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Total reaction cross section and elastic scattering angular distribution calculations are
discussed for composite (halo) nuclei with well developed core and valence particle struc-
tures. We review the basis of few-body calculations of reaction cross sections and use a
simple binary cluster model to clarify the inadequacy of optical limit Glauber calculations
for determining the sizes of correlated nuclear systems. An outstanding discrepancy in
the case of the 6Li and 6He systems is discussed. We show that under certain condi-
tions complementary information on halo sizes could be obtained from precision elastic
scattering measurements at lower energies.

1. INTRODUCTION

The matter radii of the least bound nucleon(s) of halo nuclei are accurate indicators of
underlying ground state structures. Evaluating theories for determining these halo sizes
is therefore of considerable importance. The widths of measured momentum distributions
following the breakup of halo nuclei also offer a clear qualitative signature of the spatial
distribution of the halo particles. However, the complexity of the reaction mechanism,
including the role of final state interactions, has meant that momentum widths have yet
to produce reliable quantitative information on halo sizes. Progress in this area is a
significant theoretical challenge.

Most published tabulations of halo nucleus sizes have been deduced by comparing high
energy interaction cross section measurements [1,2] with model calculations which use
the optical limit (OL) of Glauber theory [3,4]. In this theoretical limit the structure
of the composite projectile enters only through its single particle density, appearing to
offer a direct and rather model independent measure of this distribution. However, the
OL approximation is appropriate only to the extent that the projectile nucleons can be
considered to move independently and are assumed uncorrelated except for the fact that
they share a common volume of space [5].

The most dramatic feature of halo nuclei is precisely their loosely bound few-body char-
acter, the strong spatial localisation of the core nucleons, and the delocalisation of the
halo particles. Recent analyses [6–8] have shown that an explicit treatment of this corre-
lated few-body nature is important in calculations of reaction cross sections. These lead
to smaller cross sections than obtained from the OL theory with significant implications
for the deduced rms radius of the nucleus and the halo. It follows that estimates of the
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matter radii of halo nuclei, even from high energy data, are intrinsically model dependent
and require the use of realistic theoretical wavefunctions for the few-body structures [6,7].

Here a simple binary cluster model is introduced and used to clarify both this physical
picture and the sensitivity of calculated cross sections to the clustering of nucleons. The
model allows us to construct composite nuclei of quite different structures but with a
common single particle density. It follows that all such structures would predict the
same cross section in the OL theory. We show that when the projectile structure is
included explicitly, these different configurations lead to quite different reaction cross
sections, which depend on the underlying binary decomposition, and the degree of nucleon
clusterisation.

Such total cross section analyses at very high energies are increasingly giving way to
exclusive and differential cross section measurements; many at energies of between 30 and
100 MeV/nucleon. At these lower energies the reaction mechanisms are more complex
and an explicit treatment of breakup and inelastic degrees of freedom is then essential.
Nevertheless even simple considerations, such as folding model ideas, lead us to expect
that composite nucleus-target elastic scattering observables should manifest some signs of
the size of the projectile. The importance of coupling to the breakup continuum for the
extended and loosely bound halo systems means however that folding model ideas are an
inappropriate starting point. What then is the nature of this sensitivity for halo nuclei?

We show that under certain conditions the elastic scattering of a halo nucleus from a
stable target can give simple direct evidence for the structure of the halo, even in the
presence of strong coupling between the halo ground state and the low energy breakup
continuum [9]. This coupling to elastic breakup channels is in fact essential to the analysis,
which, in elastic scattering, will be useful when the ratio of the projectile’s halo mass to
its core mass is small.

Underlying all of the theoretical ideas presented is the use of the adiabatic approxima-
tion for composite systems. In the case of the reaction cross section analysis the additional
eikonal (Glauber) approximation of straight line trajectories is made.

2. GLAUBER THEORY CALCULATIONS FOR COMPOSITE NUCLEI

For composite nuclei all Glauber theoretical approaches start from the approximation
that the internal motions of the particles within the projectile and target are assumed
slow compared to the relative motion of the centres of mass of the projectile and target;
and so can be treated adiabatically [3]. Additional approximations are then made. In
halo nucleus induced reactions, where the projectile’s internal degrees of freedom are of
particular interest it is usual to treat the projectile structure explicitly and the mass
At target as presenting a scattering centre to each projectile constituent. The position
coordinates of these constituents is assumed frozen during the transit of the projectile
past the target.

At the energies (≈800 MeV/A) of interaction cross section measurements the adiabatic
approximation is certainly reliable. For an n-body composite projectile, with ground state
|Φ(n)

0 〉, the projectile-target elastic S-matrix is

S(n)
p (b) = 〈Φ(n)

0 |S1(b1)S2(b2) . . . Sn(bn)|Φ(n)
0 〉 . (1)

Each Sj(bj) is the eikonal approximation to the elastic S-matrix for projectile constituent j



scattering independently from the target [3] and is a function of its own impact parameter
bj. S(n)

p , the projectile ground state matrix element of a many-body operator, is expected
to be sensitive to properties of the ground state beyond its single particle density.

2.1. Optical limit approximation
The OL approximation to Sp neglects entirely any correlations between constituents

in the projectile or target. The calculation of Sp, and the reaction cross section, then
involves only the projectile and target ground state densities ρp and ρt. Explicitly,

SOL
p (b) = exp

[
iOpt(b)

]
, (2)

where Opt(b) is the overlap of the two densities with a nucleon-nucleon (NN) formfactor
integrated along the assumed straight line path of the projectile’s c.m. at impact parameter
b. Expressing the projectile-target separation in cylindrical coordinates R = (b, R3), with
the z ≡ 3 axis chosen along the incident beam direction, then

Opt(b) =
∫ ∞

−∞
dR3

∫
dr1

∫
dr2 ρp(r1) ρt(r2)f̂NN(|R + r1 − r2|) . (3)

For an absorptive zero-range NN amplitude and a T = 0 target, then

f̂NN(r) = (iσ̄NN/2)δ(r) (4)

where σ̄NN is the average of the free nn and np total cross sections at the energy of
interest.

2.2. Few-body description
The approximation of independent particle motion underlying the OL approach is in-

consistent with the loosely bound few-body (FB) character of halo nuclei. Such systems
require an explicit treatment of this correlated FB nature [6,7]. In the FB Glauber pic-
ture, with its adiabatic basis, the scattering must be calculated for each configuration
of the constituents and only then should the resulting scattering amplitudes be averaged
over all contributing configurations. That is, Eq. (1) should be evaluated explicitly for
the few-body system. Since the constituent core- and valence particle-target two-body
systems are themselves well localised, these binary subsystems can be treated using the
OL theory. For an assumed two-body composite projectile, with a valence and core cluster
with relative motion wavefunction Φ

(2)
0 , then [6,7]

SFB
p (b) = 〈Φ(2)

0 |SOL
c (bc)S

OL
v (bv)|Φ(2)

0 〉 . (5)

Evaluation of both the FB (SFB
p ) and OL (SOL

p ) S-matrices, when using the most
realistic theoretical inputs, becomes a reasonably involved numerical task at this point.
The following therefore presents a simple model description, involving Gaussian densities,
which allows the consequences of the FB formulation to be exposed more clearly. In this
analysis the zero range approximation to f̂NN is quite adequate to clarify the essential
differences calculated in the FB and OL schemes.



2.3. Simple binary cluster structure model
We consider a composite projectile of mass Ap as consisting of valence and core clusters,

of masses Av and Ac, bound in a state of relative motion, Figure 1. To be definite we
assume Ac ≥ Av. For simplicity the internal densities of the clusters are described by
single Gaussian functions with ranges αc and αv,

ρc(r) = Acg
(3)(αc, r) , ρv(r) = Avg

(3)(αv, r) , (6)

where g(3) is the normalised 3-dimensional Gaussian function

g(3)(γ, r) = (
√

πγ)−3 exp(−r2/γ2) ,
∫

dr g(3)(γ, r) = 1 , 〈r2〉 = 3γ2/2 . (7)

If we also assume that the relative motion wavefunction Φ
(2)
0 (r) of the two clusters is a

0s oscillator state of range parameter α then of course

|Φ(2)
0 (r)|2 = g(3)(α, r) , (8)

with mean squared cluster separation of 〈r2〉 = 3α2/2.

While simple this model is very flexible.
Moreover it allows us to construct explicitly
the single-particle density of the composite,
needed for OL calculations. Upon convolut-
ing the intrinsic cluster densities with their
c.m. motions about the c.m. of the projec-
tile, the composite projectile density is

ρp(r) = Acg
(3)(α̂c, r) + Avg

(3)(α̂v, r) (9)

with range parameters

α̂2
v = α2

v +
(

Acα

Av + Ac

)2

,

α̂2
c = α2

c +
(

Avα

Av + Ac

)2

. (10)
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Figure 1. The two cluster projectile and
target coordinates

The mean squared radius of the composite 〈r2〉p satisfies

Ap〈r2〉p = Ac〈r2〉c + Av〈r2〉v + (AvAc/Ap)〈r2〉 = (3/2)
(
Avα̂

2
v + Acα̂

2
c

)
. (11)

The model thus derives a projectile density with distinct components due to the valence
and core clusters, containing different numbers of nucleons, and with different spatial
extensions. Such simple two component forms have been used widely to model density
distributions of light exotic nuclei and also used as input to OL calculations of reaction
cross sections to deduce matter radii and valence particle properties.

We note however that a particular projectile single particle density, specified by a given
(Ac,Av) mass split and choice of the two component ranges (α̂c,α̂v), does not define the
underlying structure of the projectile. Eq. (10) shows that any chosen α̂v and α̂c are



consistent with an infinite number of two cluster structures with different cluster rms
sizes and separations. Specifically, for a fixed projectile density, α can take on all values
from zero to an upper limit αmax, where

αmax = min [(Ap/Ac)α̂v, (Ap/Av)α̂c] , (12)

at which limit one or other of the internal cluster densities is pointlike. Similarly, if one of
the original clusters is pointlike, e.g. αv = 0, then fixing α̂v and α̂c uniquely determines
α and hence αc. We discuss these two cases in the following.

2.4. Reaction cross section calculations
Assuming the target nucleus is also described by a Gaussian density of range αt, then

the OL and FB expressions for Sp take particularly simple forms. Eqs. (2) and (3) give

SOL
p (b) = exp

[
− σ̄NNAt

2

(
Acg

(2)(α̂ct, b) + Avg
(2)(α̂vt, b)

)]
(13)

where g(2)(γ, b) = (
√

πγ)−2 exp(−b2/γ2) is a normalised two-dimensional Gaussian, α̂2
vt =

α̂2
v + α2

t , and similarly for α̂2
ct. The FB S-matrix, Eq. (5), is

SFB
p (b) =

∫
d2s g(2)(α, s) exp

[
− σ̄NNAt

2

(
Acg

(2)(αct, bc) + Avg
(2)(αvt, bv)

)]
(14)

with s the projection of r in the impact parameter plane and bc = |b − Avs/Ap| and
bv = |b+Acs/Ap| are the impact parameters of the core and valence clusters, Figure 1. In
this case α2

vt = α2
v + α2

t , etc., arising from the convolutions of the free cluster and target
densities. We note that SOL

p = SFB
p only in the limit that α → 0.

We calculate the reaction cross sections using

σR = 2π
∫ ∞

0
db b

[
1− |Sp(b)|2

]
. (15)

The value σ̄NN=4.11 fm2, appropriate to 800 MeV/A incident energy [10], is assumed.
The results in a representative case of a mass Ap=10 projectile (〈r2〉1/2

p =3.1 fm) with

(Ac,Av)=(8,2) and a mass At=12 target (〈r2〉1/2
t =2.32 fm) are presented in Figure 2. We

have fixed the range parameters α̂v and α̂c such that Avα̂
2
v = Acα̂

2
c , see Eq. (11), so that the

core and valence particles make equal contributions to the projectile rms matter radius.
This ensures due emphasis is given to the valence particles, but still underestimates the
valence particle contributions compared to realistic halo structures.

The parameters above fix uniquely the projectile single particle density, the SOL
p , and

hence the reaction cross section calculated in the OL theory. This is shown by the dashed
line in Figure 2, and is independent of the details of the underlying cluster sizes and
separations. The actual two component density is shown as an inset to the figure. This
two component density is consistent with a range of structures as was expressed by Eqs.
(10) and (12). The cross sections calculated in the FB approach, from SFB

p , are shown by
the solid symbols and solid line in the figure as a function of the assumed rms separation
of the centres of mass of the two clusters. As the graphics indicate, the valence and core
cluster internal densities have to become increasingly localised at large rms separations
to maintain the fixed projectile density. The limiting situation, where the valence cluster



has become pointlike, is reminiscent of early point dineutron models of two neutron halo
systems. In this limit the cross sections calculated using the FB and OL theories are very
significantly different.

These calculations show clearly that, for
composite systems, there is no model in-
dependent relationship between the cal-
culated (or measured) reaction cross sec-
tion and the projectile single particle
density; since all calculated cross sec-
tions in the figure are consistent with
the same density. The structures dif-
fer in the way the nucleons are corre-
lated within the projectile and which are
treated explicitly within the few-body
framework. Structure or density infor-
mation extracted from reaction cross sec-
tion data therefore relies heavily upon an
assumed theoretical cluster structure and
associated few-body wavefunction.
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Figure 2. Reaction cross sections for (8,2)
clusters as a function of rms separation.

As was already noted, if one of the clus-
ters is intrinsically pointlike, such as a
single nucleon then, in our simple model,
a given projectile density does indeed
correspond to a unique rms separation
for the valence and core clusters. This
does not imply however that the FB and
OL theories agree in this single nucleon
halo case. Figure 3 shows calculations
of the OL (dashed curve) and FB (solid
curve) cross sections for (Ac,Av)=(9,1)
with 〈r2〉1/2

c =2.30 fm, as a function of the
rms radius of the projectile; for the same
At=12 target as above. Again the OL
overpredicts the cross section when com-
pared with the FB theory and, in com-
parisons with any measured cross section
datum, the OL will underestimate the ex-
tension of the composite system.
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Figure 3. Calculated OL and FB reaction
cross sections for (9,1) clusters as a func-
tion of projectile rms radius.

2.5. Status of Ap=6 calculations
The model calculations above reveal the sensitivity of reaction cross sections to the

degree of nucleon clustering within the composite. This may be significant in the context
of cross section calculations for 6He and 6Li on 12C at 800 MeV/A. For these three-body



systems then

SFB
p (b) = 〈Φ(3)

0 |SOL
α (bα)SOL

N (b1)S
OL
N (b2)|Φ(3)

0 〉 , (16)

where the Φ
(3)
0 are three-body α+N+N wavefunctions. In these quantitative studies we

use the finite range NN formfactors of Ray [11] in Eq. (3). We take 〈r2〉1/2
α =1.50 fm. The

results are collected in Figure 4. The horizontal lines show the measured interaction cross
sections (solid), and associated error bands (dashed), for 6He (722±5 mb [1], upper) and
6Li (688±10 mb [12], lower). These differ by 34 mb but with a significant error.

Calculations for different three-body
wavefunctions are shown by the solid
(6He) and open (6Li) symbols. The 6He
calculations are those reported in [8].
From left to right the 6Li calculations use
the OE1D, OE3B, I4 and H3 model wave-
functions of Thompson [13]. For 6He the
wavefunction (FC6) consistent with the
measured cross section has the correct
two neutron separation energy and pre-
dicts a 6He rms radius of approximately
2.54 fm. For 6Li however the two theoret-
ical wavefunctions with the correct bind-
ing energy (OE3B and I4) cluster in the
region of the matter radius 2.44 fm, con-
sistent with that from the 6Li charge ra-
dius [14], but have calculated cross sec-
tions close to that of 6He.
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Figure 4. Reaction cross sections for 6He
and 6Li as a function projectile rms radius.

The 6Li calculation with the largest cross section (H3) is underbound and that with the
smaller cross section (OE1D), which overlaps the experimental value, is achieved only by
overbinding the system. It appears therefore that theoretical 6Li and 6He wavefunctions
with the correct separation energies are much more similar than the measured interaction
cross sections would suggest. This is disturbing since the stable 6Li system is an impor-
tant test case for both structure and reaction calculations. A possible explanation, given
the model calculations above, is that the expected np clustering in 6Li is not adequately
represented, or fully converged, within the three-body wavefunctions used. Further theo-
retical work is needed here. A more accurate experimental cross section measurement in
the case of 6Li would also be extremely useful.

3. ELASTIC SCATTERING AND BREAKUP OF HALO NUCLEI

We now turn our attention to calculations of the elastic scattering of an assumed two-
body projectile with core mass Ac and valence mass Av by a target nucleus of mass
At. We will assume: (i) that the core-target interaction Vc is effectively much stronger
than the valence-target interaction Vv, and (ii) that the relative motion of the core and
valence particles can be treated adiabatically. For such a three-body system full quantum



mechanical calculations, which use the adiabatic assumption but not the the additional
assumption of the dominance of Vc, can be performed [15] to assess this approximation.

Our condition (i) is likely to be good if the ratio Ac/Av À 1, e.g. in 11Be (10:1)
or 19C (18:1) elastic scattering. It will also be true in Coulomb dominated processes
when the core is charged and the valence particle neutral, as is usual for halo nuclei
[16]. The validity of the adiabatic approximation for elastic scattering has been discussed
extensively [17]. However, with our additional assumption (i), it can be shown that the
condition that the projectile excitation energy is small in comparison with the incident
energy, when scattering through an angle θ, is 4(Av/Ac) sin2(θ/2) ¿ 1. This suggests
that the adiabatic assumption will be good for any incident energy and scattering angle
provided Av/Ac is sufficiently small.

3.1. Adiabatic three-body wavefunction
Assuming Vv = 0, the adiabatic approximation to the three-body wave function for the

projectile, with ground state Φ0(r ) and binding energy −ε0, incident with momentum k
in the c.m. frame satisfies
[
TR + Vc(R− αvcr ) − E0

]
Ψ

(+)Ad

k (r,R) = 0 . (17)

The core–valence particle Hamiltonian has been replaced by −ε0 under the assumption
that the relative energies excited ε ¿ E, the incident energy. Here R and r are the
target–projectile and core–valence particle separations, with TR the corresponding kinetic
energy operator. αvc = Av/(Av + Ac) so Rc = R − αvcr is the target–core separation.
E0 = E + ε0 = h̄2K2/2µ is now the incident c.m. kinetic energy and µ is the projectile-
target reduced mass.

Due to the adiabatic assumption, r is a parameter in Eq. (17) and the equation is
simplified by transforming to variable Rc. The key to the following analysis is to recognise
[9] that the required solution of Eq. (17) is

Ψ
(+)Ad

k (r,R) = Φ0(r ) exp(iαvck · r)χ
(+)

k (Rc) , (18)

where χ
(+)

k , the scattering wavefunction distorted by potential Vc, describes the scattering
of the projectile, assumed pointlike and which cannot break-up, from this potential. We
stress that the three-body wave function Eq. (18) retains break-up components

It follows immediately that, in the adiabatic approximation, the elastic scattering tran-
sition amplitude from state k to k′ now factorises as

Tel(k
′, k) = F (Q)

〈
k′|Vc|χ(+)

k

〉
= F (Q)Tpt(k

′,k) . (19)

The second factor here is just the transition amplitude Tpt for a point projectile scattering
from Vc. The effects of projectile break-up and structure are therefore contained entirely
within the first term, the form factor

F (Q) =
∫

dr |Φ0(r )|2 exp(iQ · r) , (20)

where (ignoring the weak binding effects) Q = αvc(k − k′) is the momentum transfer to
the valence particle in the scattering.



This remarkable result means that, even in the presence of strong continuum channel
coupling, the elastic scattering differential cross section of the composite takes the product
form
(

dσ

dΩ

)

el

= |F (Q)|2 ×
(

dσ

dΩ

)

pt

, (21)

where (dσ/dΩ)pt is the point projectile cross section for scattering by the core-target
interaction. Eq. (20) clarifies at which scattering angles and incident energies that a halo,
of a given size and structure, can be observed as a deviation from the scattering expected
due to point projectile scattering. Equation (21) looks like factorisations which arise
when using Born approximation theories. We stress however that the present analysis
does not involve Born approximation in any sense and that breakup effects are included
to all orders, within the adiabatic approximation.

3.2. Application to 11Be elastic scattering
11Be is a good example of a binary, 10Be+n, single neutron halo nucleus, with a small

Av/Ac ratio. It therefore provides a useful test case, and one for which there are some
preliminary elastic scattering data available [18] with which to make a first assessment of
the quantitative accuracy of the theory.

Calculation of the quantity (dσ/dΩ)pt for the projectile is clearly highly constrained by,
and closely related to, experimental data for the projectile core-target elastic scattering.
This data, at the same energy per nucleon, is needed to constrain Vc. For the 11Be+12C
system there are measured small angle elastic scattering data for both the 10Be core
and the 11Be composite at similar energies per nucleon, 59.4 MeV/A and 49.3 MeV/A,
respectively. Ideally these data are required at the same energy per nucleon. Fitting the
10Be+12C data allows us to obtain an estimate of Vc. In this case

V = 123.0MeV, rV = 0.75 fm, aV = 0.80 fm,

W = 65.00MeV, rW = 0.78 fm, aW = 0.80 fm,

where the potentials have volume real and
imaginary Wood-Saxon terms and the radius
parameters are scaled by 101/3 + 121/3.
It is the formfactor |F (Q)|2, which reflects
the modifications to the scattering due to the
composite (halo) nature of the projectile. For
the 11Be wavefunctions and formfactors we as-
sume 2s1/2 neutron single particle states, with
separation energy 0.504 MeV. These are cal-
culated in central Wood-Saxon potentials. We
assume a fixed 10Be core rms matter radius of
2.28 fm and, by changing the binding potential
geometry, obtain 11Be with different rms mat-
ter radii and |F (Q)|2; arising only from differ-
ences in the range of the neutron-core relative
motion.
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Figure 5. Calculated formfactors for
11Be and 19C scattering.



These formfactors are shown in Figure 5 as a function of c.m. angle, for 11Be+12C
scattering at 49.3 MeV/A, for the 11Be rms radii indicated. The formfactors demonstrate
clearly the expected sensitivity of elastic scattering to the halo properties and the signif-
icant sensitivity to the 11Be rms radius, i.e. the assumed rms separation of the valence
and core particles.

Using the core interaction Vc deduced
above, the calculated (dσ/dΩ)pt for point
11Be scattering (long dashed curve) is
compared, in Figure 6, with the experi-
mental 11Be+12C scattering data at 49.3
MeV/A [18]. The calculated formfactor,
for a 11Be rms radius of 2.90 fm, is shown
by the dashed-dotted curve. The product
of these factors is the predicted adiabatic
model elastic cross section, and is shown
by the solid curve. The qualitative fea-
tures of the data are well described show-
ing the extent of the sensitivity of the elas-
tic scattering data to the halo degrees of
freedom.
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Figure 6. Calculated and measured elastic
11Be+12C scattering at 49.3 MeV/A .

An obvious next question is: What is the importance (quantitatively) of the neglected
valence neutron-target interaction and does its inclusion destroy the simple formfactor
picture of the Vv = 0 limit? Our treatment of a three-body system allows full quantum
mechanical calculations, which use the adiabatic assumption but also include both Vv and
Vc to be performed. For Vv we take that neutron-12C interaction tabulated in [19].

Figure 6 also shows the full adiabatic cal-
culation (short dashed curve) which in-
cludes Vv. The effects, while not entirely
negligible, are seen to be rather small in
comparison with the differences from the
point case. To reinforce this point, in Fig-
ure 7 we show full adiabatic calculations
(including Vv) for the three 11Be wave-
functions considered here. Also shown are
the corresponding formfactors of Figure 5.
The upper curves show the results of di-
viding each full calculation by its respec-
tive formfactor. The essential coincidence
of the three curves shows that the depen-
dence of the cross section on the halo de-
grees of freedom through the formfactor
persists even in the presence of the neu-
tron interaction in this case.
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Figure 7. Full adiabatic calculations
of elastic 11Be+12C scattering at 49.3
MeV/A .



3.3. Predictions for 19C elastic scattering
For 19C the ground state structure is presently more uncertain, but the measured neu-

tron separation energy of 0.240 MeV and breakup momentum distributions [20] suggest a
possible halo state. There are speculations of this being a pure 2s1/2 state, a 1d5/2 state,
or a linear combination of such configurations [21]. Such structures would lead to different
formfactors for elastic scattering.

There are no experimental elastic scat-
tering data currently available, but the
theory developed here allows simple pre-
dictions of the expected structure effects,
through the structure formfactors pre-
sented above. Assuming the same poten-
tial parameterisation as for 10Be, above,
and computing the |F (Q)|2 which re-
sult from a pure 2s1/2 (solid curve) and
1d5/2 (dashed curve) neutron single parti-
cle state, we compare the predicted elastic
scattering for 19C+12C at 30 MeV/A, Fig-
ure 8. There is about a factor of 2 differ-
ence expected in the calculated cross sec-
tions at 20◦ due entirely to the formfactor,
Figure 5. Data for the core and compos-
ite systems would be very interesting in
assessing the presented theoretical model
and the projectile structure further.
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Figure 8. Elastic 19C+12C scattering at 30
MeV/A assuming a 2s1/2 or 1d5/2 neutron
single particle state.

4. SUMMARY AND CONCLUSIONS

In this paper we have considered the way in which the nucleus-nucleus total reaction
cross section and elastic scattering differential cross section angular distributions reflect
the size of the projectile nucleus. Specifically, we have considered the case where the
projectile is a loosely bound composite with a well developed core and valence particle
structure, such as a halo nucleus. We have considered the optical limit and few-body
approaches to the calculation of reaction cross sections, making use of a simple binary
cluster model to clarify the sensitivity of the cross sections calculated in these models to
the sizes and nucleon clustering present within the system. Use of the OL theory is shown
to consistently overestimate the calculated cross section and hence underestimate the
nuclear size determined from experimental data. An outstanding disagreement between
experiment and theory, in the case of the 6Li and 6He, systems is discussed.

We have also shown that under certain conditions complementary information on the
composite projectile size could be obtained from precision elastic scattering measurements
at lower incident energies. We have shown that halo nucleus elastic scattering is strongly
affected by breakup channels and the size of the halo. These effects reveal themselves
simply, as a formfactor which multiplies the cross section due to point particle scattering



by the interaction due to the projectile core, and which depends only on the valence
particle ground state wavefunction. The core interaction can itself be highly constrained
by high quality data for the core system. In final quantitative studies, it will probably be
important to include also the interaction of the valence particle(s), but, the insight and
simplicity revealed by the adiabatic model has been shown to persist in this case also.
Additional experimental data are needed to assess these theoretical ideas further.

The authors gratefully acknowledge the contributions of Dr Ian Thompson, for provid-
ing and discussing the three-body wavefunctions for 6Li and 6He used here, and of Dr M.D.
Cortina-Gil and Dr P. Roussel-Chomaz, GANIL, Caen, for the use of their experimental
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