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1 Principle

The R-matrix method is a powerful tool of quantum physics introduced by Wigner
and Eisenbud [1]. Initially the theory was aimed at describing resonances in nuclear
reactions. However it also contained the principle of an efficient technique for solving
Schrödinger equations in the continuum.

The R-matrix theory was developed into two different directions. On one hand,
the phenomenological R matrix offers an efficient way for accurately parametrizing
low-energy cross sections with a small number of parameters [2]. On the other hand,
the calculable R matrix provides a simple and elegant way for solving the Schrödinger
equation. See [3] for a recent review.

Let us consider potential scattering in an arbitrary partial wave. One assumes that
the potential V differs from the Coulomb potential VC by a short-range term,

V (r) −→
r→∞

VC(r) =
Z1Z2e

2

4πǫ0r
. (1)

The principle of the R-matrix method relies on a division of the configuration space
into two regions: the internal and external regions (see Fig.1). The wave function can
thus be approximated there by its asymptotic expression where only the phase shift
is unknown. In the internal region, the full interaction is taken into account. The
boundary between these regions is a parameter known as the channel radius. In the
internal region, the system is considered as confined and the wave function is expanded
over a finite square-integrable basis. The R matrix is calculated in the internal region.
It is the inverse of the logarithmic derivative of the internal wave function at the
boundary. Then a matching at the channel radius with the asymptotic expression
provides the phase shift.

Two particles with reduced mass µ interact via a central potential V at positive
energy

E =
h̄2k2

2µ
(2)

where k is the wavenumber. The Schrödinger equation for the relative motion reads
(

−
h̄2

2µ
∆+ V (r)

)

ψ(r) = Eψ(r). (3)
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Figure 1: Principle of R matrix.

For a central potential, the wave function can be factorized in spherical coordinates
r = (r, θ, ϕ) as ψ(r) = r−1ul(r)Y

m
l (θ, ϕ). The spherical harmonics Y m

l depend on the
orbital and magnetic quantum numbers l and m. After separation of the angular part,
the radial Schrödinger equation in partial wave l can be written as

(Hl −E)ul = 0. (4)

In this expression, the radial Hamiltonian Hl is defined as

Hl = Tl + V (r), (5)

where Tl is given by

Tl = −
h̄2

2µ

(

d2

dr2
−
l(l + 1)

r2

)

. (6)

Since the wave function ψ is bounded everywhere, we are interested in bounded radial
solutions ul of (4) vanishing at the origin

ul(0) = 0. (7)

Solutions at positive energies have the asymptotic behaviour

ul(r) −→
r→∞

cos δl Fl(η, kr) + sin δlGl(η, kr), (8)

where Fl and Gl are the regular and irregular Coulomb functions, respectively, and δl
is the additional phase shift. The Sommerfeld parameter

η =
Z1Z2e

2

4πǫ0h̄v
, (9)

where Z1e and Z2e are the charges of the colliding nuclei and v is their relative velocity,
will be implied in the calculations to simplify the notation. Another possible choice is

ul(r) −→
r→∞

Il(η, kr)− UlOl(η, kr), (10)
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where Il = Gl−iFl and Ol = Gl+iFl are the incoming and outgoing Coulomb functions,
respectively, and Ul is the scattering matrix defined by

Ul = e2iδl . (11)

For real potentials, the phase shifts are real and the scattering matrix is unitary.
In the external region, the radial wave function ul is approximated by the exact

asymptotic expression (8),

uextl (r) = cos δl Fl(kr) + sin δlGl(kr) (12)

or, alternatively,

uextl (r) = Il(η, kr)− UlOl(η, kr). (13)

In the internal region, the wave function uintl is expanded over some finite basis involving
N linearly independent square integrable functions ϕj as

uintl (r) =
N
∑

j=1

cjϕj(r). (14)

To satisfy (7), the functions ϕj vanish at the origin

ϕj(0) = 0 (15)

but are not necessarily orthogonal. At r = a, we do not assume that they satisfy a
specific boundary condition1. The internal and external pieces of the radial functions
will be connected at the boundary a by the continuity of the wave function ul and of
its first derivative.

2 Bloch operator

The main advantage of the R-matrix method is that an expansion in square-integrable
functions can be used in the internal region. However, the Hamiltonian Hl is not
Hermitian over the internal region (0, a),

∫ a

0

fHl g dr −
∫ a

0

gHl f dr =
h̄2

2µ
[f ′(a)g(a)− f(a)g′(a)] , (16)

where appears the Wronskian of f and g calculated at a. This expression does not
vanish in general. This property is not convenient for practical resolutions of the
Schrödinger equation. This problem is elegantly solved with the help of a surface
operator introduced by Bloch [4]

L =
h̄2

2µ
δ(r − a)

d

dr
. (17)

1Many papers impose such a condition but it has unfavourable effects on the convergence (see
Ref. [3] for a discussion).
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This operator vanishes everywhere except at r = a. The operator Hl +L is Hermitian
over (0, a),

∫ a

0

f(Hl + L)g dr =
∫ a

0

g(Hl + L)f dr, (18)

since

∫ a

0

fLg dr −
∫ a

0

gLf dr = −
h̄2

2µ
[f ′(a)g(a)− f(a)g′(a)] . (19)

Moreover Hl +L has a fully discrete spectrum as it defines a self-adjoint problem over
a finite interval.

The Schrödinger equation in the internal region is approximated by the inhomoge-
neous Bloch-Schrödinger equation

(Hl + L − E)uintl = Luextl , (20)

where the external solution is used in the right-hand member. This equation is equiv-
alent to

{

(Hl − E)uintl = 0,

uintl
′

(a) = uextl
′

(a).
(21)

Indeed, the equality

f(r) + C δ(r − a) = 0 (22)

is equivalent for a bounded function f to the equalities

{

f(r) = 0 ∀r 6= a,
C = 0.

(23)

The equation (20) or (21) is complemented with the continuity condition

uintl (a) = uextl (a) (24)

at the boundary.
Because of the Dirac function in the Bloch operator, (20) is equivalent to the

Schrödinger equation (4) restricted to the interval (0, a) supplemented by the con-
tinuity condition at r = a in (21) [4],

uintl
′

(a) = uextl
′

(a). (25)

Hence, beyond making Hl+L Hermitian, the Bloch operator enforces the continuity of
the derivative of the wave function. The importance of this aspect of the Bloch operator
has often been underestimated in the literature. No condition needs be imposed to the
basis functions ϕj at r = a since the Bloch operator imposes condition (25) to the
physical solution ul. For historical reasons, a lot of confusion about the R matrix arose
from the misunderstanding of this property [3].
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3 Definition and calculation of R matrix

The R matrix at energy E is defined through

ul(a) = Rl(E)au
′

l(a). (26)

The inverse of the Rmatrix is thus the dimensionless logarithmic derivative of the radial
wave function at the boundary between both regions. This ‘matrix’ has dimension 1 in
a single-channel case and is just a function of energy. It also depends on the channel
radius. The method relies on the fact that the R matrix can be calculated from
properties of the Hamiltonian in the internal region. Its knowledge allows determining
the phase shift in the external region.

To obtain a practical expression, expansion (14) is introduced in (20) and the
resulting equation is projected on ϕi(r), giving for i = 1 to N ,

N
∑

j=1

Cij(E)cj =
h̄2

2µ
ϕi(a)u

ext
l

′

(a). (27)

The elements of the symmetric matrix C are defined as

Cij(E) = 〈ϕi|Tl + L+ V −E|ϕj〉. (28)

Dirac brackets correspond here to one-dimensional integrals over the variable r from 0
to a. Because of the Bloch operator, the right-hand side of (27) only involves values at
r = a.

Coefficients cj are obtained by solving system (27),

cj =
h̄2

2µ
uextl

′

(a)
N
∑

i=1

(C−1)jiϕi(a). (29)

Introducing them in (14) at r = a and comparing with (26) provides the calculable R
matrix

Rl(E) =
h̄2

2µa

N
∑

i,j=1

ϕi(a)(C
−1)ijϕj(a). (30)

The wave function (14) in the internal region is thus given by

uintl (r) =
h̄2

2µaRl(E)
uextl (a)

N
∑

j=1

ϕj(r)
N
∑

i=1

(C−1)ijϕi(a). (31)

4 Phase shift and collision matrix

Since the R matrix is known, definition (26) applied to the external function (12) leads
to the simple equation

cos δl Fl(ka) + sin δlGl(ka) = kaRl(E)[cos δl F
′

l (ka) + sin δlG
′

l(ka)] (32)
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from which one extracts the phase shift for the lth partial wave

tan δl = −
Fl(ka)− kaRl(E)F

′

l (ka)

Gl(ka)− kaRl(E)G′

l(ka)
. (33)

As a fully equivalent variant, the external function (13) can also be introduced in
relation (24) to determine the scattering matrix as

Ul =
Il(ka)− kaRl(E)I

′

l(ka)

Ol(ka)− kaRl(E)O
′

l(ka)
. (34)

It can also be written as

Ul = e2iφl
1− L∗

lRl(E)

1− LlRl(E)
. (35)

In this expression,

Ll = ka
O′

l(ka)

Ol(ka)
(36)

is the dimensionless logarithmic derivative of Ol at the channel radius, L∗

l is the con-
jugate of Ll, and

φl = arg Il(ka) = − arctan[Fl(ka)/Gl(ka)] (37)

is the hard-sphere phase shift. Note that the same notation φl in [2] represents the
opposite of the hard-sphere phase shift.

A simple implementation of the calculable R-matrix method providing phase shifts
for local and non-local potentials is presented in Ref. [5]. A simple extension to multi-
channel scattering is described in Ref. [6]. More general cases are discussed in Ref. [3].

5 Properties of the R matrix

Here, the basis functions ϕi(r) are assumed to be orthonormal. Let us consider the
eigenvalues Enl and the corresponding normalized eigenvectors vnl of matrix C(0),

C(0)vnl = Enlvnl (38)

with the orthonormality property

v
T

nlvn′l = δnn′ (39)

where T means transposition. With the spectral decomposition

[C(E)]−1 =
N
∑

n=1

vnlv
T
nl

Enl − E
, (40)

the R function (30) can be written as

Rl(E) =
N
∑

n=1

γ2nl
Enl −E

, (41)
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where γ2nl are the reduced widths [2]. In this expression, the reduced width amplitudes
are given by

γnl =

(

h̄2

2µa

)1/2

φnl(a) (42)

and

φnl(r) =
N
∑

i=1

vnl,iϕi(r), (43)

where vnl,i is the ith component of vnl. The reduced width amplitudes are proportional
to the value at the channel radius of variational approximations φnl of the eigenfunc-
tions of the Hermitian operator Hl + L. Those corresponding to the lowest energies
thus represent approximate eigenfunctions of the physical problem confined over the
interval (0, a) with vanishing logarithmic derivative at r = a.

The traditional expression for the theoretical R matrix is obtained when N tends
towards infinity in a complete basis as

Rl(E) =
∞
∑

n=1

γ2nl
Enl −E

. (44)

The energies Enl are now the exact eigenvalues of the operator Hl+L and the reduced
width amplitudes γnl are related to the values at r = a of its exact eigenfunctions.

The R matrix is a real function when V is real. It has an infinity of real simple
poles, bounded from below. Its derivative is always positive at regular points.

6 Penetration and shift factors

For a better physical interpretation of the results, Ll is separated into its real and
imaginary parts as

Ll = Sl + iPl. (45)

The real part Sl and imaginary part Pl of Ll are called the shift and penetration factors,
respectively. They depend on energy and on the channel radius. The penetration factor
can be written with the Wronskian relation IlO

′

l − I ′lOl = 2i as

Pl(E) =
ka

|Ol(ka)|2
=

ka

Fl(ka)2 +Gl(ka)2
. (46)

It is always positive and increasing [2]. The shift factor reads

Sl(E) = Pl(E)[Fl(ka)F
′

l (ka) +Gl(ka)G
′

l(ka)]. (47)

It is always negative for η ≥ 0 [2].
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Figure 2: Penetration factors Pl(E) (upper panel) and shift factors Sl(E) (lower panel)
in the neutral case (η = 0) as a function of E in units of h̄2/2µa2.

These factors have simple analytical expressions in the neutral case (η = 0). For
the s and p waves, one has

F0(x) = xj0(x) = sin x, F1(x) = xj1(x) =
sin x

x
− cos x, (48)

G0(x) = xn0(x) = cosx, G1(x) = xn1(x) =
cosx

x
+ sin x, (49)

and thus

O0(x) = eix = I∗0 (x), O1(x) = eix
(

1

x
− i

)

= I∗1 (x). (50)

The hard-sphere phase shifts are

φ0 = −ka, φ1 = −ka + arctan ka. (51)

The logarithmic derivatives read

L0 = ika, L1 =
−1 + i(ka)3

1 + (ka)2
. (52)

The s and p penetration factors have simple analytical expressions,

P0(E) = ka, P1(E) =
(ka)3

1 + (ka)2
. (53)

Penetration factors do not vary very fast with energy (see Fig. 2). Fig. 2 is universal, i.e.
independent of the collision. Notice that the derivative of P0 with respect to energy is
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Figure 3: Penetration factors Pl(E) (upper panel) and shift factors Sl(E) (lower panel)
in the repulsive charged case for a = aB as a function of E in units of h̄2/2µa2.

infinite at the origin. This property leads to the special behaviour of neutron scattering
in the s wave. Penetration factors decrease with the orbital momentum l as expected
from the occurrence of an increasing centrifugal barrier. The s and p shift factors read

S0(E) = 0, S1(E) = −
1

1 + (ka)2
. (54)

The shift factors vary smoothly with energy, starting from the integer values −l (see
Fig. 2). This weak energy dependence is the origin of the Thomas approximation [2]
where the shift factor is assumed to vary linearly in a limited energy range.

In the repulsive charged case, the shift factors vary also weakly with the energy (see
Fig. 3). However, the energy dependence of the penetration factors is much stronger
(notice the logarithmic scale in Fig. 3). Figure 3 corresponds to a channel radius a equal
to the nuclear Bohr radius aB = 1/kη. The strong dependence at low energies is due
to the difficulty of penetrating a Coulomb barrier when the scattering energy becomes
much smaller than the height of the Coulomb barrier. Beyond l = 1, increasing from l
to l + 1 decreases the penetration factors by more than an order of magnitude.

With definition (45), the collision matrix (35) becomes

e2iδl = e2iφl
1− SlRl + iPlRl

1− SlRl − iPlRl

(55)

and provides an explicit expression for the phase shift,

δl = φl + arctan
PlRl

1− SlRl

. (56)

This expression is useful to study resonances.
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7 Resonances

To study a resonance, let us consider an energy very close to a pole Enl of the R
matrix. If all terms with n′ 6= n can be neglected, the R matrix is approximated as
Rl(E) ≈ γ2nl/(Enl −E). A simple calculation provides

δl ≈ φl + arctan
γ2nlPl(E)

Enl − γ2nlSl(E)−E
. (57)

This expression resembles the Breit-Wigner form of a resonant phase shift

δBW

l ≈ φl + arctan
1

2
Γ(E)

ER − E
. (58)

By comparison, one defines the resonance energy

ER = Enl − γ2nlSl(ER) (59)

and the formal width

Γ(E) = 2γ2nlPl(E). (60)

Let us remark that the resonance energy is shifted with respect to the pole energy. The
factor Sl(ER) in (59) is calculated at the resonance energy ER. Hence, ER is defined
by an implicit equation which can be solved by iteration. While the reduced width and
penetration factor depend on a, the width may not depend on the channel radius. It
is an energy-dependent quantity whose asymmetric shape depends on the behaviour of
Pl. Roughly, one can interpret γ2nl as the nuclear component of the width and Pl as its
Coulomb component.

8 Phenomenological R matrix

The goal of the phenomenological R-matrix method is to use a parametrization based
on expression (44) with a small number of poles. The properties of these poles are
adjusted to some data, in place of being derived from some Hamiltonian, as in the
calculable approach.

A drawback of the phenomenological R-matrix formalism is that, though the pole
energies and reduced widths are associated with physical properties, they cannot be di-
rectly compared with experiment. Indeed, experimental data are usually parametrized
with the Breit-Wigner expression (57) simplified as

δBW

l (E) ≈ φl(E) + arctan
1

2
ΓR

ER − E
, (61)

where ΓR is the experimental width of the resonance. The observed reduced width γ2obs
is defined from ΓR with a relation similar to (60),

ΓR = 2γ2obsPl(ER). (62)
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The corresponding formal pole location Enl and formal reduced width γ2nl must then be
deduced for a given channel radius a but their determination is not immediate because
of the shift factor Sl and its energy dependence.

Let us approximate R matrix (44) by a single pole with energy E1 and reduced
width γ21 (index l is dropped for the sake of clarity),

Rl(E) =
γ21

E1 − E
. (63)

This approximation is frequently used at low energy, where single isolated resonances
are present. The phase shift associated with (63) is given by (57) as

δl(E) ≈ φl(E) + arctan
γ21Pl(E)

E1 − γ21Sl(E)− E
. (64)

Let us now use the Thomas approximation [2], which consists in a linearization of the
shift function Sl(E) near the pole energy E1,

Sl(E) ≈ Sl(E1) + (E − E1)S
′

l(E1), (65)

where S ′

l is the derivative of the shift factor with respect to energy (which appears
both in the wave number k and in the Sommerfeld parameter η). The validity of
this approximation is supported by Figs. 2 and 3, where it is clear that, in a limited
energy range, the linearization of the shift function is quite appropriate. Equation (64)
becomes

δl(E) ≈ φl(E) + arctan
γ21Pl(E)

(ER − E)(1 + γ21S
′

l(E1))
, (66)

where the observed resonance energy ER reads

ER = E1 −
γ21Sl(E1)

1 + γ21S
′

l(E1)
. (67)

The shift between energies ER and E1 is proportional to the shift factor and depends
on E1 and on a. It is in general non-negligible, unless γ21 is very small. The observed
reduced width reads

γ2obs =
γ21

1 + γ21S
′

l(E1)
. (68)

It also depends on E1 and a.
By comparing expression (66) of the phase shift at the Thomas approximation with

the Breit-Wigner expression (61), the observed properties (ER, γobs) have been derived
from the formal parameters (E1, γ1) of an isolated pole. In practice, however, the re-
versed relationships are needed. Indeed, in many cases, observed values (ER, γobs) are
known from experiment and one wants to derive the corresponding R-matrix parame-
ters (E1, γ1). The inverses of (67) and (68) are obtained by linearizing the shift factor
Sl(E) around ER as

Sl(E) ≈ Sl(ER) + (E −ER)S
′

l(ER), (69)
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which provides

γ21 =
γ2obs

1− γ2obsS
′

l(ER)
, (70)

E1 = ER + γ21Sl(ER). (71)

They can thus easily be obtained if ER and ΓR are known. They also allow using
directly ER and ΓR as adjustable parameters. The problem is more complicated if
several resonances or several channels must be taken into account [2, 3].

As an example, let us consider the elastic scattering of protons by 12C. Three
resonances are known in the energy range covered by the data: 1/2+ at 0.424 MeV,
3/2− at 1.558 MeV and 5/2+ at 1.604 MeV. Data sets are available at the c.m. angles
θ = 89.1◦ and 146.9◦. They are fitted simultaneously by using ER and ΓR of the
resonant partial waves as adjustable parameters in the single-pole approximation (63).
For other partial waves, the hard-sphere phase shift is used.

The fitted resonance properties are given in Table 1 for different channel radii [3].
The results are almost independent of a. The corresponding cross sections are shown
in Fig. 4. The three channel radii provide fits which are indistinguishable at the scale
of the figure. Notice that the width of the 1/2+ resonance depends a little on the
channel radius. The R-matrix parametrization reproduces the data very well, not only
in the vicinity of the resonances, but also between them, where the process is mostly
non-resonant. This 6-parameter fit provides accurate cross sections at all angles for all
energies below 2 MeV.

Table 1: R-matrix parameters from a simultaneous fit of 12C+p scattering data [7] at
θ = 89.1◦ and 146.9◦. Resonance energies ER are expressed in MeV and widths ΓR in
keV.

Jπ = 1/2+ Jπ = 3/2− Jπ = 5/2+

ER ΓR ER ΓR ER ΓR

a = 4 fm 0.427 33.8 1.560 51.4 1.603 48.1
a = 5 fm 0.427 32.9 1.559 51.4 1.604 48.1
a = 6 fm 0.427 30.9 1.558 51.3 1.606 47.8
Exp. [7] 0.424 33 1.558 55 1.604 50
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Figure 4: R-matrix fits of 12C+p experimental excitation functions at two c.m. angles
[7] with the parameters of Table 1 [3].

References

[1] E.P. Wigner and L. Eisenbud, Phys. Rev. 72 (1947) 29

[2] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30 (1958) 257

[3] P. Descouvemont and D. Baye, Rep. Prog. Phys. 73 (2010) 036301

[4] C. Bloch, Nucl. Phys. 4 (1957) 503

[5] M. Hesse, J. Roland and D. Baye, Nucl. Phys. A709 (2002) 184

[6] M. Hesse, J.-M. Sparenberg, F. Van Raemdonck and D Baye, Nucl. Phys. A640
(1998) 37

[7] H.O. Meyer, G.R. Plattner and I. Sick, Z. Phys. A 279 (1976) 41

13


