S h
get products of the S-matrices <plix(b, -] H i(0i)



Point particle — the differential cross section 17

Using the standard result from scattering theory, the elastic
scattering amplitude is

10) = Ly [ exp(=ik - U D

— 5 [ dr exp(=ik - ) Ur) exp(ik - 1) w(7
v

___H rexp(iqg-r)U(r)w(r
=~ L [ expliq- ) U )

with ¢=k — k', ¢ = 2ksin(6/2) is the momentum transfer.
Consistent with the earlier high energy (forward scattering)
approximation

7 ) 7-7a b
q =
/O; g-k~0




Point particles — the differential cross section

So, the elastic scattering amplitude

___H = S » (dw i

0) = — d -r)U _ f >

f(0) s / rexp(tq- 7)) U(r)w(r) — = _%U(T)W(T)

is approximated by 3 iRk dw
ik o gy | U = 2ES

feir(6) = o d? bexp(zq b)/ el foaz

Performing the z- and azimuthal ¢ integrals

Fuan(6) = —ik / " bdb Jo(qh) [S(B) — 1]

S(b) = exp iy (b)] = exp {—hi f h U(fr)dz’]
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Point particle — the Coulomb interaction ?

Treatment of the Coulomb interaction (as in partial wave
analysis) requires a little care. Problem is, eikonal phase
Integral due to Coulomb potential diverges logarithmically.

R ‘+"’V ; Must ‘screen’ the potential at
xo(b) = -+ - c(r)dz | some large screening radius

foire(0) = e™Xe {fpt(é’) — ik /OOO bdb Jo(gb) e™X**[S(b) — 1]

1‘ "‘ — _

——

overall unobservable usual Coulomb

screening phase (Rutherford) point
charge amplitude

X(0) = xn (D) + xp(D) — Xpe(D) Xpt(b) = 211n(kb)

nuclear Due to finite charge See e.g. J.M. Brooke, J.S. Al-Khalili,
phase distribution and J.A. Tostevin PRC 59 1560

nuclear scattering in the presence
of Coulomb



Accuracy of the el
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Accuracy of the eikonal S
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Eikonal approach — generalisation to composites

Total interaction energy

U(?"1,...) = Z U@(T‘Z)

1=cC,V

1=C,V

Sp(b) — <§b0 ‘SC(bC)Sv (bv) ‘§b0>

You can now calculate bound states (bound) and eikonal
S-matrices (eikonal s) and can calculate this composite
S-matrix (using knockout). The elastic scattering of c, v or
the composite can then be calculated (using glauber). So
you can now calculate the elastic scattering of the neutron,
10Be, and the composite halo system 11Be ?



Semi-classical — e.g. Alder and Winther theory

V(R) = (¢o|V(R, €)|do)

H = Hy(§) + V(R,§)

3%(5 t)

Ho(8)|pa) = Ealda) | Ho(€) + V(). )| wel&, 1) = ih
o (l,t — —00) = Ja0 I Wel&,t) Zaa (,t) ¢o (€) exp(—i€qt/h)

haa(6,t) = 3 (6alV(R, €)|65) exp(ilEa — E51/) as(l,t)
s




Homework: to become familiar with these ideas

bound (bound states solver — see bound.outline)

eikonal s (for eikonal S-matrix from a specified
Interaction potential - ertkonal _s.outline)

glauber (elastic scattering calculation from a specifies
eikonal S-matrix - glauber.outline)

knockout (composite two-body projectile S-matrix from a

bound state wave function and component S-
matrices — knockout.outline)
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