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1 Presentation

In nuclear physics, microscopic models take account of all nucleons in a nucleus or
a collision. They treat exactly the Pauli antisymmetrization of these nucleons. In
non-relativistic microscopic models, all physical results are derived from interaction
potentials between nucleons.

The nucleons are described within the isospin formalism. They are thus assumed
to have the same nucleon mass mN . The microscopic Hamiltonian reads

H =
A
∑

i=1

p2
i

2mN
+

A
∑

i>j=1

Vij − TCM, (1)

where A is the nucleon or mass number, pi is the momentum of nucleon i and Vij is
the interaction between nucleons i and j. The two-body interactions Vij may involve a
nuclear term with central, spin-orbit, tensor and other components, and the Coulomb
interaction. Three-nucleon interactions will be neglected here. They are surely needed
in calculations with realistic forces and may also be taken into account in cluster
models. In Hamiltonian (1), the centre-of-mass (CM) kinetic energy TCM is subtracted
to eliminate CM effects from the cluster model.

The microscopic cluster approach is based on an assumed cluster structure, i.e. on
the occurrence of correlated subsystems in the fully antisymmetric wave function of the
A-nucleon system [1, 2]. The microscopic cluster model provides a unified framework
for the description of nuclear spectroscopy and nuclear reactions involving light nuclei.
The cluster assumption allows the application of the microscopic model to systems
with typically up to A ∼ 20 − 24, but requires the use of effective nucleon-nucleon
two-body interactions which are adapted to the cluster approximation.

Because the interactions are invariant under rotation, Hamiltonian (1) commutes
with the total angular-momentum operator

J = L+ S, (2)

where the total orbital-momentum operator L is defined as the sum of the orbital
momenta Li of each nucleon,

L =
A
∑

i=1

Li, (3)
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and the total spin operator S is defined as the sum of the spins Si of each nucleon,

S =
A
∑

i=1

Si. (4)

Because the interactions are invariant under reflection, H also commutes with the
parity operator which reverses the coordinates of all nucleons.

2 Clusters and effective forces

2.1 Cluster wave functions

A cluster is a system of nucleons which are assumed to be correlated within a larger
nucleus. This model assumes that clusters are particularly well bound and that the
interaction between clusters is weak. However, because of the Pauli antisymmetriza-
tion, nucleons do not belong to a definite cluster. A cluster is characterized by its wave
function which can be occupied by any nucleon. The cluster structure manifests itself
by a deformation of the nucleus. In a microscopic model, this structure may be hidden
in some states, when the clusters strongly overlap.

The most typical cluster is the α cluster made of two protons and two neutrons.
The free α particle is a well bound system (B/A ≈ 7.07 MeV) with a small radius.
An α cluster may differ from a free α particle within a larger nucleus but the free α
particle is a good approximation within the cluster model. Other typical clusters are
3H or 3He although they are less well bound. For heavier nuclei, closed-shell systems
such as 16O or 40Ca are also considered as good clusters.

Cluster wave functions are selected within some model. The most used model is the
harmonic-oscillator shell model because it possesses a remarkable property: a Slater
determinant can be factorized into an internal wave function and a CM wave function.
As an example, let us consider the case of the α cluster. The nucleon coordinates are
r1 to r4. A Slater determinant in the harmonic-oscillator shell model involves four 0s
oscillator orbitals corresponding to the different spin and isospin states.

Φ =
1√
4!
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ϕ(r4)|+4 n4〉 ϕ(r4)| −4 n4〉 ϕ(r4)|+4 p4〉 ϕ(r4)| −4 p4〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5)

where | + 〉 and | − 〉 are the two spin states |sms〉 with s = 1/2 and ms = ±1/2 and
|n〉 and |p〉 are the two isospin states |tmt〉 with t = 1/2 and mt = ±1/2. The 0s
harmonic-oscillator orbital is given by

ϕ(r) = (πb2)−3/4e−r2/2b2 (6)

where b is the harmonic-oscillator size parameter. The four orbitals appearing in (5)
are orthogonal and normed. Hence the Slater determinant is also normed.

Expression (5) can be written more compactly by introducing the antisymmetriza-
tion projector of A particles

A =
1

A!

∑

p

(−1)pPp. (7)
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In this expression, Pp is the operator which performs permutation p and the sum runs
over the A! permutations p of the A particles. The notation (−1)p represents the
signature of the permutation, i.e. it is equal to +1 for an even permutation and −1
for an odd permutation. A permutation is even or odd according to the parity of any
number of exchanges of two particles which realize the permutation. The operators
Pp are unitary but, in general, not Hermitian. The antisymmetrization operator (7) is
Hermitian

A† = A. (8)

It is a projector,

A2 = A. (9)

By using the antisymmetrization projector of 4 particles, expression (5) can also be
written as

Φ =
√
4!Aϕ(r1)|+1 n1〉ϕ(r2)| −2 n2〉ϕ(r3)|+3 p3〉ϕ(r4)| −4 p4〉

=
√
4!ϕ(r1)ϕ(r2)ϕ(r3)ϕ(r4)A|+1 n1 −2 n2 +3 p3 −4 p4〉 (10)

Now let us introduce the CM coordinate

RCM =
1

4
(r1 + r2 + r3 + r4) (11)

and the translation-invariant internal coordinates

ξi = ri −RCM (12)

which are not independent (
∑

i ξi = 0). The identity

4
∑

i=1

r2i = 4R2
CM +

4
∑

i=1

ξ2i (13)

allows us to factorize the Slater determinant into

Φ = ϕCMφ (14)

where the normed CM wave function is defined as

ϕCM = (πb2/A)−3/4e−AR2
CM/2b2 (15)

with A = 4. The translation-invariant internal wave function

φ =
√
4!(πb2)−3e−(ξ21+ξ22+ξ23+ξ24)/2b

2A|+1 n1 −2 n2 +3 p3 −4 p4〉 (16)

is thus also normed. The factorization property (14) with the CM wave function (15)
remains valid for arbitrary mass numbers A within the harmonic-oscillator shell model
provided all shells except the most external one are filled (Bethe and Rose theorem
[3]). It plays a crucial role in the cluster model.
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The total angular momentum and parity quantum numbers of the α particle are
Jπ = 0+ and its isospin is T = 0. The Slater determinant (5) or (10) reproduces
these values. Obviously, its total orbital momentum L is equal to zero and its parity
is π = +1. Its total spin and isospin are S = 0 and T = 0. For example, let us write
(10) as

Φ = Aχ (17)

where χ is any term in the expansion of the Slater determinant. The total-spin raising
operator S+ =

∑

i Si+ is fully symmetric and commutes with A which leads to

S+Φ = AS+χ = 0 (18)

because S+χ involves two identical states and thus vanishes under antisymmetrization.
Hence the maximum projection MS of the spin is zero and Φ is an eigenstate of S2

corresponding to S = 0. A similar argument holds for the isospin T = 0.
Having L = 0, the cluster state (5) of the α particle is surely not very realistic

since it is known that 4He has a significant L = 2 component (corresponding to a total
spin S = 2) due to the tensor force. A variational calculation involving wave function
(5) gives very poor results with realistic forces because it does not comply with the
repulsive core at short distances and with components such as the tensor force. Hence
the cluster model makes use of phenomenological effective forces [4, 5] which have a
simpler structure and partly compensate the weaknesses of the model wave functions.

2.2 Example of phenomenological effective force

Let us describe the Minnesota effective interaction [5] which does not include tensor
forces, but simulates their contribution in the binding energy of the deuteron by the
central term. Its central part is given by

V = [VR(r) +
1
2
(1 + P σ)Vt(r) +

1
2
(1− P σ)Vs(r)][

1
2
u+ 1

2
(2− u)PM ], (19)

where u is an adjustable parameter close to unity. In this expression, r = ri − rj is
the relative coordinate between particles i and j, P σ is the operator exchanging the
spins of these particles and PM is the Majorana operator exchanging their positions,
i.e. transforming their relative coordinate r into −r. The operators 1

2
(1 + P σ) and

1
2
(1 − P σ) are thus projectors on the triplet (S = 1) and singlet (S = 1) spin states

of nucleons i and j. For u = 1, the factor 1
2
(1 + PM) projects on even waves only (s,

d, . . . ). Since we are working in the isospin formalism, it is convenient to make the
replacement PM = −P σP τ where P τ is the operator exchanging the isospins of the
nucleons. This relation is a consequence of the identity

PMP σP τ = −1 (20)

valid for fully antisymmetric wave functions.
The functions Vk with k = R (repulsive core), t (triplet) and s (singlet) are Gaus-

sians,

Vk(r) = V0ke
−κkr

2

, (21)
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Table 1: Parameters V0k (in MeV) and κk (in fm−2) of the Minnesota interaction.

k V0k κk

R 200.0 1.487
t −178.0 0.639
s −91.85 0.465

where V0k and κk are adjusted parameters (see Table 1). The Minnesota potential
provides the correct binding energy 2.22 MeV of the deuteron (without tensor force!)
and reproduces fairly well some properties of nucleon-nucleon scattering. It involves
the admixture parameter u whose standard value is u = 1, but which can be slightly
modified to fit one important physical quantity such as the energy of a given state.

This central potential is often complemented by a spin-orbit force such as

VLS = −2S0h̄
−2ν−5 exp(−r2/ν2)L · (Si + Sj) (22)

with L = r×p where p = 1
2
(pi − pj) is the relative momentum between the nucleons.

Expression (22) has the advantage of remaining valid for ν → 0. Choosing ν = 0, one
eliminates this parameter which is weakly relevant because the spin-orbit force has a
shorter range than the central force.

The α-particle energy can be obtained from Hamiltonian (1) involving nuclear in-
teraction (20) and the Coulomb interaction with a variational calculation employing
determinant (5) as trial function. It is the given by

Eα =
9h̄2

4mNb2
+ 3

∑

k=R,t,s

(1 + δkR)V0k

(

κ2
k

κ2
k + 2b2

)3/2

+

√

2

π

e2

b
(23)

as a function of the oscillator parameter b. The minimum energy −25.58 MeV occurs
for b = 1.28 fm. The experimental binding energy is 28.296 MeV.

3 Resonating-group method

3.1 Resonating-group wave function

The resonating-group wave function was proposed by Wheeler in 1937 [6]. For a system
of two clusters, it can lead to a description of a bound nucleus or a collision between two
light nuclei. The clusters represent correlations in bound states or in the overlapping
part of scattering states. They describe the colliding nuclei in the asymptotic part
of scattering states. As expected from the Pauli antisymmetrization postulate, it is
antisymmetrized with respect to all nucleons. It involves the logical but not so intuitive
idea that nucleons belonging to different nuclei are antisymmetrized even before the
actual collision.

Let us consider A nucleons with total charge Ze distributed into two clusters in-
volving respectively A1 and A2 nucleons,

A = A1 + A2. (24)
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The charges of the clusters are Z1e and Z2e,

Z = Z1 + Z2. (25)

We first assume that nucleons with coordinates r1 to rA1 belong to cluster 1 and that
nucleons with coordinates rA1+1 to rA belong to cluster 2.

Let us introduce a coordinate system involving the internal coordinates

ξ
(1)
i = ri −R

(1)
CM (i = 1, . . . , A1 − 1) (26)

for nucleus 1 and

ξ
(2)
i = ri −R

(2)
CM (i = A1 + 1, . . . , A− 1) (27)

for nucleus 2. In these expressions appear the coordinates of the centres of mass of
both nuclei,

R
(1)
CM =

1

A1

A1
∑

i=1

ri, (28)

R
(2)
CM =

1

A2

A
∑

i=A1+1

ri. (29)

Only A1 − 1 coordinates ξ
(1)
i and A2 − 1 coordinates ξ

(2)
i are independent. This must

be taken into account in calculations of matrix elements.
The CM coordinate of both nuclei is

RCM =
1

A
(A1R

(1)
CM + A2R

(2)
CM) =

1

A

A
∑

i=1

ri. (30)

The relative coordinate between both nuclei is defined by

ρ = R
(2)
CM −R

(1)
CM. (31)

We shall see that this coordinate does only have a physical meaning when both nuclei
are far apart.

Let us select two internal functions φ1 and φ2 describing the internal structure of
clusters 1 and 2. These functions are chosen within some model and are thus known.
They are approximate eigenfunctions of the internal Hamiltonians H1 and H2 which
have the same form as (1) but with A1 and A2 nucleons, respectively. They are both
antisymmetric and normed. Their energies are given by the variational expressions

Ek = 〈φk|Hk|φk〉 (32)

for k = 1 and 2.
The resonating-group wave function is defined as

Ψ =
A!

A1!A2!
Aφ1(ξ

(1)
i )φ2(ξ

(2)
j )g(ρ), (33)
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where g is an unknown function of the relative coordinate. The coefficient is introduced
for convenience. The assumption that nucleons with coordinates r1 to rA1 belong to
cluster 1 and that nucleons of coordinates rA1+1 to rA belong to cluster 2 is necessary
to give a precise mathematical meaning to the notation in (33) but has no physical
meaning since nucleons are indistinguishable in the isospin formalism. The difficulty
with this wave function comes from the fact that the permutations Pp in the anti-
symmetrization projector A may modify the variables on which φ1, φ2 and g depend.
Indeed, if some coordinates are permuted between clusters 1 and 2, i.e. if a nucleon of
cluster 1 is exchanged with a nucleon of cluster 2, the relative coordinate ρ is trans-
formed into a linear combination of ρ and the ξ

(1)
i and ξ

(2)
j . The internal coordinates

are transformed into expressions containing ρ and the internal wave functions φ1 and
φ2 then depend on ρ. Manipulating the resonating-group wave function is thus rather
difficult. However, we will see in §4 that simpler calculations are also possible.

3.2 The resonating-group equation

The resonating-group method (RGM) provides a fully microscopic description of col-
lisions. Wave function (33) is not yet adapted to a practical calculation because it
does not display the good quantum numbers of the physical problem. To simplify the
presentation, let us assume that the interaction between the nucleons is purely central,
as in (19). Then Hamiltonian (1) commutes with L2 and S2 separately and the total
orbital momentum L and the total spin S are both good quantum numbers. The total
orbital-momentum operator (3) can be written as

L = L(1) +L(2) + l +LCM (34)

where L(k) is the total internal orbital-momentum operator of cluster k, l is the orbital-
momentum operator of the relative motion between the clusters and LCM is the orbital-
momentum operator of the CM. If both clusters have total orbital-momentum quantum
numbers L1 = L2 = 0, the total orbital momentum L of the two-cluster system is equal
to the orbital momentum l of the relative motion. More general presentations can be
found in [1, 2].

In this case, the RGM wave function reads

Ψlm =
A!

A1!A2!
Aφ1(ξ

(1)
i )φ2(ξ

(2)
j )ρ−1gl(ρ)Ylm(Ω) (35)

where ρ and Ω = (θ, ϕ) are the spherical coordinates of ρ. It depends on an unknown
radial wave function gl for the relative motion. The antisymmetric internal wave func-
tions φ1 and φ2 are normalized to unity and defined in the harmonic-oscillator shell
model. For simplicity, we assume that they have a common oscillator parameter b.
The variational principle is applied to Hamiltonian (1) using trial wave function (35).
The unknown relative function gl is obtained from the stationary equation

〈δΨlm|H −ET |Ψlm〉 = 0 (36)

where the integration involves all internal coordinates and ρ. The energy ET is the
total energy of the A-body system. Since φ1 and φ2 are fixed, the variation only affects
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gl. For an arbitrary variation δgl, (36) becomes with (8) and (9) equivalent to

〈φ1φ2Ylm|H −ET |Ψlm〉 = 0 (37)

where the integration now runs over all internal coordinates. For the study of collisions,
it is more convenient to introduce the relative energy

E = ET − E1 −E2 (38)

where the sum E1 + E2 of the internal energies Ei of clusters i = 1, 2 is the threshold
energy.

Equation (37) leads to an integro-differential equation involving local and non-local
potentials [1, 2],

[Tl + VD(ρ)]gl(ρ) +
∫ ∞

0

[

KH
l (ρ, ρ′) + EKN

l (ρ, ρ′)
]

gl(ρ
′)dρ′ = Egl(ρ). (39)

In this expression, Tl is the relative kinetic energy operator

Tl = − h̄2

2µ

(

d2

dρ2
− l(l + 1)

ρ2

)

, (40)

where µ = (A1A2/A)mN is the reduced mass of the clusters. The local potential VD(ρ)
is the direct potential

VD(ρ) = 〈φ1φ2|
A1
∑

i=1

A
∑

j=A1+1

Vij |φ1φ2〉. (41)

The non-local potentials KH
l (ρ, ρ′) and KN

l (ρ, ρ′) are the Hamiltonian and overlap or
norm exchange kernels, respectively. They arise from the exchange terms of the anti-
symmetrization projector, i.e. the terms that exchange nucleons between both clusters.
Non-locality is thus a natural consequence of the fact that particles are indistinguish-
able. The complicated nonlocal potentialKH

l comprises exchange kernels for the kinetic
and potential energies. The total non-local potential depends linearly on energy.

The relative wave functions gl have no physical meaning since ρ has no physical
meaning because of antisymmetrization. Functions gl at different energies are not
orthogonal.

The total wave function (35) is particularly well adapted to the treatment of scat-
tering states. Notice however that solutions of equation (39) may also exist for bound
states. The relative energy E is then negative. These bound states display a cluster
structure that may not be easily described by the shell model.

3.3 Forbidden states

The notion of forbidden state can be understood with a simple atomic example. Con-
sider an electron impinging on a helium atom. Both 1s orbitals are occupied in the
helium ground state. If we also put the third electron in the lowest 1s orbital, the
three-electron wave function vanishes identically. The 1s orbital is forbidden to the
incoming electron. Electron scattering wave functions are orthogonal to the 1s orbital.
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The same notion appears in nuclear physics when the nucleus is described within
the shell model. Consider a neutron impinging on an α particle. In the shell-model
ground state of 4He, the four nucleons occupy the lowest 0s orbital. If the incoming
neutron occupies this same orbital, the five-nucleon wave function vanishes identically.
The 0s orbital is forbidden to the incoming nucleon.

These examples are rather obvious but it should be noticed that forbidden states
occur in an approximate description of the atom or nucleus, i.e. the independent-
particle model. Also within a given approximation, the notion of forbidden state can
be extended to collisions between two nuclei. Let us assume that the internal wave
functions φ1 and φ2 of two clusters are defined in the harmonic-oscillator shell model,
as in the example (5) and (6). We also assume that the two clusters have the same
oscillator parameter b. Forbidden states with relative wave functions gFS exist and are
defined by

Aφ1(ξ
(1)
i )φ2(ξ

(2)
j )ρ−1gFS

l (ρ)Ylm(Ω) = 0. (42)

For these relative wave functions gFS
l , the RGM wave function vanishes identically.

Comparing (35) and (42), one sees that relative wave functions gl are not defined
uniquely. They may be modified by adding arbitrary amounts of forbidden states
without affecting the antisymmetric RGM wave function Ψlm.

Property (42) is not satisfied for A1, A2 > 1 if the oscillator parameters of the clus-
ters differ or if the shell-model states are not of the harmonic-oscillator type. One could
thus think that the notion of forbidden state lacks generality. However, as mentioned
above, these states have a physical importance (see §4.6), for reasons that are not yet
fully understood. Forbidden states play an important role not only in the RGM but
also in the construction of nucleon-nucleus and nucleus-nucleus potentials (§5.3). The
realization of the importance of this notion has allowed to improve the description of
various reactions and decay processes.

Comparing expressions (37) and (42), one observes that forbidden states are trivial
solutions of (39) at all energies. By applying the same reasoning to the coefficient of
ET in (37), one obtains that the forbidden states verify the equation

∫ ∞

0
KN

l (ρ, ρ′)gFS
l (ρ′)dρ′ = gFS

l (ρ), (43)

i.e. they are eigenfunctions of the norm exchange potentials with eigenvalue 1.

3.4 Resolution of the resonating-group equation

The solution gl of the RGM equation (39) at a given energy is not unique if a forbidden
state exists in the lth partial wave. The resolution of the RGM equation is thus not
so easy because of the occurrence of the forbidden states. Recently however, a simple
and accurate technique based on the R-matrix method has been established [7], where
the problem raised by the forbidden states can be solved by eliminating poles of the
R matrix. The only difference with the standard calculable R matrix occurs in the
calculation of the matrix elements of the Hamiltonian and overlap. This calculation
remains nevertheless rather simple with the technique of Ref. [7]. In order to use the
R-matrix method, one needs to know the asymptotic behaviour of the solutions.
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At large distances, Hamiltonian (1) can be written as

H −→
ρ→∞

H1 +H2 + Tρ + VC(ρ), (44)

where Tρ is the relative kinetic-energy operator and VC is the Coulomb potential be-
tween two charges Z1e and Z2e at distance ρ. This terms results from the asymptotic
form of the Coulomb part of the direct potential. The direct-potential component
corresponding to the nuclear interaction and all exchange kernels (including those re-
sulting from the Coulomb interaction) have a short range and are thus negligible. They
vanish when the overlap between the clusters tends to zero. At large distances, the
effects of antisymmetrization between the clusters thus become negligible in the RGM
wave function and A can be replaced by

A → A1!A2!

A!
A1A2, (45)

where A1 and A2 are partial antisymmetrization projectors. The wave function (35)
tends to

Ψlm −→
ρ→∞

φ1φ2ρ
−1gl(ρ)Ylm(Ω), (46)

since A1φ1 = φ1 and A2φ2 = φ2. For large ρ values, the radial wave function gl is a
linear combination of the Coulomb wave functions Fl and Gl.

The main problem of the RGM is however not to solve (39). The main difficulty of
the RGM comes from the calculation of the overlap and Hamiltonian kernels which is
very complicated and not systematic. The reason is that the relative coordinate ρ and
the cluster internal coordinates in (35) are modified in different ways by the different
terms of operator A. This method requires heavy analytical calculations [1, 2]. This
problem is simplified by using the generator coordinate method, described in the next
section.

3.5 Example: α + n elastic scattering

Before concluding this section, let us consider the example of the α + n scattering. The
α internal function φ1 is given by (16) with internal energy Eα. The neutron internal
function φ2 is just its spin-isospin state |msn〉 and its internal energy is zero. This
system possesses one forbidden state in the s wave as expected from the discussion at
the beginning of section 3.3. Its radial wave function is

gFS
0 (ρ) = (µ′/b2)3/4ρe−µ′ρ2/2b2 (47)

where µ′ = 4/5. This can be proved with the not so simple expression of the norm
exchange kernel

KN
l (ρ, ρ′) = 4πρρ′(−1)l

(

4

5

)3 ( 4

3πb2

)3/2

exp
[

− 34

75b2
(ρ2 + ρ′2)

]

il

(

32ρρ′

75b2

)

. (48)

In this expression, il(x) =
√

π/2xIl+1/2(x) where Il+1/2(x) is a modified spherical Bessel

function of the first kind. For l = 0, one has i0(x) = sinh x/x. A simpler proof is given
in §4.2.

With the technique of [7], α + n phase shifts can be obtained in perfect agreement
with those presented in §4.5.
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4 The generator-coordinate method

4.1 The generator-coordinate representation of RGM wave

functions

The generator coordinate method (GCM) has provided a significant simplification of
the RGM by allowing systematic calculations. The treatment of antisymmetrization
can be performed by using standard techniques based on Slater determinants in a non-
orthogonal basis [8]. It is only valid within the harmonic-oscillator basis. We shall also
assume that the harmonic-oscillator parameters are identical.

This method is based on a link between the RGM wave function (33) and an
integral transformation of a Slater determinant. Let us consider two normed Slater
determinants Φ1 and Φ2, involving A1 and A2 nucleons respectively, defined in the
harmonic-oscillator model and centred at two different points R1 and R2. If one
antisymmetrizes their product, one obtains another Slater determinant defined in the
two-centre harmonic-oscillator shell model,

Φ =
A!

A1!A2!
AΦ1(R1)Φ2(R2). (49)

Although Φ1 and Φ2 are normed, Φ is not normed. This determinant does not vanish
as long as R1 6= R2. Now let us use the Bethe and Rose theorem [3] to factorize Φ1

and Φ2 as

Φk(Rk) = ϕ
(k)
CM(R

(k)
CM −Rk)φk(ξ

(k)
i ) (50)

for k = 1, 2. The internal wave functions φk are thus identical to those appearing in
the RGM wave function. The CM functions are given from (15) as

ϕ
(k)
CM(R

(k)
CM −Rk) = (Ak/πb

2)3/4e−Ak(R
(k)

CM−Rk)
2/2b2 . (51)

One can write using (30) and (31),

A1(R
(1)
CM −R1)

2 + A2(R
(2)
CM −R2)

2 = AR2
CM + µ′(ρ−R)2, (52)

where µ′ = A1A2/A is the reduced mass in units of the nucleon mass, if one chooses

R1 = −A2

A
R R2 =

A1

A
R. (53)

Hence, since the oscillator parameters are equal, one has

ϕ
(1)
CM(R

(1)
CM −R1)ϕ

(2)
CM(R

(2)
CM −R2) = ϕCM(RCM)Γ(ρ−R). (54)

where ϕCM is again given by the 0s oscillator ground-state wave function (15) and is
independent of the generator coordinate, and

Γ(ρ−R) = (µ′/πb2)3/4e−µ′(ρ−R)2/2b2 . (55)
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Finally, as the antisymmetrization projector commutes with the CM coordinate, (49)
can be written as

Φ(R) =
A!

A1!A2!
ϕCMAφ1(ξ

(1)
i )φ2(ξ

(2)
j )Γ(ρ−R). (56)

This expression has the same structure as the RGM wave function. Both expressions
can be related by [9]

ϕCMΨ =
∫

dRf(R)Φ(R). (57)

i.e., except for a simple CM factor, the RGM wave function is obtained by an integral
transform of a Slater determinant. The vector R is the generator coordinate and f is
the generating function. The relative wave function is given by

g(ρ) =
∫

dRf(R)Γ(ρ−R). (58)

The determination of g can be replaced by the determination of f .
The GCM is based on the link (57) between RGM wave functions and Slater deter-

minants. Matrix elements between Slater determinants are relatively easy to obtain [8].
The calculation is based on properties (8) and (9) of the antisymmetrization projector
and on properties of determinants. From now on, let us assume that the overlap and
Hamiltonian matrix elements

N(R,R′) = 〈Φ(R)|Φ(R′)〉 (59)

and

H(R,R′) = 〈Φ(R)|H|Φ(R′)〉 (60)

are available. The relative simplicity of matrix elements (59) and (60) is at the basis
of the GCM.

4.2 Angular-momentum projection

We have now to adapt these relations to a given partial wave. The Slater determinants
can be projected on the orbital momentum l with

Φlm(R) =
1

4π

∫

dΩRYlm(ΩR)Φ(R) (61)

where ΩR = (θR, ϕR) represents the angular coordinates of the generator coordinate
R. The integral over ΩR can be performed using the expansions

ezu =
∞
∑

λ=0

(2λ+ 1)Pλ(u)iλ(z) (62)

with −1 ≤ u ≤ 1 and

Pλ(r̂ · r̂′) =
4π

2λ+ 1

λ
∑

µ=−λ

Y ∗
λµ(Ωr)Yλµ(Ωr′). (63)
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Introducing (56) into (61), one obtains with (62) and (63)

Φlm(R) =
A!

A1!A2!
ϕCMAφ1(ξ

(1)
i )φ2(ξ

(2)
j )Γl(ρ, R)Ylm(Ω) (64)

where appears the projected Gaussian function

Γl(ρ, R) =

(

µ′

πb2

)3/4

exp

(

−µ′(ρ2 +R2)

2b2

)

il

(

µ′ρR

b2

)

. (65)

Since the Slater determinant (49) with centres (53) vanishes for R = 0, one obtains that
Γ0(ρ, 0) is a forbidden state. Hence, (47) is a forbidden state for any cluster system.

Matrix elements between projected Slater determinants are given by

Nl(R,R′) = 〈Φlm(R)|Φlm(R
′)〉 (66)

and

Hl(R,R′) = 〈Φlm(R)|H|Φlm(R
′)〉. (67)

These expressions are obtained from N(R,R′) and H(R,R′) with the expansions

N(R,R′) = 4π
∞
∑

l=0

(2l + 1)Pl(u)Nl(R,R′) (68)

and

H(R,R′) = 4π
∞
∑

l=0

(2l + 1)Pl(u)Hl(R,R′) (69)

where u = R̂ ·R̂′
is the cosine of the angle between R and R′. Analytically, expansions

(68) and (69) are easily obtained with formula (62). Numerically, (66) can be obtained
from the inverse of (68),

Nl(R,R′) =
1

8π

∫ +1

−1
Pl(u)N(R,R′)du, (70)

and Hl(R,R′) from a similar expression.
Finally, let us note that these matrix elements are related to the RGM exchange

kernels by

Nl(R,R′) =
∫ ∞

0
ρdρ

∫ ∞

0
ρ′dρ′ Γl(ρ, R)

[

δ(ρ− ρ′)−KN
l (ρ, ρ′)

]

Γl(ρ
′, R′) (71)

and a similar relation for Hl(R,R′). However, relation (71) has little practical im-
portance because KN

l is much more complicated to derive than Nl. The inversion of
(71) has been used to derive explicit kernels for the RGM equation but it is only fea-
sible analytically [9, 2]. The kernels Nl and Hl can be derived either analytically or
numerically.
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4.3 The Griffin-Hill-Wheeler equations

In the GCM, the relative wave function gl(ρ) can thus be expanded over projected
Gaussian functions as

gl(ρ) =
∫ ∞

0
fl(R)Γl(ρ, R)dR, (72)

where R is the generator coordinate. The calculation of gl(ρ) can therefore be replaced
by the calculation of the generating function fl(R).

Inserting (72) in the RGM definition (35) provides

ϕCMΨlm =
∫ ∞

0
fl(R)Φlm(R)dR, (73)

After multiplication by an appropriate factor depending on the CM coordinate of the A
nucleons, the RGM wave function Ψlm(R) can be expressed as a function of projected
Slater determinants provided that the oscillator parameters of the clusters are identical.
This property is well adapted to systematic numerical calculations since the calculation
of matrix elements (59) and (60) involves single-particle orbitals only. The projection
(70) on the angular momentum l can be performed numerically. The presence of the
CM factor does not affect the matrix elements.

The generating function fl is solution of the Griffin-Hill-Wheeler equation [10]
∫ ∞

0
[Hl(R,R′)− ENl(R,R′)]fl(R

′)dR′ = 0. (74)

However this equation is not easy to solve for a scattering problem and fl is not a
well-behaved function (in fact, it is not a function but rather a distribution).

In practice, the integral in (72) is replaced by a finite sum over a set of values Rn

of the generator coordinate. This means that, at large distances ρ, the radial wave
function gl presents a Gaussian behaviour, not consistent with the physical asymp-
totic behaviour of a scattering wave function. This problem can be addressed by using
the microscopic R-matrix method which adapts the R-matrix formalism to antisym-
metrized wave functions.

4.4 The microscopic R-matrix method

In the microscopic R-matrix method [11], the wave function is approximated in the
internal region by a discretized version of (73) as

ϕCMΨ
int
lm =

N
∑

n=1

fl(Rn)Φlm(Rn). (75)

In the external region, it is approximated by the asymptotic expression (46) as

Ψext
lm = φ1φ2ρ

−1gextl (ρ)Ylm(Ω) (76)

where the external radial function gextl is a linear combination of Coulomb functions.
The application of the R-matrix method to the GCM is straightforward. The

calculation involves matrix elements of the Hamiltonian evaluated over the internal
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region only. This is achieved by subtracting the external contributions. By definition
of the channel radius a, antisymmetrization effects and the nuclear interaction are
negligible in the external region. The relevant matrix elements are therefore given by

〈Φlm(Rn)|Φlm(Rn′)〉int = Nl(Rn, Rn′)−
∫ ∞

a
Γl(ρ, Rn)Γl(ρ, Rn′)ρ2dρ, (77)

〈Φlm(Rn)|H|Φlm(Rn′)〉int = Hl(Rn, Rn′)

−
∫ ∞

a
ρΓl(ρ, Rn)(Tl + VC(ρ) + E1 + E2)ρΓl(ρ, Rn′)dρ, (78)

where the first terms in the r.h.s. are matrix elements (66) and (67) calculated over
the whole space. The second terms represent the external contributions of the basis
functions (64). They can easily be computed numerically. Then the R-matrix and
the associated collision matrix are obtained as in the standard calculable R matrix
[11, 12]. The collision matrix should not depend on the choice of the channel radius
a, provided it is large enough to make not only the nuclear interaction but also the
antisymmetrization effects negligible in the external region.

Another interesting aspect of the GCM is that, contrary to the RGM, forbidden
states do not cause any problem.

4.5 Examples: α + n and α + α elastic scatterings

The first example concerns the relatively simple α + n scattering. The GCM basis
functions (49) read

Φ = 5AΦα(−
1

5
R)Φn(+

4

5
R), (79)

where Φα is given by (5) with its location shifted and Φn is the product of a shifted
(6) by |msn〉. The overlap matrix element is given by

N(R,R′) = exp
(

− 1

5b2
(R−R′)2

) [

1− exp
(

− 1

2b2
R ·R′

)]

. (80)

The α + n scattering is described with an α-cluster internal wave function φα

defined with an oscillator parameter b = 1.36 fm. The microscopic R-matrix method
is employed for the numerical calculations with the Minnesota effective interaction
(19) as central nucleon-nucleon force and a zero-range spin-orbit force (22). With the
Minnesota force, the binding energy of the α particle is 24.28 MeV, which is smaller
than the experimental value 28.30 MeV. The admixture parameter u is taken as u =
0.96. The spin-orbit parameter S0 = 35.6 MeV fm5 is used for the p waves. The
calculation is performed with N = 10 basis functions in (75) with Rn values ranging
from 0.4 fm to 8.5 fm by steps of 0.9 fm and a = 7.6 fm [13].

The l = 0 (Jπ = 1/2+) and l = 1 (Jπ = 1/2− and 3/2−) phase shifts are displayed
in Fig. 1. The p3/2 phase shift presents a broad resonance, the 3/2− ground state
of 5He. An even broader p1/2 resonance corresponds to the 1/2− first excited state.
The s1/2 phase shift is non resonant. A comparison showing the excellent agreement
between the RGM and GCM can be found for the α + n scattering in [7].
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Figure 1: α + n GCM phase shifts calculated with the Minnesota interaction (full
lines) compared with phase shifts extracted from experiment (see [13] for details).

The second example deals with the α + α system. The GCM basis functions read

Φ =
8!

4!2
AΦα(−

1

2
R)Φα(+

1

2
R). (81)

The overlap matrix element is given by

N(R,R′) =
[

exp
(

− 1

2b2
(R−R′)2

)

− exp
(

− 1

2b2
(R+R′)2

)]4

. (82)

Since it is a system of two identical bosons, the RGM wave function must be symmetric
with respect to their exchange, i.e. for ρ → −ρ. Since the spherical harmonics in (35)
have a parity (−1)l, all odd-l waves are forbidden. This property can be checked by
observing with (82) and (62) that Nl(R,R′) and also Hl(R,R′) vanish identically for l
odd because of the symmetry for R′ → −R′.

This system possesses three forbidden states: two in the s wave and one in the
d wave. Both α clusters are described by internal wave functions φα defined in (16)
with an oscillator parameter b = 1.36 fm. The Minnesota interaction is used with an
admixture parameter u = 0.94687. This value provides an excellent description of the
α+α phase shifts over a broad energy range [14]. The microscopic R-matrix calculation
is performed with N = 10 basis functions with Rn values ranging from 0.8 fm to 8 fm
by steps of 0.8 fm. In Table 2 are given the l = 0 phase shifts at typical energies for
various conditions of calculation [12]. The channel radius a is taken as a = 6.4 fm or
a = 7.2 fm and N = 9 is also considered. In all cases, the phase shifts are very stable
when the conditions are changed. They are obtained with an accuracy better than
0.1◦.

Fig. 2 shows the phase shifts as a function of energy [12]. The cluster model is well
adapted to the α+α system since the first reaction threshold (7Li+p) is near 17 MeV.
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The GCM phase shifts are therefore in very good agreement with experiment. The
narrow ground-state resonance located at 92 keV is not observable at the scale of the
figure. Broad resonances appear in the d wave near 3 MeV and in the g wave near 13
MeV.

Table 2: Microscopic α + α phase shifts (in degrees) for different conditions of calcu-
lation [12].

E (MeV) N = 9 N = 10
a = 6.4 fm a = 7.2 fm a = 6.4 fm a = 7.2 fm

1 146.00 145.93 146.00 146.00
5 47.48 47.42 47.49 47.48
10 −5.67 −5.79 −5.67 −5.67
15 −38.47 −38.52 −38.46 −38.46
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Figure 2: α+α GCM phase shifts calculated with the Minnesota interaction (full lines)
compared with a phase shift analysis (see [12] for details).

4.6 The Levinson theorem

The Levinson theorem gives the variation of the phase shift when the energy varies
from zero to infinity. In local-potential scattering, it reads

δl(0)− δl(∞) = nlπ, (83)

where nl is the number of bound states in partial wave l. For non-local potentials, this
theorem must be modified into [15]

δl(0)− δl(∞) = (nl +ml)π, (84)

where ml is the number of forbidden states in partial wave l.
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The α + n system does not have any bound state: 5He is particle unstable. Only
one forbidden state (47) exists in the s wave (m0 = 1). For the l 6= 0 partial waves,
expression (83) remains thus valid. For the s wave, δ0(0) and δ0(∞) differ by π. For
δ0(0) = 0, the phase shift must tend to −π, in agreement with its behaviour in Fig. 1.

The α + α system has also no bound state since 8Be is particle unstable. Two
forbidden states exist in the s wave (m0 = 2) and one forbidden state exists in the d
wave (m2 = 1). The phase shift δ0 jumps from 0 to π at the narrow 8Be ground-state
resonance, then decreases and becomes negative. It must tend towards −2π. The phase
shift δ2 displays a broad resonance and must tend towards −π.

Since forbidden states only exist under the restricted condition of the harmonic-
oscillator model with equal size parameters, one might think that form (83) of the
Levinson theorem is more realistic than form (84). The contrary has been shown in a
model with spherical non-Gaussian α clusters [16].

5 Variants and approximations

5.1 RGM potential

The RGM equation (39) can be written more formally in operator notation as

(Tl + VD +KH
l + EKN

l )gl = Egl (85)

where Tl is given by (40), VD is the direct potential (41) and KH
l and KN

l are the norm
and overlap integral operators. Let us introduce the norm kernel operator

Nl = 1−KN
l . (86)

Equation (85) becomes

Hlgl = ENlgl (87)

with

Hl = Tl + VD +KH
l . (88)

The Pauli forbidden states satisfy equation (43),

KN
l g

FS
l = gFS

l (89)

or, equivalently,

Nlg
FS
l = 0. (90)

With (87), one verifies that

Hlg
FS
l = 0 (91)

is also true.
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The eigenvalue problem

KN
l ϕnl = µnlϕnl (92)

can sometimes be solved analytically [9]. For the α + n system described in §4.5, the
eigenvalues are

µnl =
(

−1

4

)2n+l

. (93)

For the α + α system described in §4.5, they are

µnl = 4
(

1

2

)2n+l

− 3δn0δl0 (94)

with l even. The eigenfunctions ϕnl are harmonic-oscillator radial functions [9]. The
Pauli forbidden states gFS

l are nothing but eigenstates ϕnl of the norm exchange kernel
KN

l with eigenvalues µnl = 1.
Let us introduce renormalized relative functions

ĝl = N 1/2
l gl. (95)

This function is orthogonal to the forbidden states. Equation (87) can be converted
into an equation involving an energy-independent potential,

(Tl + V RGM
l )ĝl = Eĝl. (96)

The nonlocal potential reads

V RGM
l = N−1/2

l HlN−1/2
l − Tl = N−1/2

l (Tl + VD +KH
l )N−1/2

l − Tl, (97)

where operator N−1/2
l is defined over the Pauli allowed space, i.e. it does not involve

forbidden states, otherwise the inverse would not exist. Operator N−1/2
l is given by

N−1/2
l =

∑

n>ml

(1− µnl)
−1/2|ϕnl〉〈ϕnl| (98)

where |ϕnl〉〈ϕnl| is the projector on the subspace corresponding to n and l. The ml

forbidden states are excluded from the sum.
The RGM potential is a complicated non-local operator which contains effects from

the kinetic and potential energies. Equation (96) leads to exactly the same bound-
state energies and phase shifts as (85). It presents the advantage that functions ĝl are
defined uniquely and that functions corresponding to different energies are orthogonal.
The functions ĝl resemble much more physical radial functions than the RGM relative
functions gl. The RGM potentials V RGM

l can be interpreted as effective cluster-cluster
interactions. They have been used in three-body calculations [14].
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5.2 Orthogonality-condition model

Equation (96) is not more practical to use than the RGM equation and even more
difficult to establish. However, it leads to various interesting approximations. The basic
idea is to replace the complicated non-local potential (97) by a local approximation
while keeping the influence of the forbidden states. The orthogonality-condition model
(OCM) is based on this idea [17].

In the OCM, (96) is replaced by

(Tl + V OCM
l )g̃l = Eg̃l (99)

with the condition

〈gFS
l |g̃l〉 = 0 (100)

for all forbidden states. The potential is in general adjusted to some physical properties
of the system. In some cases, its dependence on l is weak and can be suppressed.

A variant of (99) and (100) reads

Λl(Tl + V OCM
l )ĝl = Eĝl (101)

where

Λl =
∑

n>ml

|ϕnl〉〈ϕnl| = 1−
∑

FS

|gFS
l 〉〈gFS

l | (102)

is a projector on the allowed states.

5.3 Deep potentials

Though less involved than the RGM, the OCM is still rather complicated. A simpler
model that one could name local OCM has most of its advantages. Equation (101) is
replaced by the local equation

(Tl + Vl)ul = Eul, (103)

where Vl is a deep local potential which contains ml non-physical bound states below
the nl physical bound states of the lth partial wave. The idea is that the non-physical
bound states should resemble the forbidden states [18]. Because the physical bound
states and the scattering states are automatically orthogonal to the deep bound states,
they will resemble states orthogonal to forbidden states. Because of the ml unphysical
bound states, the Levinson theorem (84) is simulated by expression (83). For each
partial wave, the potential is adjusted to important physical data with the constraint
to be deep enough to have ml additional bound states. This simple model has proved
remarkably successful and efficient. In some cases, the dependence on the relative
orbital momentum l can even be neglected.

This model is very successful for the α + α scattering where a simple Gaussian
potential, independent of l, with only two parameters is able with a Coulomb term
to reproduce the α + α phase shifts up to 20 MeV for the l = 0 to 6 partial waves
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[18]. This potential has two “forbidden” deep bound states in the s wave and nicely
reproduces the physical ground-state resonance and its width. The ground-state wave
function u0 possesses two nodes at small distances due to the orthogonality to the
non-physical bound states. Thanks to these nodes, it resembles qualitatively the RGM
function ĝ0. One “forbidden” deep bound state is present in the d wave. This deep
potential gives as good a fit as an l-dependent shallow potential, without any bound
states, where nine parameters are needed [19]. The relation between these two types
of potential can be described mathematically [20].

Deep potentials provide successful approximations in applications where the node
structure of the wave functions plays an important physical role.

5.4 Determination of the number of forbidden states

The number of forbidden states is a useful information, for example to derive deep
potentials. It can be obtained with relatively simple calculations avoiding the resolution
of (43) or (92).

The GCM basis functions (49) vanish when the generator coordinate R is equal to
zero since one or several orbitals are occupied twice. Hence, the GCM norm kernel also
vanishes when R → 0 according to

N(R,R) ∼
R→0

R2ν (104)

where ν is an integer. Similarly, the projected norm kernels behave for R → 0 as

Nl(R,R) ∼
R→0

R2νl. (105)

where the integers νl can be obtained from analytical expressions or from numerical
values. One can show that the number ml of forbidden states is given by [21]

ml =
1
2
(νl − l). (106)

This property can be verified with (80) and (82).
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